Universal Gröbner bases and Cartwright-Sturmfels ideals

Emanuela De Negri

Università di Genova

Joint with Aldo Conca (Genova), Elisa Gorla (Neuchatel)

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

[1] "Universal Gröbner Bases for Maximal Minors", International Mathematics Research Notices 2014

[2] "Universal Gröbner bases and Cartwright-Sturmfels ideals", preprint 2016

[3] "Multigraded gins of determinantal ideals", preprint 2016

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

S a polynomial ring over a field K , τ a term order in S I ⊂ S ideal

S a polynomial ring over a field K , τ a term order in S $I \subset S$ ideal

Initial ideal of $I: \text{in}_{\tau}(I) = (\text{in}_{\tau}(f) : f \in I)$

S a polynomial ring over a field K, τ a term order in S $I \subset S$ ideal $g_1, \ldots, g_r \in I$

Initial ideal of $I: \text{in}_{\tau}(I) = (\text{in}_{\tau}(f) : f \in I)$

Definition

 \blacktriangleright { g_1, \ldots, g_r } is a Gröbner basis of I wrt τ if

$$
\text{in}_{\tau}(I)=(\text{in}_{\tau}(g_1),\ldots,\text{in}_{\tau}(g_r))
$$

KORK ERKER ADE YOUR

S a polynomial ring over a field K, τ a term order in S $I \subset S$ ideal $g_1, \ldots, g_r \in I$

Initial ideal of $I: \text{in}_{\tau}(I) = (\text{in}_{\tau}(f) : f \in I)$

Definition

 \blacktriangleright { g_1, \ldots, g_r } is a Gröbner basis of I wrt τ if

$$
\text{in}_{\tau}(I)=(\text{in}_{\tau}(g_1),\ldots,\text{in}_{\tau}(g_r))
$$

KORKAR KERKER EL VOLO

 \bullet { g_1, \ldots, g_r } is a universal Gröbner basis of *I* if $\lim_{\tau}(I) = (\lim_{\tau}(g_1), \dots, \lim_{\tau}(g_r))$ wrt every τ

S a polynomial ring over a field K, τ a term order in S $I \subset S$ ideal $g_1, \ldots, g_r \in I$

Initial ideal of $I: \text{in}_{\tau}(I) = (\text{in}_{\tau}(f) : f \in I)$

Definition

 \blacktriangleright { g_1, \ldots, g_r } is a Gröbner basis of I wrt τ if

$$
\text{in}_{\tau}(I)=(\text{in}_{\tau}(g_1),\ldots,\text{in}_{\tau}(g_r))
$$

 \bullet { g_1, \ldots, g_r } is a universal Gröbner basis of *I* if

 $\lim_{\tau} (I) = (\lim_{\tau} (g_1), \dots, \lim_{\tau} (g_r))$ wrt every τ

KORKAR KERKER EL VOLO

Remark: Every ideal has a Universal Gröbner basis, BUT "natural" Universal Gröbner bases are rare

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ii}: 1 \le i, j \le n]$

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ii}: 1 \leq i, j \leq n]$

Given $1 \le r_1 < \cdots < r_t \le m$, $1 \le c_1 < \cdots < c_t \le n$: t-minor: $[r_1,\ldots,r_t|c_1,\ldots,c_t]_{\mathcal{X}}=\det(x_{r_ic_j})_{i,j=1,\ldots,t}$

KORK ERKER ADE YOUR

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ii} : 1 \le i, j \le n]$

Given $1 \le r_1 < \cdots < r_t \le m$, $1 \le c_1 < \cdots < c_t \le n$: t-minor: $[r_1,\ldots,r_t|c_1,\ldots,c_t]_{\mathcal{X}}=\det(x_{r_ic_j})_{i,j=1,\ldots,t}$

Determinantal ring: $S/I_t(X)$ with $I_t(X) = (t$ -minors of X)

KORKAR KERKER EL VOLO

K a field, $X = (x_{ii})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ii} : 1 \le i, j \le n]$

Given $1 \le r_1 \le \cdots \le r_t \le m$, $1 \le c_1 \le \cdots \le c_t \le n$. t-minor: $[r_1,\ldots,r_t|c_1,\ldots,c_t]_{\mathcal{X}}=\det(x_{r_ic_j})_{i,j=1,\ldots,t}$

