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I Why?
. experimentation
. obtain/test conjectures

I How?

. computational
. enumerate complete subfamilies
. PALP, polymake
. Graded Rings Database,
polymake database polyDB

. structural
. standard polytope constructions
. projections, liftings
. common properties
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I normal fan of Q:
. fan Σ ⊆ (Rd )∗ with rays a1, ... , am

. rays form cone σ if
corresponding facets define face of Q

I polar (dual) polytope:
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. h∗0 = 1

. h∗1 = |P ∩ Z d | − d − 1

. h∗d = | intP ∩ Zd |

I lattice polytope Q with normal fan Σ

←→

projective toric variety XΣ

with ample divisior LP

. toric dictionary: properties of variety correpond to properties of polytope
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Theorem (Hensley; Lagarias & Ziegler)
d , m ≥ 1. Then there are, up to lattice equivalence, only finitely many

d-dimensional lattice polytopes with m interior lattice points.

. lattice equivalence:
transformations with affine maps x 7−→ Mx + t, M unimodular, t ∈ Zd .

I P empty polytope: intP ∩ Zd = ∅ ⇐⇒ h∗d = 0.

−→ different approaches for classifications of empty polytopes
and those with interior lattice points.
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I h∗d = | intP ∩ Zd |, so h∗d = 0 iff P is empty
−→ empty polytopes are filtered by the degree of h∗ (number of trailing zeros in h∗)
−→ known classifications for . polytopes for deg h∗ ∈ {0, 1}

. h∗-vectors for deg h∗ = 2

. h∗-vectors with few nonzero entries

. d + 1−max(k | h∗k 6= 0) = min(k | int(kP) ∩ Zd 6= ∅)

I with additional conditions, small degree implies than
P is a Cayley-Polytope, i.e. P splits as

P = conv(P × {ei} | i = 1, ... , k )

for k ≥ 2 polytopes Pi and the unit vectors ei ∈ Zk

. equivalently, P (lattice) projects onto a
unimodular simplex of dimension at least 1

. general case still open

I intermediate zeros in h∗ :
. h∗1 = |P ∩ Zd | − d − 1,
. h∗1 = 0 =⇒ P is an empty simplex
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Theorem (Hensley; Lagarias & Ziegler)
d , m ≥ 1. Then there are, up to lattice equivalence, only finitely many

d-dimensional lattice polytopes with m interior lattice points.

I Corollary number of canonical/terminal/reflexive polytopes is finite in fixed dimension

I computational classifications:
. reflexive: 1, 16, 4319, 473800776 [Kreuzer/Skarke]

. terminal: 1, 5, 637 [Kasperzyk]

. canonical: 1, 6, 674688 [Kasperzyk]

of wich are 233 simplicial and 100 reflexive

. smooth reflexive: 1, 5, 18, 124︸ ︷︷ ︸
[Batyrev]

, 866,︸︷︷︸
[Kreuzer,Nill]

, 7622, 72256, 749892︸ ︷︷ ︸
[Øbro]

, 8229721,︸ ︷︷ ︸
[Lorenz, P]

. canonical/terminal polytopes can be grown from minimal ones by adding vertices

. smooth reflexive polytopes cannot be grown from minimal ones
−→ construction depends on notion of special facet and a total order on potential vertices
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. direct sum P ⊕ P ′ := conv (P × {0} ∪ {0} × P ′ )

. bipyramid bipyr(P) := conv({0} × P ∪ {e1,−e1})

. skew bipyramid
skewbipyr(P) := conv({0} × P ∪ {e1, v − e1}) for a vertex v of P.

I Proposition constructions preserve simplicial/terminal/reflexive
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I Theorem [Voskresenskii&Klyachko, Ewald, Nill]
P simplicial, terminal, and reflexive with antipodal pair of facets
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I P simplicial, terminal, and reflexive d-polytope,

. F a facet of P with normal uF

−→ given by primitive facet normal uF

F = {x ∈ P | 〈 uF , x 〉 = 1 }

−→ uF induces grading on V(P) by distance from F

−→ η-vector ηF = (η1, η0, η−1, ... ) ,
ηi := |{ x ∈ V(P) | 〈 u, x 〉 = i }|

−→ Partition vertex set
V(P) := V(F) ∪ V(F , 0) ∪ V(F ,−1) ∪ ...

