Gorenstein Fano polytopes arising from two poset polytopes

Akiyoshi Tsuchiya

Osaka University

Computational Commutative Algebra and Convex Polytopes 1 Aug, 2016, Kyoto University

This talk is joint work with Takayuki Hibi.

Gorenstein Fano polytope

Let $\mathcal{P} \subset \mathbb{R}^d$ be an integral convex polytope of dimension $d.$

- \mathcal{P} : Fano $\stackrel{\mathsf{def}}{\iff}$ the origin of \mathbb{R}^d is a unique integer point belonging to the interior of P .
- \bullet \mathcal{P} : Gorenstein Fano (reflexive) $\stackrel{\text{def}}{\iff} \mathcal{P}$ is Fano and its dual polytope

$$
\mathcal{P}^{\vee} := \{ \mathbf{x} \in \mathbb{R}^d \mid \langle \mathbf{x}, \mathbf{y} \rangle \le 1 \text{ for all } \mathbf{y} \in \mathcal{P} \}
$$

is integral as well.

 \bullet P : normal def $\xleftrightarrow{\det}$ for each integer $N>0$ and for each $\mathbf{a}\in N\mathcal{P}\cap\mathbb{Z}^{d}$, there exist $\mathbf{a}_1,\ldots,\mathbf{a}_N \in \mathcal{P} \cap \mathbb{Z}^d$ such that $\mathbf{a} = \mathbf{a}_1 + \cdots + \mathbf{a}_N$, where $N\mathcal{P} = \{N\alpha \mid \alpha \in \mathcal{P}\}.$

Example (Gorenstein Fano polytope)

Example (Non-Gorenstein Fano polytope)

Example (Non-normal polytope)

Unimodular equivalence

 $\mathcal{P}, \mathcal{Q} \subset \mathbb{R}^d$: integral convex polytopes of dimension d \bullet P and Q are unimodularly equivalent $\stackrel{\text{def}}{\iff}$ There exists a unimodular matrix $U \in \mathbb{Z}^{d \times d}$ (i.e., $\det(U) = \pm 1$) and an integer vector $w \in \mathbb{Z}^d$ such that $Q = f_U(\mathcal{P}) + w$, where f_U is the linear transformation of \mathbb{R}^d (i.e., $f_U(v) = vU$ for all $v \in \mathbb{R}^d$). [Gorenstein Fano polytopes](#page-1-0) [Two Poset Polytopes](#page-12-0)

[Three types polytopes](#page-23-0) [Combinatorial propeties](#page-38-0)

Example

 P and Q are not unimodularly equivalent.

 P and R are unimodularly equivalent.

How many?

Theorem (Lagarias-Ziegler, 1991)

There are only finitely many Gorenstein Fano polytopes up to unimodular equivalence in each dimension.

How many?

Theorem (Lagarias-Ziegler, 1991)

There are only finitely many Gorenstein Fano polytopes up to unimodular equivalence in each dimension.

Example (Gorenstein Fano polytopes of dimension 2)

Faces of Gorenstein Fano polytopes

Theorem (Haase-Melnikov, 2004)

Every integral convex polytope is unimodularly equivalent to a face of some Gorenstein Fano polytope.

Faces of Gorenstein Fano polytopes

Theorem (Haase-Melnikov, 2004)

Every integral convex polytope is unimodularly equivalent to a face of some Gorenstein Fano polytope.

Question

Is every normal integral convex polytope unimodularly equivalent to a face of some normal Gorenstein Fano polytope?

Partially Ordered SET

Let
$$
P = \{p_1, ..., p_d\}
$$
 be a partially ordered set.
\n• $I \subset P$: a poset ideal of P
\n $\xrightarrow{\text{def}} p_i \in I$ and $p_j \in P$ together with $p_j \leq p_i$ guarantee $p_j \in I$.
\n• $A \subset P$: an antichain of P
\n $\xrightarrow{\text{def}} p_i$ and p_j belonging to A with $i \neq j$ are incomparable.
\n• $\sigma = i_1 i_2 \cdots i_d \in S_d$: a linear extension of P
\n $\xrightarrow{\text{def}} i_a < i_b$ if $p_{i_a} < p_{i_b}$ in P .

