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Gorenstein Fano polytope

Let P ⊂ Rd be an integral convex polytope of dimension d.

P : Fano
def⇐⇒ the origin of Rd is a unique integer point

belonging to the interior of P.

P : Gorenstein Fano (reflexive)
def⇐⇒ P is Fano and its dual polytope

P∨ := {x ∈ Rd | 〈x,y〉 ≤ 1 for all y ∈ P}

is integral as well.

P : normal
def⇐⇒ for each integer N > 0 and for each a ∈ NP ∩ Zd, there

exist a1, . . . ,aN ∈ P ∩ Zd such that a = a1 + · · ·+ aN
,where NP = {Nα | α ∈ P}.
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P P∨



Gorenstein Fano polytopes
Two Poset Polytopes
Three types polytopes

Combinatorial propeties

Example (Non-Gorenstein Fano polytope)

(−1,−1,−2)

(−4, 1, 1)

(1,−4, 1)

(1, 1,−3
2)

(1, 1, 1)

P P∨
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Example (Non-normal polytope)

(1, 1, 2)

(1, 0, 0)

(0, 1, 0)

(1, 1, 1)

P = conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 2))
P ∩ Z3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 2)}
(1, 1, 1) ∈ 2P ∩ Z3
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Unimodular equivalence

P,Q ⊂ Rd : integral convex polytopes of dimension d

P and Q are unimodularly equivalent
def⇐⇒ There exists a unimodular matrix U ∈ Zd×d

(i.e., det(U) = ±1) and an integer vector w ∈ Zd
such that Q = fU (P) + w, where fU is the linear
transformation of Rd (i.e., fU (v) = vU for all v ∈ Rd).
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Example

P Q R

P and R are unimodularly equivalent.

P and Q are not unimodularly equivalent.
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How many?

Theorem (Lagarias-Ziegler, 1991)

There are only finitely many Gorenstein Fano polytopes up to
unimodular equivalence in each dimension.

dimension ] of Gorenstein Fano polytopes

1 1

2 16

3 4,319

4 473,800,776

≥ 5 open
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Example (Gorenstein Fano polytopes of dimension 2)
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Faces of Gorenstein Fano polytopes

Theorem (Haase-Melnikov, 2004)

Every integral convex polytope is unimodularly equivalent to a face
of some Gorenstein Fano polytope.

Question

Is every normal integral convex polytope unimodularly equivalent
to a face of some normal Gorenstein Fano polytope?
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Faces of Gorenstein Fano polytopes

Theorem (Haase-Melnikov, 2004)

Every integral convex polytope is unimodularly equivalent to a face
of some Gorenstein Fano polytope.

Question

Is every normal integral convex polytope unimodularly equivalent
to a face of some normal Gorenstein Fano polytope?
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Partially Ordered SET

Let P = {p1, . . . , pd} be a partially ordered set.

I ⊂ P : a poset ideal of P
def⇐⇒ pi ∈ I and pj ∈ P together with pj ≤ pi guarantee pj ∈ I.

A ⊂ P : an antichain of P
def⇐⇒ pi and pj belonging to A with i 6= j are incomparable.

σ = i1i2 · · · id ∈ Sd : a linear extension of P
def⇐⇒ ia < ib if pia < pib in P .

We write J (P ),A(P ) and E(P ) for the set of poset ideals,
antichains and linear extensions of P .
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Example

p1 p2

p3

J (P ) = f;; fp1g; fp2g; fp1; p2g; fp1; p2; p3gg

A(P ) = f;; fp1g; fp2g; fp3g; fp1; p2gg

E(P ) = f123; 213g

P :=
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Order polytopes and Chain polytopes

For each subset I ⊂ P , we define ρ(I) =
∑

pi∈I ei ∈ Rd, where

e1, . . . , ed are the canonical unit coordinate vectors of Rd.

Richard Stanley introduced the order polytope O(P ) and the chain
polytope C(P ) arising from a partially ordered set P .