Determinantal ring: $S/I_t(X)$ with $I_t(X) = (t$ -minors of X)

Variants: generic symmetric matrix, generic skew-symmetric matrix (and ideals of pfaffians), generic Hankel matrices

KORKAR KERKER EL VOLO

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ii} : 1 \le i, j \le n]$

Given $1 \le r_1 \le \cdots \le r_t \le m$, $1 \le c_1 \le \cdots \le c_t \le n$. t-minor: $[r_1,\ldots,r_t|c_1,\ldots,c_t]_{\mathcal{X}}=\det(x_{r_ic_j})_{i,j=1,\ldots,t}$

Determinantal ring: $S/I_t(X)$ with $I_t(X) = (t$ -minors of X)

Variants: generic symmetric matrix, generic skew-symmetric matrix (and ideals of pfaffians), generic Hankel matrices They appear in various contexts, e.g.

- \blacktriangleright classical invariant theory,
- $\rightarrow t = 2$: defining ideal of the Segre/Veronese/Grassmannian variety,
- \blacktriangleright higher t: secant varieties of Segre/Veronese/Grassmannian variety.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ii} : 1 \le i, j \le n]$

Given $1 \le r_1 \le \cdots \le r_t \le m$, $1 \le c_1 \le \cdots \le c_t \le n$. t-minor: $[r_1,\ldots,r_t|c_1,\ldots,c_t]_{\mathcal{X}}=\det(x_{r_ic_j})_{i,j=1,\ldots,t}$

Determinantal ring: $S/I_t(X)$ with $I_t(X) = (t$ -minors of X)

Theorem [Sturmfels 1990]

The *t*-minors form a GB of $I_t(X)$ w.r.t. any diagonal term order.

KORK ERKER ADE YOUR

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ii}: 1 \le i, j \le n]$

Given $1 \le r_1 \le \cdots \le r_t \le m$, $1 \le c_1 \le \cdots \le c_t \le n$. t-minor: $[r_1,\ldots,r_t|c_1,\ldots,c_t]_{\mathcal{X}}=\det(x_{r_ic_j})_{i,j=1,\ldots,t}$

Determinantal ring: $S/I_t(X)$ with $I_t(X) = (t$ -minors of X)

Theorem [Sturmfels 1990]

The *t*-minors form a GB of $I_t(X)$ w.r.t. any diagonal term order.

KORKAR KERKER EL VOLO

But they are not universal GB in general!

Theorem (Sturmfels, Villareal)

Universal GB of $I_2(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m,n}$

Theorem (Sturmfels, Villareal)

Universal GB of $I_2(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m,n}$

KORK STRAIN A BAR SHOP

Example:

Theorem (Sturmfels, Villareal)

Universal GB of $I_2(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m,n}$

KORK STRAIN A BAR SHOP

Example:

Theorem (Sturmfels, Villareal)

Universal GB of $I_2(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m,n}$

Example:

KORK STRAIN A BAR SHOP

Theorem (Sturmfels, Villareal)

Universal GB of $I_2(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m,n}$

All the initial ideals of $I_2(X)$ are radical and define CM rings (indeed they are associated to a shellable simplicial complex)

Example:

 $X = (x_{ij})$ generic matrix of size $m \times n$, $m \leq n$. a minor of size m is called maximal minor: $[c_1, \ldots, c_m]$ $I_m(X) = ($ maximal minors of X)

 $X = (x_{ij})$ generic matrix of size $m \times n$, $m \leq n$. a minor of size m is called maximal minor: $[c_1, \ldots, c_m]$ $I_m(X) = ($ maximal minors of X)

Bernstein-Sturmfels-Zelevinsky (1993-94)

The maximal minors of X form a universal GB of $I_m(X)$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 $X = (x_{ii})$ generic matrix of size $m \times n$, $m \leq n$. a minor of size m is called maximal minor: $[c_1, \ldots, c_m]$ $I_m(X) = ($ maximal minors of X)

Bernstein-Sturmfels-Zelevinsky (1993-94)

The maximal minors of X form a universal GB of $I_m(X)$

Boocher (2011)