We write $\mathcal{J}(P), \mathcal{A}(P)$ and $E(P)$ for the set of poset ideals, antichains and linear extensions of P.

Example

 $\mathcal{J}(P) = \{\emptyset, \{p_1\}, \{p_2\}, \{p_1, p_2\}, \{p_1, p_2, p_3\}\}\$ $\mathcal{A}(P) = \{\emptyset, \{p_1\}, \{p_2\}, \{p_3\}, \{p_1, p_2\}\}\$ $E(P) = \{123, 213\}$

Order polytopes and Chain polytopes

For each subset $I\subset P$, we define $\rho(I)=\sum_{p_i\in I}{\bf e}_i\in\mathbb{R}^d,$ where $\mathbf{e}_1, \ldots, \mathbf{e}_d$ are the canonical unit coordinate vectors of \mathbb{R}^d .

Richard Stanley introduced the order polytope $\mathcal{O}(P)$ and the chain polytope $C(P)$ arising from a partially ordered set P.

Order polytopes and Chain polytopes

For each subset $I\subset P$, we define $\rho(I)=\sum_{p_i\in I}{\bf e}_i\in\mathbb{R}^d,$ where $\mathbf{e}_1, \ldots, \mathbf{e}_d$ are the canonical unit coordinate vectors of \mathbb{R}^d .

Richard Stanley introduced the order polytope $\mathcal{O}(P)$ and the chain polytope $C(P)$ arising from a partially ordered set P.

Definition

Let $P = \{p_1, \ldots, p_d\}$ be a partially ordered set.

$$
\mathcal{O}(P) := \text{conv}(\{\rho(I) \mid I \in \mathcal{J}(P)\}),
$$

$$
\mathcal{C}(P) := \mathsf{conv}(\{\rho(A) \mid A \in \mathcal{A}(P)\})
$$

Example

 $\mathcal{J}(P) = \{\emptyset, \{p_1\}, \{p_2\}, \{p_1, p_2\}, \{p_1, p_2, p_3\}\}\$ $\mathcal{A}(P) = \{\emptyset, \{p_1\}, \{p_2\}, \{p_3\}, \{p_1, p_2\}\}\$ $E(P) = \{123, 213\}$

Example

Properties of Two Poset Polytopes

Properties of Two Poset Polytopes

In fact,

 \bullet $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are integral convex polytopes of dimension d.

Properties of Two Poset Polytopes

- \bullet $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are integral convex polytopes of dimension d.
- \bullet $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are normal.

Properties of Two Poset Polytopes

- \bullet $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are integral convex polytopes of dimension d.
- \bullet $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are normal.
- \bullet Vol $(\mathcal{O}(P)) = \text{Vol}(\mathcal{C}(P)).$

Properties of Two Poset Polytopes

- \bullet $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are integral convex polytopes of dimension d.
- \circ $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are normal.
- \bullet Vol $(\mathcal{O}(P)) = \text{Vol}(\mathcal{C}(P)).$
- $|n\mathcal{O}(P) \cap \mathbb{Z}^d| = |n\mathcal{C}(P) \cap \mathbb{Z}^d|$ for any $n \geq 1$.

Higher dimensional construction

Let $\mathcal{P}, \mathcal{Q} \subset \mathbb{R}^d$ be integral convex polytopes of dimension d . We set

$$
\Omega(\mathcal{P}, \mathcal{Q}) = \text{conv}(\mathcal{P} \times \{1\} \cup (-\mathcal{Q}) \times \{-1\}) \subset \mathbb{R}^{d+1},
$$

where $-Q = \{-\alpha | \alpha \in \mathcal{Q}\}.$

Then P and $-Q$ are facets of $\Omega(\mathcal{P}, \mathcal{Q})$.

Three types polytope

Let
$$
P = \{p_1, \ldots, p_d\}
$$
 and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets.

