Structure and Classifications of Lattice Polytopes

Andreas Paffenholz

Technische Universität Darmstadt

▶ lattice polytope: convex hull of finitely many points in \mathbb{Z}^d $Q = \operatorname{conv}(v_1, ..., v_n), \quad v_i \in \mathbb{Z}^d$

- ▶ lattice polytope: convex hull of finitely many points in \mathbb{Z}^d $Q = \operatorname{conv}(v_1, ..., v_n), \quad v_i \in \mathbb{Z}^d$
- Classifications of subfamilies
 - ▷ by dimension
 - > number of (interior) lattice points
 - structural properties:
 - \triangleright many vertices, *h*^{*}-vector, ...

- ▶ lattice polytope: convex hull of finitely many points in \mathbb{Z}^d $Q = \operatorname{conv}(v_1, ..., v_n), \quad v_i \in \mathbb{Z}^d$
- Classifications of subfamilies
 - ▷ by dimension
 - number of (interior) lattice points
 - structural properties:
 - \triangleright many vertices, *h**-vector, ...

► Why?

- experimentation
- obtain/test conjectures

TECHNISCH UNIVERSITÄ DARMSTAD

- ► lattice polytope: convex hull of finitely many points in \mathbb{Z}^d $Q = \operatorname{conv}(v_1, ..., v_n), \quad v_i \in \mathbb{Z}^d$
- Classifications of subfamilies
 - ▷ by dimension
 - > number of (interior) lattice points
 - structural properties:
 - \triangleright many vertices, h^* -vector, ...

► Why?

- experimentation
- obtain/test conjectures

► How?

computational

- enumerate complete subfamilies
- ▷ PALP, polymake
- Graded Rings Database,
 - polymake database polyDB

- ▶ lattice polytope: convex hull of finitely many points in \mathbb{Z}^d $Q = \operatorname{conv}(v_1, ..., v_n), \quad v_i \in \mathbb{Z}^d$
- Classifications of subfamilies
 - ▷ by dimension
 - number of (interior) lattice points
 - structural properties:
 - \triangleright many vertices, *h**-vector, ...

► Why?

- experimentation
- obtain/test conjectures

► How?

- computational
 - enumerate complete subfamilies
 - ▷ PALP, polymake
 - Graded Rings Database,
 - polymake database polyDB

▷ structural

- standard polytope constructions
- ▷ projections, liftings
- ▷ common properties
- ▷...

► lattice polytope: convex hull of finitely many points in \mathbb{Z}^d $Q = \operatorname{conv}(v_1, ..., v_n), \quad v_i \in \mathbb{Z}^d$

- ► lattice polytope: convex hull of finitely many points in \mathbb{Z}^d $Q = \operatorname{conv}(v_1, ..., v_n), \quad v_i \in \mathbb{Z}^d$
- hyperplane description:

$$Q = \{ x \mid \langle a_i, x \rangle \leq b_i \} \quad a_i \in \mathbb{Z}^d \text{ primitive, } b_i \in \mathbb{Z}$$

- ► lattice polytope: convex hull of finitely many points in \mathbb{Z}^d $Q = \operatorname{conv}(v_1, ..., v_n), \quad v_i \in \mathbb{Z}^d$
- hyperplane description:

$$Q = \{ x \mid \langle a_i, x \rangle \leq b_i \}$$
 $a_i \in \mathbb{Z}^d$ primitive, $b_i \in \mathbb{Z}$

- ▷ assume irredundant:
 - Each a_i defines a facet

$$F_i := \{x \in Q \mid \langle a_i, x \rangle = b_i \}$$
 of Q

► lattice polytope: convex hull of finitely many points in
$$\mathbb{Z}^d$$

 $Q = \operatorname{conv}(v_1, ..., v_n), \quad v_i \in \mathbb{Z}^d$

hyperplane description:

$$Q = \{ x \mid \langle a_i, x
angle \leq b_i \}$$
 $a_i \in \mathbb{Z}^d$ primitive, $b_i \in \mathbb{Z}$

▷ assume irredundant: Each a_i defines a facet $F_i := \{x \in Q \mid \langle a_i, x \rangle = b_i \}$ of Q

▶ normal fan of *Q*:

▷ fan Σ ⊆ (ℝ^d)* with rays a₁,..., a_m
 ▷ rays form cone σ if corresponding facets define face of Q

▶ polar (dual) polytope:

$$Q^{\vee} = \{ x \mid \langle x, v \rangle \leq 1 \quad \forall v \in Q \}$$

 \triangleright Ehrhart polynomial ehr_P(k) := $|k \cdot P \cap \mathbb{Z}^d|$ polynomial of degree d

▷ Ehrhart polynomial $ehr_P(k) := |k \cdot P \cap \mathbb{Z}^d|$ polynomial of degree d

▷ Ehrhart polynomial $ehr_P(k) := |k \cdot P \cap \mathbb{Z}^d|$ polynomial of degree d

 \triangleright Ehrhart polynomial ehr_P(k) := $|k \cdot P \cap \mathbb{Z}^d|$ polynomial of degree d

▷ Ehrhart polynomial $ehr_P(k) := |k \cdot P \cap \mathbb{Z}^d|$ polynomial of degree d

► h*-polynomial of P: $\sum_{k\geq 0} \operatorname{ehr}_{P}(k)t^{k} = \frac{h^{*}(t)}{(1-t)^{d+1}}$

 \triangleright *h*^{*} has integral nonnegative coefficients

 $\triangleright h^*\text{-vector} \quad (h_0^*, h_1^*, \dots, h_d^*)$

$$ehr_P(k) = \frac{1}{2}k^2 + \frac{3}{2}k + 1$$

▷ Ehrhart polynomial $ehr_P(k) := |k \cdot P \cap \mathbb{Z}^d|$ polynomial of degree d