For every term order τ :

$$
\blacktriangleright \beta_{ij}(I_m(X)) = \beta_{ij}(\text{in}_{\tau}(I_m(X)))
$$

in particular in_τ ($I_m(X)$) has a linear resolution

Our first contribution: both results are consequence of a degeneration argument

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Our first contribution: both results are consequence of a degeneration argument

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

M f.g. graded S-module

Hilbert series of M: $\text{HS}(M, y) = \sum_{i \in \mathbb{Z}} (\text{dim}_{K} M_{i}) y^{i}$

Our first contribution: both results are consequence of a degeneration argument

M f.g. graded S-module

Hilbert series of M: $\text{HS}(M, y) = \sum_{i \in \mathbb{Z}} (\text{dim}_{K} M_{i}) y^{i}$

Idea of the proof:

Fix a term order.

Consider $y_1, ..., y_n$ are new indeterminates, and the map ϕ that sends x_{ii} to $*y_i$ where $*$ is generic scalar.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Our first contribution: both results are consequence of a degeneration argument

M f.g. graded S-module

Hilbert series of M: $\text{HS}(M, y) = \sum_{i \in \mathbb{Z}} (\text{dim}_{K} M_{i}) y^{i}$

Idea of the proof:

Fix a term order.

Consider $y_1, ..., y_n$ are new indeterminates, and the map ϕ that sends x_{ii} to $*y_i$ where $*$ is generic scalar.

KORKAR KERKER EL VOLO

 $\phi(I_m(X)) = J$ with $J = ($ square free monomials of degree m in $y_1, ..., y_n$)

Our first contribution: both results are consequence of a degeneration argument

M f.g. graded S-module

Hilbert series of M: $\text{HS}(M, y) = \sum_{i \in \mathbb{Z}} (\text{dim}_{K} M_{i}) y^{i}$

Idea of the proof:

Fix a term order.

Consider $y_1, ..., y_n$ are new indeterminates, and the map ϕ that sends x_{ii} to $*y_i$ where $*$ is generic scalar.

 $\phi(I_m(X)) = J$ with $J = ($ square free monomials of degree m in $y_1, ..., y_n$) Let $D = (\text{in}_{\tau}([c_1, \ldots, c_m]) : 1 \leq c_1 < \ldots c_m \leq n) \subseteq \text{in}(I_m(X)).$ One has $\phi(D) = J$

KORKAR KERKER EL VOLO

Our first contribution: both results are consequence of a degeneration argument

M f.g. graded S-module

Hilbert series of M: $\text{HS}(M, y) = \sum_{i \in \mathbb{Z}} (\text{dim}_{K} M_{i}) y^{i}$

Idea of the proof:

Fix a term order.

Consider $y_1, ..., y_n$ are new indeterminates, and the map ϕ that sends x_{ii} to $*y_i$ where $*$ is generic scalar.

 $\phi(I_m(X)) = J$ with $J = ($ square free monomials of degree m in $y_1, ..., y_n$) Let $D = (\text{in}_{\tau}([c_1, \ldots, c_m]) : 1 \leq c_1 < \ldots c_m \leq n) \subseteq \text{in}(I_m(X)).$ One has $\phi(D) = J$

This forces equality of the Hilbert series $\implies D = \text{in}_{\tau}(I_m(X))$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Generalizations?

Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if one replaces some of the entries of X with 0's

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Generalizations?

Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if one replaces some of the entries of X with 0's

Question

Is it possible to prove similar results for matrices of linear forms?

Generalizations?

Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if one replaces some of the entries of X with 0's

Question

Is it possible to prove similar results for matrices of linear forms?

Let
$$
L = (L_{ij})
$$
 an $m \times n$ matrix, $m \le n$, with $L_{ij} \in S_1$

Eagon-Northcott

height($I_m(L)$) \leq height($I_m(X)$) = n – m + 1 If $=$ holds, then the Eagon-Northcott complex is a minimal free resolution of $I_m(L)$

KORKARYKERKE POLO

Example 1

$$
L = \begin{pmatrix} 0 & x_1 & x_2 & x_3 \\ x_1 & x_2 & 0 & x_4 \end{pmatrix} \qquad m = 2, n = 4, \text{height}(I_2(L)) = 2 < 3
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 $S/I_2(L)$ not koszul $\implies I_2(L)$ has no GB of quadrics (not even after a change of coordinates)