We consider the following polytopes

 $\Omega(\mathcal{O}(P), \mathcal{O}(Q)), \Omega(\mathcal{O}(P), \mathcal{C}(Q)), \Omega(\mathcal{C}(P), \mathcal{C}(Q)).$

We want to know when these polytopes are normal and Gorenstein Fano.

Example

When are these polytopes Gorenstein Fano?

Theorem (Hibi-T)

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets.

When are these polytopes Gorenstein Fano?

Theorem (Hibi-T)

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets.

(i) $\Omega(\mathcal{O}(P), \mathcal{O}(Q))$ is normal Gorenstein Fano if and only if P and Q have a common linear extension.

When are these polytopes Gorenstein Fano?

Theorem (Hibi-T)

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets.

- (i) $\Omega(\mathcal{O}(P), \mathcal{O}(Q))$ is normal Gorenstein Fano if and only if P and Q have a common linear extension.
- (ii) $\Omega(\mathcal{O}(P), \mathcal{C}(Q))$ is always normal Gorenstein Fano.

When are these polytopes Gorenstein Fano?

Theorem (Hibi-T)

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets.

- (i) $\Omega(\mathcal{O}(P), \mathcal{O}(Q))$ is normal Gorenstein Fano if and only if P and Q have a common linear extension.
- (ii) $\Omega(\mathcal{O}(P), \mathcal{C}(Q))$ is always normal Gorenstein Fano.
- (iii) $\Omega(\mathcal{C}(P), \mathcal{C}(Q))$ is always normal Gorenstein Fano.

Example

How to prove?

We set
\n
$$
\mathcal{P} \subset \mathbb{R}^d
$$
: An integral convex polytope of dimension d .
\n $S = K[x_1, ..., x_d, t]$: polynomial ring.
\n $x^{\alpha} = x_1^{\alpha_1} \cdots x_d^{\alpha_d}$ for $\alpha = (\alpha_1, ..., \alpha_d) \in \mathbb{Z}^d$.
\n $K[\mathcal{P}] = K[\{x^{\alpha}t : \alpha \in \mathcal{P} \cap \mathbb{Z}^d\}] \subset S$: The toric ring of \mathcal{P} .
\n $\phi : T = K[\{z_{\alpha} : \alpha \in \mathcal{P} \cap \mathbb{Z}^d\}] \rightarrow K[\mathcal{P}] \ (z_{\alpha} \mapsto x^{\alpha}t)$.
\n $I_{\mathcal{P}} = \ker \phi$: The toric ideal of \mathcal{P} .

How to prove?

We set
\n
$$
\mathcal{P} \subset \mathbb{R}^d
$$
: An integral convex polytope of dimension d .
\n $S = K[x_1, \ldots, x_d, t]$: polynomial ring.
\n $x^{\alpha} = x_1^{\alpha_1} \cdots x_d^{\alpha_d}$ for $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{Z}^d$.
\n $K[\mathcal{P}] = K[\{x^{\alpha}t : \alpha \in \mathcal{P} \cap \mathbb{Z}^d\}] \subset S$: The toric ring of \mathcal{P} .
\n $\phi : T = K[\{z_{\alpha} : \alpha \in \mathcal{P} \cap \mathbb{Z}^d\}] \rightarrow K[\mathcal{P}] \ (z_{\alpha} \mapsto x^{\alpha}t)$.
\n $I_{\mathcal{P}} = \ker \phi$: The toric ideal of \mathcal{P} .

Lemma (Hibi-Matsuda-Ohsugi-Shibata, 2015)

Let $\mathcal{P} \subset \mathbb{R}^d$ be a Fano polytope of dimension d . Suppose that $\sum_{\alpha\in \mathcal{P} \cap \mathbb{Z}^d} \mathbb{Z}(\alpha,1) = \mathbb{Z}^{d+1}$ and there exists a reverse lexicographic order \lt_{rev} on T such that

- $z_{(0,...,0)}$ is smallest.
- in $\epsilon_{rev}(I_{\mathcal{P}})$ is squarefree.

Then P is normal Gorenstein Fano.