► h*-polynomial of P: $\sum_{k\geq 0} \operatorname{ehr}_{P}(k)t^{k} = \frac{h^{*}(t)}{(1-t)^{d+1}}$

▷ h^* has integral nonnegative coefficients ▷ h^* -vector $(h_0^*, h_1^*, ..., h_d^*)$

$$\triangleright h_0^* = 1$$

$$\triangleright h_1^* = |P \cap Z^d| - d - 1$$

$$\triangleright h_d^* = |\operatorname{int} P \cap \mathbb{Z}^d|$$

$$ehr_P(k) = \frac{1}{2}k^2 + \frac{3}{2}k + 1$$

 \triangleright Ehrhart polynomial ehr_P(k) := $|k \cdot P \cap \mathbb{Z}^d|$ polynomial of degree d

► h*-polynomial of P: $\sum_{k\geq 0} \operatorname{ehr}_{P}(k)t^{k} = \frac{h^{*}(t)}{(1-t)^{d+1}}$

▷ h^* has integral nonnegative coefficients ▷ h^* -vector $(h_0^*, h_1^*, ..., h_d^*)$

$$\triangleright h_0^* = 1$$

$$\triangleright h_1^* = |P \cap Z^d| - d - 1$$

$$\triangleright h_d^* = |\operatorname{int} P \cap \mathbb{Z}^d|$$

► lattice polytope Q with normal fan Σ \longleftrightarrow

> projective toric variety X_{Σ} with ample divisior L_P

$$ehr_P(k) = \frac{1}{2}k^2 + \frac{3}{2}k + 1$$

▷ Ehrhart polynomial $ehr_P(k) := |k \cdot P \cap \mathbb{Z}^d|$ polynomial of degree d

► h*-polynomial of P: $\sum_{k\geq 0} \operatorname{ehr}_{P}(k)t^{k} = \frac{h^{*}(t)}{(1-t)^{d+1}}$

 \triangleright h^* has integral nonnegative coefficients

>
$$h^*$$
-vector $(h_0^*, h_1^*, ..., h_d^*)$

$$\triangleright h_0^* = 1$$

$$\triangleright h_1^* = |P \cap Z^d| - d - 1$$

$$\triangleright h_d^* = |\operatorname{int} P \cap \mathbb{Z}^d|$$

► lattice polytope Q with normal fan Σ \longleftrightarrow

> projective toric variety X_{Σ} with ample divisior L_P

▷ toric dictionary: properties of variety correpond to properties of polytope

$$ehr_P(k) = \frac{1}{2}k^2 + \frac{3}{2}k + 1$$

Classify or enumerate complete subfamilies of lattice polytopes

Classify or enumerate complete subfamilies of lattice polytopes

- ▷ by dimension
- ▷ my number of (interior) lattice points
- ▷ by properties of the polytopes

▷...

Classify or enumerate complete subfamilies of lattice polytopes

- ▷ by dimension
- ▷ my number of (interior) lattice points
- ▷ by properties of the polytopes
- ▷...
- Theorem (Hensley; Lagarias & Ziegler)
 - $d, m \ge 1$. Then there are, up to lattice equivalence, only finitely many *d*-dimensional lattice polytopes with *m* interior lattice points.

▷ lattice equivalence:

transformations with affine maps $x \mapsto Mx + t$, M unimodular, $t \in \mathbb{Z}^d$.

Classify or enumerate complete subfamilies of lattice polytopes

- ▷ by dimension
- b my number of (interior) lattice points
- by properties of the polytopes

▷ . . .

Theorem (Hensley; Lagarias & Ziegler)

 $d, m \ge 1$. Then there are, up to lattice equivalence, only finitely many *d*-dimensional lattice polytopes with *m* interior lattice points.

Iattice equivalence:

transformations with affine maps $x \mapsto Mx + t$, M unimodular, $t \in \mathbb{Z}^d$.

▶ *P* empty polytope: int $P \cap \mathbb{Z}^d = \emptyset$ \iff $h_d^* = 0$.

Classify or enumerate complete subfamilies of lattice polytopes

- ▷ by dimension
- ▷ my number of (interior) lattice points
- ▷ by properties of the polytopes
- ▷...

Theorem (Hensley; Lagarias & Ziegler)

 $d, m \ge 1$. Then there are, up to lattice equivalence, only finitely many *d*-dimensional lattice polytopes with *m* interior lattice points.

▷ lattice equivalence:

transformations with affine maps $x \mapsto Mx + t$, M unimodular, $t \in \mathbb{Z}^d$.

- ▶ *P* empty polytope: int $P \cap \mathbb{Z}^d = \emptyset$ \iff $h_d^* = 0$.
 - → different approaches for classifications of *empty polytopes* and those with *interior lattice points*.