Definition

Let P = {p1, . . . , pd} be a partially ordered set.

O(P ) := conv({ρ(I) | I ∈ J (P )}),

C(P ) := conv({ρ(A) | A ∈ A(P )})
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Example

O(P ) C(P )

(1; 1; 1)

Vol(O(P )) = Vol(C(P )) = 1

3
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Properties of Two Poset Polytopes

In fact,

O(P ) and C(P ) are integral convex polytopes of dimension d.

O(P ) and C(P ) are normal.

Vol(O(P )) = Vol(C(P )).

|nO(P ) ∩ Zd| = |nC(P ) ∩ Zd| for any n ≥ 1.
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Properties of Two Poset Polytopes

In fact,

O(P ) and C(P ) are integral convex polytopes of dimension d.

O(P ) and C(P ) are normal.
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Higher dimensional construction

Let P,Q ⊂ Rd be integral convex polytopes of dimension d.
We set

Ω(P,Q) = conv(P × {1} ∪ (−Q)× {−1}) ⊂ Rd+1,

where −Q = {−α|α ∈ Q}.

Then P and −Q are facets of Ω(P,Q).
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Three types polytope

Let P = {p1, . . . , pd} and Q = {q1, . . . , qd} be partially ordered
sets.
We consider the following polytopes

Ω(O(P ),O(Q)),Ω(O(P ), C(Q)),Ω(C(P ), C(Q)).

We want to know when these polytopes are normal and Gorenstein
Fano.
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Example

Ω(O(P ),O(Q)) Ω(C(P ),O(Q)) Ω(C(P ), C(Q))

P =

p2

p1

Q =

q2

q1
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When are these polytopes Gorenstein Fano?

Theorem (Hibi-T)

Let P = {p1, . . . , pd} and Q = {q1, . . . , qd} be partially ordered
sets.

(i) Ω(O(P ),O(Q)) is normal Gorenstein Fano if and only if P
and Q have a common linear extension.

(ii) Ω(O(P ), C(Q)) is always normal Gorenstein Fano.

(iii) Ω(C(P ), C(Q)) is always normal Gorenstein Fano.
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When are these polytopes Gorenstein Fano?

Theorem (Hibi-T)

Let P = {p1, . . . , pd} and Q = {q1, . . . , qd} be partially ordered
sets.

(i) Ω(O(P ),O(Q)) is normal Gorenstein Fano if and only if P
and Q have a common linear extension.

(ii) Ω(O(P ), C(Q)) is always normal Gorenstein Fano.

(iii) Ω(C(P ), C(Q)) is always normal Gorenstein Fano.
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Ω(O(P ),O(Q)) Ω(C(P ),O(Q)) Ω(C(P ), C(Q))

P =

p2

p1

Q =

q1

q2
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How to prove?

We set
P ⊂ Rd : An integral convex polytope of dimension d.
S = K[x1, . . . , xd, t] : polynomial ring.
xα = xα1

1 · · ·xαd
d for α = (α1, . . . , αd) ∈ Zd.

K[P] = K[{xαt : α ∈ P ∩ Zd}] ⊂ S : The toric ring of P.
φ : T = K[{zα : α ∈ P ∩ Zd}]→ K[P] (zα 7→ xαt).
IP = kerφ : The toric ideal of P.

Lemma (Hibi-Matsuda-Ohsugi-Shibata, 2015)

Let P ⊂ Rd be a Fano polytope of dimension d. Suppose that∑
α∈P∩Zd Z(α, 1) = Zd+1 and there exists a reverse lexicographic

order <rev on T such that

z(0,...,0) is smallest.

in<rev(IP) is squarefree.

Then P is normal Gorenstein Fano.
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Gröbner bases

Set K[OO] = K[{xI}I∈J (P ) ∪ {yJ}J∈J (Q) ∪ {z}].
πOO : K[OO]→ K[Ω(O(P ),O(Q))] by setting

πOO(xI) = tρ(I∪{d+1})s,

πOO(yJ) = t−ρ(J∪{d+1})s,

πOO(z) = s.