I F is a special facet
:⇐⇒ vP :=

∑
v∈V(P) v ∈ cone(F)
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. Fix special facet F ,
. vertices {ui}, dual basis {ûi}
. V(P) := V(F) ∪ V(F , 0) ∪ V(F ,−1) ∪ ...
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. V(P) := V(F) ∪ V(F , 0) ∪ V(F ,−1) ∪ ...

I Proposition [Øbro]
. Coordinates of vertices are bounded in dual basis

. x ∈ V(F , k) =⇒ 〈ûi , x〉 ≥ k − 1
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. Fix special facet F ,
. vertices {ui}, dual basis {ûi}
. V(P) := V(F) ∪ V(F , 0) ∪ V(F ,−1) ∪ ...

I Proposition [Øbro]
. Coordinates of vertices are bounded in dual basis

. x ∈ V(F , k) =⇒ 〈ûi , x〉 ≥ k − 1

. equality : V(F)− {ui}+ {x} is facet

. Vertices in V(F , 0) are on facets
adjacent to F

I Proposition η0 ≤ d [Nill]

I Proposition η0 ≥ d − 1 =⇒ u1, ... , ud are lattice basis

I Theorem f0 := |V(P)| ≤ 3d [Casagrande; Øbro]

proof: 0 ≤ 〈 uF ,
∑
v∈V(P) v 〉 = η1 + 0 · η0 + (−1) · η−1 + (−2) · η−2 + · · ·

= d + 0 − · · ·
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special facet F

I vP :=
∑
v∈V(P) v

I `: height of vP above F
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(a) (b) (c) (d) (e) (f) (g)︸ ︷︷ ︸
all facets special

I classify η-vectors for a
special facet F

I vP :=
∑
v∈V(P) v

I `: height of vP above F

I consider cases separately
. e.g., . all ηF of type (g) =⇒ polytope is centrally symmetric

. (d) does not occur ←− look at adjacent facet

I show that polytopes are either . direct sum of P6 with (d − 2)-polytope
. (skew) bipyramid over (d − 1)-polytope

I exact types via induction
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I f0 = 3d − 3 ?
. R := skew bipyramid over P6

−→ 8 vertices and 12 facets
. P := R⊕3

−→ 3 · 8 = 3 · 9 − 3 vertices in dimension d = 9

. P is not a (skew) bipyramid over a sum of P5 and P6
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−e1
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I f0 = 3d − 3 ?
. R := skew bipyramid over P6

−→ 8 vertices and 12 facets
. P := R⊕3

−→ 3 · 8 = 3 · 9 − 3 vertices in dimension d = 9

. P is not a (skew) bipyramid over a sum of P5 and P6

I Theorem [Assarf, Joswig, P]
P terminal, simplicial, reflexive d-polytope with 3d − 2 vertices
Then P = Q ⊕ P⊕k

6 for suitable k and dim Q ≤ 4.

I Conjecture [Assarf, Joswig, P]
P smooth Fano d-polytope with 3d − k vertices, k ≤ d/3

Then P = Q ⊕ P l
6 for dim Q ≤ 3k and appropriate l.

. weak version of conjecture is true:
I Theorem [Assarf, Nill]

For sufficiently large d , v a smooth Fano d-polytope with v vertices has a P6-factor.
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I A posteriori: All simplicial, terminal, reflexive polytopes
with at least f0 := 3d − 2 vertices are (dual to) smooth

I Not true in general [Haase]

. Consider convex hull S of
[ 0, 0, 0 ], [ 1, 1, 0 ], [ 1, 0, 1 ], [ 1, 1, 0 ]

−→ S is lattice simplex of volume and facet width 2

I Let P := conv ( S × {1}, −S × {−1} )

. P is simplicial, terminal, reflexive

. vertices of facet S are not a lattice basis

. P has 12 = 3d − 4 vertices

−→ For f0 ≤ 3d − 4 there are nonsmooth
simplicial, terminal, and reflexive polytopes

I open case: simplicial, terminal, reflexive polytopes with 3d − 3 vertices
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I polymake: software framework for computations in
discrete geometry, toric geometry, tropical geometry

. interactive

. rule based

. easy extensions

current version: 3.02, Linux/Mac OS, written in perl, C++, Java

founded by Michael Joswig (TU Berlin), Ewgenij Gawrilow (TomTom)
available at polymake.org, GPL licensed

I polyDB: database extension for polymake
. direct access from polymake

. independent access/access from other software possible

. web based interface (planned)

beta version, developed by: Silke Horn (iteratec), P.
available at github.org/solros/poly_db, GPL licensed
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