▶
$$h_d^* = | \text{ int } P \cap \mathbb{Z}^d |$$
, so $h_d^* = 0$ iff P is empty

 \rightarrow empty polytopes are filtered by the degree of h^* (number of trailing zeros in h^*)

- ▶ $h_d^* = | \text{ int } P \cap \mathbb{Z}^d |$, so $h_d^* = 0$ iff P is empty
 - \longrightarrow empty polytopes are filtered by the degree of h^* (number of trailing zeros in h^*)
 - \longrightarrow known classifications for \triangleright polytopes for *deg* $h^* \in \{0, 1\}$

 \triangleright *h*^{*}-vectors for *deg h*^{*} = 2

 \triangleright *h*^{*}-vectors with few nonzero entries

- ▶ $h_d^* = | \text{ int } P \cap \mathbb{Z}^d |$, so $h_d^* = 0$ iff P is empty
 - \rightarrow empty polytopes are filtered by the degree of h^* (number of trailing zeros in h^*)
 - \longrightarrow known classifications for \triangleright polytopes for *deg* $h^* \in \{0, 1\}$

 \triangleright *h*^{*}-vectors for *deg h*^{*} = 2

 \triangleright *h*^{*}-vectors with few nonzero entries

 $\triangleright d + 1 - \max(k \mid h_k^* \neq 0) = \min(k \mid \operatorname{int}(kP) \cap \mathbb{Z}^d \neq \emptyset)$

$$\label{eq:product} \begin{split} & \triangleright \ h_1^* \ = \ | \mathcal{P} \cap \mathbb{Z}^d | \ - \ d \ - \ 1, \\ & \triangleright \ h_1^* = 0 \ \implies \ \mathcal{P} \ \text{is an empty simplex} \end{split}$$

▶ $P = Q^{\vee}$ is a Fano polytope : \iff vertices primitive, $0 \in int P$

August 2, 2016 | TUD | Andreas Paffenholz | 6

 $P = Q^{\vee}$ is a Fano polytope : \iff vertices primitive, $0 \in int P$ $\blacktriangleright Q$ is reflexive : $\iff Q, Q^{\vee}$ are both lattice polytopes $:\iff X_{\overline{x}}$ is Gorenstein \rightarrow mirror pairs of Calabi-Yau manifolds [Batvrev, Borisov] \blacktriangleright *P* simplicial : \iff all facets are simplices $:\iff X_{\Sigma}$ is Q-factorial \blacktriangleright *P* smooth : \iff vertices of facets are lattice bases $:\iff X_{\Sigma}$ is non-singular ▶ *P* canonical : \iff int $P \cap \mathbb{Z}^d = \{0\}$: \iff X_{Σ} has only canonical singularities

Polytopes with one interior lattice point

 $P = Q^{\vee}$ is a Fano polytope : \iff vertices primitive, $0 \in int P$ $\blacktriangleright Q$ is reflexive : $\iff Q, Q^{\vee}$ are both lattice polytopes $:\iff X_{\overline{x}}$ is Gorenstein \rightarrow mirror pairs of Calabi-Yau manifolds [Batvrev, Borisov] \blacktriangleright *P* simplicial : \iff all facets are simplices $:\iff X_{\Sigma}$ is Q-factorial \blacktriangleright *P* smooth : \iff vertices of facets are lattice bases $:\iff X_{\Sigma}$ is non-singular ▶ *P* canonical : \iff int $P \cap \mathbb{Z}^d = \{0\}$: \iff X_{Σ} has only canonical singularities ▶ *P* terminal : \iff $P \cap \mathbb{Z}^d$ = {vertices} \cup {0} : \iff X_{Σ} has only terminal singularities

Theorem (Hensley; Lagarias & Ziegler) $d, m \ge 1$. Then there are, up to lattice equivalence, only finitely many d-dimensional lattice polytopes with m interior lattice points.

Corollary number of canonical/terminal/reflexive polytopes is finite in fixed dimension

Theorem (Hensley; Lagarias & Ziegler) $d, m \ge 1$. Then there are, up to lattice equivalence, only finitely many d-dimensional lattice polytopes with m interior lattice points.

Corollary number of canonical/terminal/reflexive polytopes is finite in fixed dimension

computational classifications:

▷ reflexive: 1, 16, 4319, 473800776

[Kreuzer/Skarke]

Theorem (Hensley; Lagarias & Ziegler) $d, m \ge 1$. Then there are, up to lattice equivalence, only finitely many d-dimensional lattice polytopes with m interior lattice points.

Corollary number of canonical/terminal/reflexive polytopes is finite in fixed dimension

computational classifications:

▷ reflexive: 1, 16, 4319, 473800776

▷ terminal: 1, 5, 637

[Kreuzer/Skarke] [Kasperzyk]

Theorem (Hensley; Lagarias & Ziegler) $d, m \ge 1$. Then there are, up to lattice equivalence, only finitely many d-dimensional lattice polytopes with m interior lattice points.

Corollary number of canonical/terminal/reflexive polytopes is finite in fixed dimension

computational classifications:

- ▷ reflexive: 1, 16, 4319, 473800776
- ▷ terminal: 1, 5, 637
- ▷ canonical: 1, 6, 674688

[Kreuzer/Skarke] [Kasperzyk] [Kasperzyk]

Theorem (Hensley; Lagarias & Ziegler) $d, m \ge 1$. Then there are, up to lattice equivalence, only finitely many *d*-dimensional lattice polytopes with *m* interior lattice points.

Corollary number of canonical/terminal/reflexive polytopes is finite in fixed dimension

computational classifications:

- reflexive: 1, 16, 4319, 473800776
- ▷ terminal: 1, 5, 637
- ▷ canonical: 1, 6, 674688

of wich are 233 simplicial and 100 reflexive

[Kreuzer/Skarke] [Kasperzyk] [Kasperzyk]

TECHN UNIVE DARN

Theorem (Hensley; Lagarias & Ziegler) $d, m \ge 1$. Then there are, up to lattice equivalence, only finitely many d-dimensional lattice polytopes with m interior lattice points.

Corollary number of canonical/terminal/reflexive polytopes is finite in fixed dimension

Theorem (Hensley; Lagarias & Ziegler) $d, m \ge 1$. Then there are, up to lattice equivalence, only finitely many d-dimensional lattice polytopes with m interior lattice points.