Gröbner bases

Set
$$
K[OO] = K[\{x_I\}_{I \in \mathcal{J}(P)} \cup \{y_J\}_{J \in \mathcal{J}(Q)} \cup \{z\}].
$$

\n $\pi_{OO}: K[OO] \rightarrow K[\Omega(O(P), O(Q))]$ by setting

- $\pi_{\mathcal{O}\mathcal{O}}(x_I) = \mathbf{t}^{\rho(I \cup \{d+1\})} s,$
- $\pi_{\mathcal{O}\mathcal{O}}(y_J) = \mathbf{t}^{-\rho(J\cup\{d+1\})}s,$

$$
\bullet \ \pi_{\mathcal{O}\mathcal{O}}(z)=s.
$$

Let $\langle \cos \theta \rangle$ denote a reverse lexicographic order on $K[{{\mathcal{O}}{\mathcal{O}}}]$ satisfying

- \bullet z $\leq_{\mathcal{O}} \circ y_{I} \leq_{\mathcal{O}} \circ x_{I}$;
- $x_{I'} <_{\mathcal{O}\mathcal{O}} x_I$ if $I' \subset I$;
- $y_{J'} <_{\mathcal{O}\mathcal{O}} y_J$ if $J' \subset J$,

and $\mathcal{G}_{\mathcal{O}\mathcal{O}} \subset K[\mathcal{O}\mathcal{O}]$ the set of the following binomials:

(i) $x_I x_{I'} - x_{I \cup I'} x_{I \cap I'}$ (*I* and *I'* are incomparable in $\mathcal{J}(P)$) (ii) $y_J y_{J'} - y_{J \cup J'} y_{J \cap J}$ (*J* and *J'* are incomparable in $\mathcal{J}(Q)$) (iii) $x_I y_J - x_{I\setminus\{p_i\}} y_{J\setminus\{q_i\}}$ $(p_i,q_i$ are maximal elements of I,J (iv) $x_{\emptyset}y_{\emptyset} - z^2$,

Gröbner bases

Proposition

If P and Q possess a common linear extension, then $\Omega(\mathcal{O}(P), \mathcal{O}(Q))$ is Fano and \mathcal{G}_{OO} is a Gröbner basis of $I_{\Omega(\mathcal{O}(P), \mathcal{O}(Q))}$ with respect to \langle OO.

Similarly, we can show the case of $\Omega(\mathcal{O}(P), \mathcal{C}(Q))$ and $\Omega(\mathcal{C}(P), \mathcal{C}(Q)).$ Hence the assersion of theorem follows.

Questions

Question

For any $(0,1)$ -polytope $\mathcal{P} \subset \mathbb{R}^d$ of dimension d , does there exist $(0,1)$ -polytope $\mathcal{Q} \subset \mathbb{R}^d$ of dimension d such that $\Omega(\mathcal{P},\mathcal{Q})$ is a Gorenstein Fano polytope?

Questions

Question

For any $(0,1)$ -polytope $\mathcal{P} \subset \mathbb{R}^d$ of dimension d , does there exist $(0,1)$ -polytope $\mathcal{Q} \subset \mathbb{R}^d$ of dimension d such that $\Omega(\mathcal{P},\mathcal{Q})$ is a Gorenstein Fano polytope?

Question

For any normal $(0,1)$ -polytope $\mathcal{P} \subset \mathbb{R}^d$ of dimension d , does there exist normal $(0,1)$ -polytope $\mathcal{Q} \subset \mathbb{R}^d$ of dimension d such that $\Omega(\mathcal{P}, \mathcal{Q})$ is a normal Gorenstein Fano polytope?

Example

Example

Let $\mathcal{P} \subset \mathbb{R}^9$ be the $(0,1)$ -polytope of dimension 9 whose vertices are followings:

$$
e_1 + e_2, e_2 + e_3, e_3 + e_4, e_4 + e_5, e_1 + e_5, e_1 + e_6, e_1 + e_7,
$$

 $e_2 + e_7, e_2 + e_8, e_3 + e_8, e_3 + e_9, e_4 + e_9, e_4, e_5, e_5 + e_6.$

Then P is normal. Moreover, $\Omega(\mathcal{P}, \mathcal{P})$ is Gorenstein Fano, but it is not normal.