Let <OO denote a reverse lexicographic order on K[OO] satisfying

z <OO yJ <OO xI ;

xI′ <OO xI if I ′ ⊂ I;

yJ ′ <OO yJ if J ′ ⊂ J ,

and GOO ⊂ K[OO] the set of the following binomials:

(i) xIxI′ − xI∪I′xI∩I′ (I and I ′ are incomparable in J (P ))

(ii) yJyJ ′ − yJ∪J ′yJ∩J (J and J ′ are incomparable in J (Q))

(iii) xIyJ − xI\{pi}yJ\{qi} (pi, qi are maximal elements of I, J)

(iv) x∅y∅ − z2,
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Gröbner bases

Proposition

If P and Q possess a common linear extension, then
Ω(O(P ),O(Q)) is Fano and GOO is a Gröbner basis of
IΩ(O(P ),O(Q)) with respect to <OO .

Similarly, we can show the case of Ω(O(P ), C(Q)) and
Ω(C(P ), C(Q)).
Hence the assersion of theorem follows.
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Questions

Question

For any (0, 1)-polytope P ⊂ Rd of dimension d, does there exist
(0, 1)-polytope Q ⊂ Rd of dimension d such that Ω(P,Q) is a
Gorenstein Fano polytope?

Question

For any normal (0, 1)-polytope P ⊂ Rd of dimension d, does there
exist normal (0, 1)-polytope Q ⊂ Rd of dimension d such that
Ω(P,Q) is a normal Gorenstein Fano polytope?
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For any (0, 1)-polytope P ⊂ Rd of dimension d, does there exist
(0, 1)-polytope Q ⊂ Rd of dimension d such that Ω(P,Q) is a
Gorenstein Fano polytope?

Question

For any normal (0, 1)-polytope P ⊂ Rd of dimension d, does there
exist normal (0, 1)-polytope Q ⊂ Rd of dimension d such that
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Gorenstein Fano polytopes
Two Poset Polytopes
Three types polytopes

Combinatorial propeties

Example

Example

Let P ⊂ R9 be the (0, 1)-polytope of dimension 9 whose vertices
are followings:

e1 + e2, e2 + e3, e3 + e4, e4 + e5, e1 + e5, e1 + e6, e1 + e7,

e2 + e7, e2 + e8, e3 + e8, e3 + e9, e4 + e9, e4, e5, e5 + e6.

Then P is normal. Moreover, Ω(P,P) is Gorenstein Fano, but it is
not normal.
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Ehrhart polynomial

Let P ⊂ Rd be an integral convex polytope of dimension d.
We set

i(P, n) = |nP ∩ Zd|, n = 1, 2, . . . .

i(P, n) is a polynomial in n of degree d.
We call i(P, n) the Ehrhart polynomial of P.
The following properties are known:

(i) The constant of i(P, n) equals 1;

(ii) The leading coefficient of i(P, n) equals vol(P);

Remark

i(O(P ), n) = i(C(P ), n) for any partially ordered set.
Hence vol(O(P )) = vol(C(P )).
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Hilbert polynomial

In fact,

Let P ⊂ Rd be an integral convex polytope of dimension d. If
P is normal, then the Ehrhart polynomial of P is equal to the
Hilbert function of the toric ring K[P].

Let S be a polnomial ring and I ⊂ S be a graded ideal of S.
Let < be a monomial order on S. Then S/I and S/in<(I)
have the same Hilbert function.
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Toric rings

Proposition

Let P = {p1, . . . , pd} and Q = {q1, . . . , qd} be partially ordered
sets.

(i) K[OC]/in<OC(IΩ(O(P ),C(Q)) ∼= K[CC]/in<CC(IΩ(C(P ),C(Q)).