Corollary number of canonical/terminal/reflexive polytopes is finite in fixed dimension

 \triangleright canonical/terminal polytopes can be grown from minimal ones by adding vertices

Theorem (Hensley; Lagarias & Ziegler) $d, m \ge 1$. Then there are, up to lattice equivalence, only finitely many d-dimensional lattice polytopes with m interior lattice points.

Corollary number of canonical/terminal/reflexive polytopes is finite in fixed dimension

 \triangleright canonical/terminal polytopes can be grown from minimal ones by adding vertices

 \triangleright smooth reflexive polytopes cannot be grown from minimal ones

 \longrightarrow construction depends on notion of special facet and a total order on potential vertices

structural results: terminal, canonical, or smooth lattice polytopes

- structural results: terminal, canonical, or smooth lattice polytopes
- ► Consider *simplicial*, *terminal*, and *reflexive* Polytopes (with many vertices)

TECHNIS

- structural results: terminal, canonical, or smooth lattice polytopes
- Consider *simplicial*, *terminal*, and *reflexive* Polytopes (with many vertices)
- simplicial, terminal, and reflexive polytopes in low dimensions

TECHNISCHE UNIVERSITÄT DARMSTADT

- structural results: terminal, canonical, or smooth lattice polytopes
- ► Consider *simplicial*, *terminal*, and *reflexive* Polytopes (with many vertices)
- ▶ simplicial, terminal, and reflexive polytopes in low dimensions

- structural results: terminal, canonical, or smooth lattice polytopes
- ► Consider *simplicial*, *terminal*, and *reflexive* Polytopes (with many vertices)
- ▶ simplicial, terminal, and reflexive polytopes in low dimensions

- structural results: terminal, canonical, or smooth lattice polytopes
- ► Consider *simplicial*, *terminal*, and *reflexive* Polytopes (with many vertices)
- ▶ simplicial, terminal, and reflexive polytopes in low dimensions

General Constructions

Discrete Optimization

General Constructions

Proposition constructions preserve simplicial/terminal/reflexive

Basic Examples

- (1) regular cross polytope:
- (2) pseudo-Del Pezzo polytope:
- (3) Del Pezzo polytope:

 $C(d) := \operatorname{conv}(\pm e_i \mid 1 \le i \le d) \subset \mathbb{R}^d$ $D'(d) := \operatorname{conv}(C(d) \cup \{1\}) \subset \mathbb{R}^d$ $D(d) := \operatorname{conv}(C(d) \cup \{\pm 1\}) \subset \mathbb{R}^d$

Basic Examples

- (1) regular cross polytope:
- (2) pseudo-Del Pezzo polytope:
- (3) Del Pezzo polytope:

 $C(d) := \operatorname{conv}(\pm e_i \mid 1 \le i \le d) \subset \mathbb{R}^d$ $D'(d) := \operatorname{conv}(C(d) \cup \{1\}) \subset \mathbb{R}^d$ $D(d) := \operatorname{conv}(C(d) \cup \{\pm 1\}) \subset \mathbb{R}^d$

► Theorem

[Voskresenskii&Klyachko, Ewald, Nill]

P simplicial, terminal, and reflexive with antipodal pair of facets

 \implies *P* is direct sum of a centrally symmetric cross polytope, (2), and (3)

►
$$f_0 = 3d$$
: (a) $P_6^{\oplus d/2}$

August 2, 2016 | TUD | Andreas Paffenholz | 11

▶
$$f_0 = 3d$$
: (a) $P_6^{\oplus d/2}$

Theorem There are no other cases.

▶
$$f_0 = 3d$$
: (a) $P_6^{\oplus d/2}$

▶ $f_0 = 3d - 1$: (b) $P_5 \oplus P_6^{\oplus d/2 - 1}$

(c) proper or skew bipyramid over $P_6^{\oplus (d-1)/2}$

August 2, 2016 | TUD | Andreas Paffenholz | 11

▶
$$f_0 = 3d$$
: (a) $P_6^{\oplus d/2}$

Theorem There are no other cases.

- [Casagrande]
- ► $f_0 = 3d 1$: (b) $P_5 \oplus P_6^{\oplus d/2 1}$ (c) proper or skew bipyramid over $P_6^{\oplus (d-1)/2}$
- Theorem There are no other cases.

[Øbro & Nill]

▶
$$f_0 = 3d$$
: (a) $P_6^{\oplus d/2}$

► Theorem There are no other cases.

[Casagrande]

$$\begin{array}{ll} f_0 = 3d-1: \\ (b) & P_5 \oplus P_6^{\oplus d/2-1} \\ (c) & \text{proper or skew bipyramid over } P_6^{\oplus (d-1)/2} \end{array}$$

► Theorem There are no other cases.

[Øbro & Nill]

►
$$f_0 = 3d - 2$$
: (d) $P_5^2 \oplus P_6^{\oplus d/2 - 2}$
(e) $D(4) \oplus P_6^{\oplus d/2 - 2}$
(f) proper or skew bipyramid over (b) or (c
(g) double proper or skew bipyramid over (a)

)

▶
$$f_0 = 3d$$
: (a) $P_6^{\oplus d/2}$

▶ Theorem There are no other cases.

[Casagrande]

$$\begin{array}{ll} f_0 = 3d-1: \\ (\mathbf{b}) & P_5 \oplus P_6^{\oplus d/2-1} \\ (\mathbf{c}) & \text{proper or skew bipyramid over } P_6^{\oplus (d-1)/2} \end{array}$$

▶ Theorem There are no other cases.