Ehrhart polynomial

Let $\mathcal{P} \subset \mathbb{R}^d$ be an integral convex polytope of dimension d . We set

$$
i(\mathcal{P}, n) = |n\mathcal{P} \cap \mathbb{Z}^d|, n = 1, 2, \dots
$$

 $i(\mathcal{P}, n)$ is a polynomial in n of degree d. We call $i(\mathcal{P}, n)$ the Ehrhart polynomial of \mathcal{P} . The following properties are known:

Ehrhart polynomial

Let $\mathcal{P} \subset \mathbb{R}^d$ be an integral convex polytope of dimension d . We set

$$
i(\mathcal{P}, n) = |n\mathcal{P} \cap \mathbb{Z}^d|, n = 1, 2, \dots
$$

 $i(\mathcal{P}, n)$ is a polynomial in n of degree d. We call $i(\mathcal{P}, n)$ the Ehrhart polynomial of \mathcal{P} . The following properties are known:

(i) The constant of $i(\mathcal{P}, n)$ equals 1;

Ehrhart polynomial

Let $\mathcal{P} \subset \mathbb{R}^d$ be an integral convex polytope of dimension d . We set

$$
i(\mathcal{P}, n) = |n\mathcal{P} \cap \mathbb{Z}^d|, n = 1, 2, \dots
$$

 $i(\mathcal{P}, n)$ is a polynomial in n of degree d. We call $i(\mathcal{P}, n)$ the Ehrhart polynomial of \mathcal{P} . The following properties are known:

- (i) The constant of $i(\mathcal{P}, n)$ equals 1;
- (ii) The leading coefficient of $i(\mathcal{P}, n)$ equals vol (\mathcal{P}) ;

Ehrhart polynomial

Let $\mathcal{P} \subset \mathbb{R}^d$ be an integral convex polytope of dimension d . We set

$$
i(\mathcal{P}, n) = |n\mathcal{P} \cap \mathbb{Z}^d|, n = 1, 2, \dots
$$

 $i(\mathcal{P}, n)$ is a polynomial in n of degree d. We call $i(\mathcal{P}, n)$ the Ehrhart polynomial of \mathcal{P} . The following properties are known:

- (i) The constant of $i(\mathcal{P}, n)$ equals 1;
- (ii) The leading coefficient of $i(\mathcal{P}, n)$ equals vol (\mathcal{P}) ;

Remark

 $i(\mathcal{O}(P), n) = i(\mathcal{C}(P), n)$ for any partially ordered set. Hence $vol(\mathcal{O}(P)) = vol(\mathcal{C}(P)).$

Hilbert polynomial

Hilbert polynomial

In fact,

Let $\mathcal{P} \subset \mathbb{R}^d$ be an integral convex polytope of dimension d . If $\mathcal P$ is normal, then the Ehrhart polynomial of $\mathcal P$ is equal to the Hilbert function of the toric ring $K[\mathcal{P}]$.

Hilbert polynomial

- Let $\mathcal{P} \subset \mathbb{R}^d$ be an integral convex polytope of dimension d . If $\mathcal P$ is normal, then the Ehrhart polynomial of $\mathcal P$ is equal to the Hilbert function of the toric ring $K[\mathcal{P}]$.
- Let S be a polnomial ring and $I \subset S$ be a graded ideal of S. Let $<$ be a monomial order on S. Then S/I and $S/$ in $<$ (I) have the same Hilbert function.

Toric rings

Proposition

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets.

Toric rings

Proposition

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets.

(i) $K[\mathcal{O}\mathcal{C}]/\mathsf{in}_{< \mathcal{O}\mathcal{C}}(I_{\Omega(\mathcal{O}(P),\mathcal{C}(Q)}) \cong K[\mathcal{C}\mathcal{C}]/\mathsf{in}_{< \mathcal{CC}}(I_{\Omega(\mathcal{C}(P),\mathcal{C}(Q)})).$

Toric rings

Proposition

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets.