(ii) If P and Q possess a common linear extension, then
K[OO]/in<OO(IΩ(O(P ),O(Q))∼= K[OC]/in<OC(IΩ(O(P ),C(Q))∼= K[CC]/in<CC(IΩ(C(P ),C(Q)).
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Ehrhart polynomials of three types polytopes

Theorem (Hibi-T)

Let P = {p1, . . . , pd} and Q = {q1, . . . , qd} be partially ordered
sets.

(i) Ω(O(P ), C(Q)), Ω(C(P ), C(Q)) have the same Ehrhart
polynomial. In particular, these polytopes have the same
volume.

(ii) If P and Q possess a common linear extension, then
Ω(O(P ),O(Q)), Ω(O(P ), C(Q)), Ω(C(P ), C(Q)) have the
same Ehrhart polynomial. In particular, these polytopes have
the same volume.
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Ehrhart polynomials of three types polytopes

Theorem (Hibi-T)

Let P = {p1, . . . , pd} and Q = {q1, . . . , qd} be partially ordered
sets.

(i) Ω(O(P ), C(Q)), Ω(C(P ), C(Q)) have the same Ehrhart
polynomial. In particular, these polytopes have the same
volume.

(ii) If P and Q possess a common linear extension, then
Ω(O(P ),O(Q)), Ω(O(P ), C(Q)), Ω(C(P ), C(Q)) have the
same Ehrhart polynomial. In particular, these polytopes have
the same volume.
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formula of volume

Theorem (Stanley, 1986)

Let P = {p1, . . . , pd} be a partially ordered set. Then we have

Vol(O(P )) = Vol(C(P )) =
]E(P )

d!
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formula of volume

For partially ordered sets P and Q with P ∩Q = ∅, the
ordinal sum of P and Q is the partially ordered set P ⊕Q on
the union P ∪Q such that s ≤ t in P ⊕Q if and only if
(a) s, t ∈ P and s ≤ t in P , or
(b) s, t ∈ Q and s ≤ t in Q, or
(c) s ∈ P and t ∈ Q.

Let P = {p1, . . . , pd} and Q = {q1, . . . , qd} be partially ordered
sets.

For W ⊂ [d] = {1, . . . , d}, We write PW for the partially
ordered set {pi | i ∈W} such that pi ≤ pj in PW if and only
if pi ≤ pj in P .

For W ⊂ [d], we write ∆W (P,Q) = PW ⊕QW , where
W = [d] \W .
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Example

P : Q :

∆f1;2;3g(P;Q) ∆f1;2g(P;Q) ∆f1;3g(P;Q)

∆f1g(P;Q) ∆f2g(P;Q) ∆f3g(P;Q) ∆;(P;Q)

∆f2;3g(P;Q)

p2

p1

p3

p1

p2 p3

p1

p2

p1

p3 p2 p3

p2 p3p1

q3 q2 q1

q2 q3

q3

q1 q1

q2

q1

q2 q3

q2 q3

q1
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formula of volume

Theorem (Stanley, 1986)

Let P = {p1, . . . , pd} be a partially ordered set. Then we have

Vol(O(P )) = Vol(C(P )) =
]E(P )

d!

Theorem (Hibi-T)

Let P = {p1, . . . , pd} and Q = {q1, . . . , qd} be partially ordered
sets, and set P ′ = {pd+1} ⊕ P and Q′ = {qd+1} ⊕Q. If P and Q
have a same linear extension, then we have

vol(Ω(O(P ),O(Q))) =
∑

W⊂[d+1]

]E(∆W (P ′, Q′))

(d+ 1)!
.
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Let P = {p1, . . . , pd} and Q = {q1, . . . , qd} be partially ordered
sets, and set P ′ = {pd+1} ⊕ P and Q′ = {qd+1} ⊕Q. If P and Q
have a same linear extension, then we have

vol(Ω(O(P ),O(Q))) =
∑

W⊂[d+1]

]E(∆W (P ′, Q′))

(d+ 1)!
.
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