[Øbro & Nill]

►
$$f_0 = 3d - 2$$
: (d) $P_5^2 \oplus P_6^{\oplus d/2 - 2}$
(e) $D(4) \oplus P_6^{\oplus d/2 - 2}$
(f) proper or skew bipyramid over (b) or (c)
(g) double proper or skew bipyramid over (a)
► Theorem There are no other cases. [Assarf, Joswig, P]

Theorem There are no other cases.

T Discrete Optimization

 P_6

 P_5

 \odot

 \odot

0

0/0

► f₀ = 3d - 2:
(d)
$$P_5^2 \oplus P_6^{\oplus d/2-2}$$
(e) $D(4) \oplus P_6^{\oplus d/2-2}$
(f) proper or skew bipyramid over (b) or (c)
(g) double proper or skew bipyramid over (a)
► Theorem There are no other cases.

August 2, 2016 | TUD | Andreas Paffenholz | 11

T Discrete

▶
$$f_0 = 3d$$
: (a) $P_6^{\oplus d/2}$

► Theorem There are no other cases.

[Casagrande]

► $f_0 = 3d - 1$: (b) $P_5 \oplus P_6^{\oplus d/2 - 1}$ (c) proper or skew bipyramid over $P_6^{\oplus (d-1)/2}$

Theorem There are no other cases.

[Øbro & Nill]

►
$$f_0 = 3d - 2$$
: (d) $P_5^2 \oplus P_6^{\oplus d/2 - 2}$
(e) $D(4) \oplus P_6^{\oplus d/2 - 2}$
(f) proper or skew bipyramid over (b) or (c)
(g) double proper or skew bipyramid over (a)

▶ Theorem There are no other cases.

August 2, 2016 | TUD | Andreas Paffenholz | 11

T Discrete Optimization

- ▶ P simplicial, terminal, and reflexive d-polytope,
- \triangleright *F* a facet of *P* with normal u_{*F*}
 - \longrightarrow given by primitive facet normal u_F

$$F = \{ \mathsf{x} \in P \mid \langle \mathsf{u}_F, \mathsf{x} \rangle = 1 \}$$

▶ P simplicial, terminal, and reflexive d-polytope,

- \triangleright F a facet of P with normal u_F
 - \longrightarrow given by primitive facet normal u_F

 $F = \{ \mathsf{x} \in P \mid \langle \mathsf{u}_F, \mathsf{x} \rangle = 1 \}$

 \longrightarrow u_F induces grading on V(P) by distance from F

- ▶ P simplicial, terminal, and reflexive d-polytope,
- \triangleright *F* a facet of *P* with normal u_{*F*}
 - \longrightarrow given by primitive facet normal u_F

$$F = \{ \mathsf{x} \in P \mid \langle \mathsf{u}_F, \mathsf{x} \rangle = 1 \}$$

 \longrightarrow u_F induces grading on V(P) by distance from F

- ▶ P simplicial, terminal, and reflexive d-polytope,
- \triangleright *F* a facet of *P* with normal u_{*F*}
 - \longrightarrow given by primitive facet normal u_F

$$F = \{ \mathsf{x} \in P \mid \langle \mathsf{u}_F, \mathsf{x} \rangle = 1 \}$$

 \longrightarrow u_F induces grading on V(P) by distance from F

 \longrightarrow Partition vertex set

$$V(P) := V(F) \cup V(F,0) \cup V(F,-1) \cup ...$$

August 2, 2016 | TUD | Andreas Paffenholz | 12

- ▶ *P* simplicial, terminal, and reflexive *d*-polytope,
- \triangleright *F* a facet of *P* with normal u_{*F*}
 - \longrightarrow given by primitive facet normal u_F

$$F = \{ \mathsf{x} \in P \mid \langle \mathsf{u}_F, \mathsf{x} \rangle = 1 \}$$

 \longrightarrow u_F induces grading on V(P) by distance from F

 \longrightarrow Partition vertex set

$$V(P) := V(F) \cup V(F,0) \cup V(F,-1) \cup ...$$

► F is a special facet

$$:\iff v_P := \sum_{v \in V(P)} v \in \operatorname{cone}(F)$$

▶ Fix special facet *F*,

 \triangleright vertices {u_i}, dual basis { \hat{u}_i }

 $\triangleright V(P) := V(F) \cup V(F,0) \cup V(F,-1) \cup \dots$

\triangleright Fix special facet F,

 \triangleright vertices {u_i}, dual basis { \hat{u}_i }

 $\triangleright V(P) := V(F) \cup V(F,0) \cup V(F,-1) \cup \dots$

Proposition

[Øbro]

Coordinates of vertices are bounded in dual basis

 $\triangleright \mathsf{x} \in V(F,k) \implies \langle \hat{\mathsf{u}}_i,\mathsf{x} \rangle \geq k-1$

▶ Fix special facet *F*,

 \triangleright vertices {u_i}, dual basis { \hat{u}_i }

 $\triangleright V(P) := V(F) \cup V(F,0) \cup V(F,-1) \cup \dots$

► Proposition [Øbro] ► Coordinates of vertices are bounded in dual basis $\triangleright x \in V(F, k) \implies \langle \hat{u}_i, x \rangle \geq k - 1$

▷ Fix special facet F,

 \triangleright vertices {u_i}, dual basis { \hat{u}_i }

 $\triangleright V(P) := V(F) \cup V(F,0) \cup V(F,-1) \cup \dots$

Proposition

- Coordinates of vertices are bounded in dual basis
 - $\triangleright \mathsf{x} \in V(F,k) \implies \langle \hat{\mathsf{u}}_i,\mathsf{x} \rangle \geq k-1$

▷ equality : $V(F) - {u_i} + {x}$ is facet

▷ Fix special facet *F*,

- \triangleright vertices {u_i}, dual basis { \hat{u}_i }
- $\triangleright V(P) := V(F) \cup V(F,0) \cup V(F,-1) \cup \dots$