(i)
$$
K[\mathcal{OC}]/\mathfrak{in}_{<\mathcal{OC}}(I_{\Omega(\mathcal{O}(P),\mathcal{C}(Q)}) \cong K[\mathcal{CC}]/\mathfrak{in}_{<\mathcal{CC}}(I_{\Omega(\mathcal{C}(P),\mathcal{C}(Q)})).
$$

(ii) If P and Q possess a common linear extension, then
\n
$$
K[OO]/\text{in}_{\n
$$
\cong K[OO]/\text{in}_{\n
$$
\cong K[CC]/\text{in}_{
$$
$$
$$

Ehrhart polynomials of three types polytopes

Theorem (Hibi-T)

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets.

Ehrhart polynomials of three types polytopes

Theorem (Hibi-T)

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets.

(i) $\Omega(\mathcal{O}(P), \mathcal{C}(Q))$, $\Omega(\mathcal{C}(P), \mathcal{C}(Q))$ have the same Ehrhart polynomial. In particular, these polytopes have the same volume.

Ehrhart polynomials of three types polytopes

Theorem (Hibi-T)

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets.

- (i) $\Omega(\mathcal{O}(P), \mathcal{C}(Q))$, $\Omega(\mathcal{C}(P), \mathcal{C}(Q))$ have the same Ehrhart polynomial. In particular, these polytopes have the same volume.
- (ii) If P and Q possess a common linear extension, then $\Omega(\mathcal{O}(P), \mathcal{O}(Q)), \Omega(\mathcal{O}(P), \mathcal{C}(Q)), \Omega(\mathcal{C}(P), \mathcal{C}(Q))$ have the same Ehrhart polynomial. In particular, these polytopes have the same volume.

formula of volume

Theorem (Stanley, 1986)

Let $P = \{p_1, \ldots, p_d\}$ be a partially ordered set. Then we have

$$
\text{Vol}(\mathcal{O}(P)) = \text{Vol}(\mathcal{C}(P)) = \frac{\sharp E(P)}{d!}
$$

formula of volume

• For partially ordered sets P and Q with $P \cap Q = \emptyset$, the ordinal sum of P and Q is the partially ordered set $P \oplus Q$ on the union $P \cup Q$ such that $s \leq t$ in $P \oplus Q$ if and only if (a) $s, t \in P$ and $s \leq t$ in P, or (b) $s, t \in Q$ and $s \leq t$ in Q, or (c) $s \in P$ and $t \in Q$.

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets.

- For $W \subset [d] = \{1, \ldots, d\}$, We write P_W for the partially ordered set $\{p_i \mid i \in W\}$ such that $p_i \leq p_j$ in P_W if and only if $p_i \leq p_j$ in P.
- For $W \subset [d]$, we write $\Delta_W(P,Q) = P_W \oplus Q_{\overline{W}}$, where $\overline{W} = [d] \setminus W$.

Example

formula of volume

Theorem (Stanley, 1986)

Let $P = \{p_1, \ldots, p_d\}$ be a partially ordered set. Then we have

$$
\text{Vol}(\mathcal{O}(P)) = \text{Vol}(\mathcal{C}(P)) = \frac{\sharp E(P)}{d!}
$$

formula of volume

Theorem (Stanley, 1986)

Let $P = \{p_1, \ldots, p_d\}$ be a partially ordered set. Then we have

$$
\text{Vol}(\mathcal{O}(P)) = \text{Vol}(\mathcal{C}(P)) = \frac{\sharp E(P)}{d!}
$$

Theorem (Hibi-T)

Let $P = \{p_1, \ldots, p_d\}$ and $Q = \{q_1, \ldots, q_d\}$ be partially ordered sets, and set $P' = \{p_{d+1}\} \oplus P$ and $Q' = \{q_{d+1}\} \oplus Q$. If P and Q have a same linear extension, then we have

$$
\text{vol}(\Omega(\mathcal{O}(P), \mathcal{O}(Q))) = \sum_{W \subset [d+1]} \frac{\sharp E(\Delta_W(P', Q'))}{(d+1)!}.
$$