Proposition

- Coordinates of vertices are bounded in dual basis
 - $\triangleright \mathsf{x} \in V(F,k) \implies \langle \hat{\mathsf{u}}_i,\mathsf{x} \rangle \geq k-1$
 - ▷ equality : $V(F) {u_i} + {x}$ is facet
 - ▷ Vertices in V(F, 0) are on facets adjacent to F

V2

- ▶ Fix special facet *F*,
 - \triangleright vertices {u_i}, dual basis { \hat{u}_i }
 - $\triangleright V(P) := V(F) \cup V(F,0) \cup V(F,-1) \cup \dots$

Proposition

[Øbro]

- Coordinates of vertices are bounded in dual basis
 - $\triangleright \mathsf{x} \in V(F,k) \implies \langle \hat{\mathsf{u}}_i,\mathsf{x} \rangle \geq k-1$
 - ▷ equality : $V(F) {u_i} + {x}$ is facet
 - ▷ Vertices in V(F,0) are on facets adjacent to F

\triangleright Fix special facet F,

- \triangleright vertices {u_i}, dual basis { \hat{u}_i }
- $\triangleright V(P) := V(F) \cup V(F,0) \cup V(F,-1) \cup \dots$

Proposition

- Coordinates of vertices are bounded in dual basis
 - $\triangleright \mathsf{x} \in V(F,k) \implies \langle \hat{\mathsf{u}}_i,\mathsf{x} \rangle \geq k-1$
 - ▷ equality : $V(F) {u_i} + {x}$ is facet
 - ▷ Vertices in V(F,0) are on facets adjacent to F

▶ Proposition $\eta_0 \leq d$

V2

[Nill]

[Øbro]

▶ Fix special facet *F*,

- \triangleright vertices {u_i}, dual basis { \hat{u}_i }
- $\triangleright V(P) := V(F) \cup V(F,0) \cup V(F,-1) \cup \dots$

Proposition

Coordinates of vertices are bounded in dual basis

[Øbro]

[Nill]

- $\triangleright \mathsf{x} \in V(F,k) \implies \langle \hat{\mathsf{u}}_i,\mathsf{x} \rangle \geq k-1$
- ▷ equality : $V(F) {u_i} + {x}$ is facet
- ▷ Vertices in V(F, 0) are on facets adjacent to F
- ▶ Proposition $\eta_0 \leq d$
- ▶ Proposition $\eta_0 \ge d-1 \implies u_1, ..., u_d$ are lattice basis

\triangleright Fix special facet F,

- \triangleright vertices {u_i}, dual basis { \hat{u}_i }
- $\triangleright V(P) := V(F) \cup V(F,0) \cup V(F,-1) \cup \dots$

Proposition

- Coordinates of vertices are bounded in dual basis
 - $\triangleright \mathsf{x} \in V(F,k) \implies \langle \hat{\mathsf{u}}_i,\mathsf{x} \rangle \geq k-1$
 - ▷ equality : $V(F) {u_i} + {x}$ is facet
 - ▷ Vertices in V(F,0) are on facets adjacent to F
- ▶ Proposition $\eta_0 \leq d$
- ▶ Proposition $\eta_0 \ge d-1 \implies u_1, ..., u_d$ are lattice basis
- ▶ Theorem $f_0 := |V(P)| \le 3d$

[Casagrande; Øbro]

[Nill]

[Øbro]

- \triangleright Fix special facet F,
 - \triangleright vertices {u_i}, dual basis { \hat{u}_i }
 - $\triangleright V(P) := V(F) \cup V(F,0) \cup V(F,-1) \cup \dots$
- Proposition
 - Coordinates of vertices are bounded in dual basis
 - $\triangleright \mathsf{x} \in V(F,k) \implies \langle \hat{\mathsf{u}}_i,\mathsf{x} \rangle \geq k-1$
 - ▷ equality : $V(F) {u_i} + {x}$ is facet
 - ▷ Vertices in V(F, 0) are on facets adjacent to F
- ▶ Proposition $\eta_0 \leq d$

▶ Proposition $\eta_0 \ge d-1 \implies u_1, ..., u_d$ are lattice basis

► Theorem $f_0 := |V(P)| \leq 3d$ [Casagrande; Øbro] proof: $0 \leq \langle u_F, \sum_{v \in V(P)} v \rangle = \eta_1 + 0 \cdot \eta_0 + (-1) \cdot \eta_{-1} + (-2) \cdot \eta_{-2} + \cdots$ $= d + 0 - \cdots$

[Nill]

- classify η-vectors for a special facet F
- $\blacktriangleright v_P := \sum_{v \in V(P)} v$
- ▶ ℓ : height of v_P above F

classify η-vectors for a special facet F

$$\blacktriangleright v_P := \sum_{v \in V(P)} v$$

▶ ℓ : height of v_P above F

	(a)	(b)	(c)	(d)	(e)	(f)	(g)
η_{-3}	0	0	0	1	0	0	0
η_{-2}	0	1	0	0	2	1	0
η_{-1}	d – 2	d – 3	d-1	d - 3	<i>d</i> – 4	d – 2	d
η_0	d	d	d-1	d	d	d-1	d – 2
η_1	d	d	d	d	d	d	d
l	2	1	1	0	0	0	0

classify η-vectors for a special facet F

$$\blacktriangleright v_P := \sum_{v \in V(P)} v$$

▶ ℓ : height of v_P above F

l	2	1	1	0	0	0	0	
η_1	d	d	d	d	d	d	d	
η_0	d	d	d-1	d	d	d-1	d – 2	
η_{-1}	d – 2	d – 3	d-1	d – 3	<i>d</i> – 4	d – 2	d	
η_{-2}	0	1	0	0	2	1	0	
η_{-3}	0	0	0	1	0	0	0	
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	
				all facets special				

consider cases separately

- classify η-vectors for a special facet F
- $\blacktriangleright v_P := \sum_{v \in V(P)} v$
- ▶ ℓ : height of v_P above F

l	2	1	1	0	0	0	0	
η_1	d	d	d	d	d	d	d	
η_0	d	d	d-1	d	d	d-1	d – 2	
η_{-1}	d – 2	d – 3	d-1	d – 3	<i>d</i> – 4	d – 2	d	
η_{-2}	0	1	0	0	2	1	0	
η_{-3}	0	0	0	1	0	0	0	
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	
				all facets special				

► consider cases separately ▷ e.g., ▷ all η^F of type (g) \implies polytope is

 \Rightarrow polytope is centrally symmetric

- classify η-vectors for a special facet F
- $\blacktriangleright v_P := \sum_{v \in V(P)} v$
- ▶ ℓ : height of v_P above F

0	2	1	1	0	0	0	0	
	2	1	1	0	0	0	0	
η_1	d	d	d	d	d	d	d	
η_0	d	d	d-1	d	d	d-1	d – 2	
η_{-1}	d – 2	d – 3	d-1	d – 3	<i>d</i> – 4	d – 2	d	
η_{-2}	0	1	0	0	2	1	0	
η_{-3}	0	0	0	1	0	0	0	
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	
				all facets special				

▶ consider cases separately
▷ e.g., ▷ all η^F of type (g) ⇒ polytope is centrally symmetric
▷ (d) does not occur ← look at adjacent facet

classify η-vectors for a special facet F

 $\blacktriangleright v_P := \sum_{v \in V(P)} v$

▶ ℓ : height of v_P above F

l	2	1	1	0	0	0	0	
η_1	d	d	d	d	d	d	d	
η_0	d	d	d-1	d	d	d-1	d – 2	
η_{-1}	d – 2	d – 3	d-1	d - 3	d – 4	d – 2	d	
η_{-2}	0	1	0	0	2	1	0	
η_{-3}	0	0	0	1	0	0	0	
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	
				all facets special				

> consider cases separately
> e.g., ▷ all η^F of type (g) ⇒ polytope is centrally symmetric
> (d) does not occur ← look at adjacent facet
> show that polytopes are either
> b direct sum of P₆ with (d - 2)-polytope
> (skew) bipyramid over (d - 1)-polytope

- classify η-vectors for a special facet F
- $\blacktriangleright v_P := \sum_{v \in V(P)} v$
- ▶ ℓ : height of v_P above F

	-			<u>_</u>	<u>_</u>	-		
l	2	1	1	0	0	0	0	
η_1	d	d	d	d	d	d	d	
η_0	d	d	d-1	d	d	d-1	d – 2	
η_{-1}	d – 2	d – 3	d-1	d - 3	<i>d</i> – 4	d – 2	d	
η_{-2}	0	1	0	0	2	1	0	
η_{-3}	0	0	0	1	0	0	0	
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	
				all facets special				

▶ consider cases separately
▶ e.g., ▷ all η^F of type (g) ⇒ polytope is centrally symmetric
▷ (d) does not occur ← look at adjacent facet
▶ show that polytopes are either
▷ direct sum of P₆ with (d - 2)-polytope
▷ (skew) bipyramid over (d - 1)-polytope

Theorem

P terminal, simplicial, reflexive *d*-polytope with 3*d* − 2 vertices Then P is \triangleright $P_5^2 \oplus P_6^{\oplus d/2-2}$, or \triangleright D(4) \oplus $P_6^{\oplus d/2-2}$, or \triangleright (double) proper/skew bipyramid over $P_6^{\oplus k}$ for suitable k

► $f_0 = 3d - 3$? ▷ R := skew bipyramid over P_6 \longrightarrow 8 vertices and 12 facets ▷ $P := R^{\oplus 3}$ \longrightarrow $3 \cdot 8 = 3 \cdot 9 - 3$ vertices in dimension d = 9▷ P is not a (skew) bipyramid over a sum of P_5 and P_6

P terminal, simplicial, reflexive *d*-polytope with 3d - 2 vertices Then $P = Q \oplus P_6^{\oplus k}$ for suitable *k* and dim $Q \leq 4$.

► $f_0 = 3d - 3$? ▷ R := skew bipyramid over P_6 \longrightarrow 8 vertices and 12 facets ▷ $P := R^{\oplus 3}$ \longrightarrow 3 · 8 = 3 · 9 - 3 vertices in dimension d = 9

 \triangleright *P* is not a (skew) bipyramid over a sum of *P*₅ and *P*₆

Theorem

P terminal, simplicial, reflexive *d*-polytope with 3d - 2 vertices Then $P = Q \oplus P_{6}^{\oplus k}$ for suitable *k* and dim $Q \leq 4$.

Conjecture

P smooth Fano *d*-polytope with 3d - k vertices, $k \le d/3$ Then $P = Q \oplus P_6^l$ for dim $Q \le 3k$ and appropriate *l*.

[Assarf, Joswig, P]

 $\triangleright R$:= skew bipyramid over P_6 \rightarrow 8 vertices and 12 facets

\triangleright P is not a (skew) bipyramid over a sum of P₅ and P₆

Theorem

 $b f_0 = 3d - 3?$

 $\triangleright P := R^{\oplus 3}$

P terminal, simplicial, reflexive d-polytope with 3d - 2 vertices Then $P = Q \oplus P_6^{\oplus k}$ for suitable k and dim $Q \leq 4$.

Conjecture

P smooth Fano *d*-polytope with 3d - k vertices, k < d/3

Then $P = Q \oplus P_6^l$ for dim $Q \leq 3k$ and appropriate *l*.

weak version of conjecture is true:

▶ Theorem

For sufficiently large d, v a smooth Fano d-polytope with v vertices has a P_6 -factor.

[Assarf, Nill]

[Assarf, Joswig, P]

► A posteriori: All simplicial, terminal, reflexive polytopes with at least $f_0 := 3d - 2$ vertices are (dual to) smooth

▶ A posteriori: All simplicial, terminal, reflexive polytopes with at least $f_0 := 3d - 2$ vertices are (dual to) smooth

Not true in general

- ► A posteriori: All simplicial, terminal, reflexive polytopes with at least $f_0 := 3d - 2$ vertices are (dual to) smooth
- ▶ Not true in general
- \triangleright Consider convex hull *S* of

[0, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 0]

 \rightarrow *S* is lattice simplex of volume and facet width 2

polymake

- ► A posteriori: All simplicial, terminal, reflexive polytopes with at least $f_0 := 3d - 2$ vertices are (dual to) smooth
- ▶ Not true in general
- \triangleright Consider convex hull ${\it S}$ of

[0, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 0]

- \rightarrow *S* is lattice simplex of volume and facet width 2
- ▶ Let $P := \operatorname{conv}(S \times \{1\}, -S \times \{-1\})$

- ► A posteriori: All simplicial, terminal, reflexive polytopes with at least $f_0 := 3d - 2$ vertices are (dual to) smooth
- ▶ Not true in general
- \triangleright Consider convex hull ${\it S}$ of

[0, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 0]

- \longrightarrow *S* is lattice simplex of volume and facet width 2
- ▶ Let $P := \operatorname{conv}(S \times \{1\}, -S \times \{-1\})$
 - ▷ P is simplicial, terminal, reflexive

- ► A posteriori: All simplicial, terminal, reflexive polytopes with at least $f_0 := 3d - 2$ vertices are (dual to) smooth
- ▶ Not true in general
- \triangleright Consider convex hull ${\it S}$ of

[0, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 0]

- \longrightarrow *S* is lattice simplex of volume and facet width 2
- ▶ Let $P := \operatorname{conv}(S \times \{1\}, -S \times \{-1\})$
 - ▷ P is simplicial, terminal, reflexive
 - \triangleright vertices of facet ${\it S}$ are not a lattice basis

- ► A posteriori: All simplicial, terminal, reflexive polytopes with at least $f_0 := 3d - 2$ vertices are (dual to) smooth
- ▶ Not true in general
- \triangleright Consider convex hull ${\it S}$ of

[0, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 0]

 \rightarrow *S* is lattice simplex of volume and facet width 2

▶ Let
$$P := \operatorname{conv}(S \times \{1\}, -S \times \{-1\})$$

- ▷ P is simplicial, terminal, reflexive
- \triangleright vertices of facet S are not a lattice basis
- \triangleright *P* has 12 = 3*d* 4 vertices

- ► A posteriori: All simplicial, terminal, reflexive polytopes with at least $f_0 := 3d - 2$ vertices are (dual to) smooth
- ▶ Not true in general
- \triangleright Consider convex hull S of

[0, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 0]

 \rightarrow *S* is lattice simplex of volume and facet width 2

▶ Let
$$P := \operatorname{conv}(S \times \{1\}, -S \times \{-1\})$$

- ▷ P is simplicial, terminal, reflexive
- \triangleright vertices of facet ${\it S}$ are not a lattice basis
- \triangleright **P** has 12 = 3d 4 vertices
- \longrightarrow For $f_0 \leq 3d 4$ there are nonsmooth simplicial, terminal, and reflexive polytopes

- ► A posteriori: All simplicial, terminal, reflexive polytopes with at least $f_0 := 3d - 2$ vertices are (dual to) smooth
- Not true in general
- \triangleright Consider convex hull ${\it S}$ of

[0, 0, 0], [1, 1, 0], [1, 0, 1], [1, 1, 0]

 \rightarrow **S** is lattice simplex of volume and facet width 2

▶ Let
$$P := \operatorname{conv}(S \times \{1\}, -S \times \{-1\})$$

- ▷ P is simplicial, terminal, reflexive
- \triangleright vertices of facet S are not a lattice basis
- \triangleright **P** has 12 = 3d 4 vertices
- \longrightarrow For $f_0 \leq 3d 4$ there are nonsmooth simplicial, terminal, and reflexive polytopes
- **•** open case: simplicial, terminal, reflexive polytopes with 3d 3 vertices

polymake

- polymake: software framework for computations in discrete geometry, toric geometry, tropical geometry
 - ▷ interactive
 - rule based
 - easy extensions

current version: 3.02, Linux/Mac OS, written in perl, C++, Java founded by Michael Joswig (TU Berlin), Ewgenij Gawrilow (TomTom) available at polymake.org, GPL licensed

polymake

- polymake: software framework for computations in discrete geometry, toric geometry, tropical geometry
 - ▷ interactive
 - rule based
 - easy extensions

current version: 3.02, Linux/Mac OS, written in perl, C++, Java founded by Michael Joswig (TU Berlin), Ewgenij Gawrilow (TomTom) available at polymake.org, GPL licensed

polyDB: database extension for polymake

- direct access from polymake
- ▷ independent access/access from other software possible
- web based interface (planned)

beta version, developed by: Silke Horn (iteratec), P. available at github.org/solros/poly_db, GPL licensed