Example 1

$$
L = \begin{pmatrix} 0 & x_1 & x_2 & x_3 \\ x_1 & x_2 & 0 & x_4 \end{pmatrix} \qquad m = 2, n = 4, \text{height}(I_2(L)) = 2 < 3
$$

 $S/I_2(L)$ not koszul $\implies I_2(L)$ has no GB of quadrics (not even after a change of coordinates)

Example 2

$$
L = \left(\begin{array}{cc} x_1 + x_2 & x_3 & x_3 \\ 0 & x_1 & x_2 \end{array}\right) \quad m = 2, n = 3, \text{ height}(I_2(L)) = 2
$$

 $\text{in}_{\tau}(I_2(L))$ has a generator in degree 3 for every τ (if $\text{char}(K) \neq 2$) $\implies I_2(L)$ has no GB of quadrics

Example 3

$$
L = \left(\begin{array}{cc} x_1 & x_4 & x_3 \\ x_5 & x_1 + x_6 & x_2 \end{array}\right)
$$

The entries of L are linearly independent over K (i.e., L arises from a matrix of variables by a change of coordinates)

Example 3

$$
L = \left(\begin{array}{cc} x_1 & x_4 & x_3 \\ x_5 & x_1 + x_6 & x_2 \end{array}\right)
$$

The entries of L are linearly independent over K (i.e., L arises from a matrix of variables by a change of coordinates) For the most τ the 2-minors are a GB of $I_2(L)$

Example 3

$$
L = \left(\begin{array}{cc} x_1 & x_4 & x_3 \\ x_5 & x_1 + x_6 & x_2 \end{array}\right)
$$

The entries of L are linearly independent over K (i.e., L arises from a matrix of variables by a change of coordinates) For the most τ the 2-minors are a GB of $I_2(L)$ But $\text{in}_{\tau}(I_2(L))$ has a generator in degree 3 for every τ with $x_1 \succ x_2 \succ \cdots \succ x_6$ \implies the 2-minors are not a UGB
Our generalizations

Matrices of linear forms that are either column or row-graded

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

Our generalizations

Matrices of linear forms that are either column or row-graded

Column-graded

$$
deg x_{ij} = e_j \in \mathbb{Z}^n.
$$

\n
$$
L = (L_{ij}) \text{ with } deg L_{ij} = e_j
$$

\nExample:
$$
L = \begin{pmatrix} x_{11} & 0 & x_{13} - 2x_{23} & -x_{24} \\ 0 & x_{12} + x_{22} & x_{23} & -x_{24} \end{pmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Our generalizations

Matrices of linear forms that are either column or row-graded

Column-graded

$$
deg x_{ij} = e_j \in \mathbb{Z}^n.
$$

\n
$$
L = (L_{ij}) \text{ with } deg L_{ij} = e_j
$$

\nExample:
$$
L = \begin{pmatrix} x_{11} & 0 & x_{13} - 2x_{23} & -x_{24} \\ 0 & x_{12} + x_{22} & x_{23} & -x_{24} \end{pmatrix}
$$

Row-graded

deg $x_{ij} = e_i \in \mathbb{Z}^m$. $L = (L_{ii})$ with deg $L_{ii} = e_i$ Example: $L = \begin{pmatrix} x_{11} & x_{11} + x_{12} & x_{11} - x_{12} & x_{14} \\ 0 & x_{21} & x_{21} + 4x_{24} & x_{24} \end{pmatrix}$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Column-graded case: all the minors have distinct multidegrees Row-graded case: all the minors have the same multidegrees

Column-graded case: all the minors have distinct multidegrees Row-graded case: all the minors have the same multidegrees

 \rightarrow we cannot expect that the maximal minors are a universal GB since they might have all the same initial term.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Column-graded case: all the minors have distinct multidegrees Row-graded case: all the minors have the same multidegrees

 \rightarrow we cannot expect that the maximal minors are a universal GB since they might have all the same initial term.

Example

Consider
$$
K[x_{ij} : i = 1, 2, j = 1, 2, 3]
$$
 multigraded by
\n $deg(x_{11}) = deg(x_{12}) = deg(x_{13}) = (1, 0)$
\n $deg(x_{21}) = deg(x_{22}) = deg(x_{23}) = (0, 1)$

$$
L = \left(\begin{array}{cc} x_{11} & 2x_{11} + x_{12} & -x_{11} + x_{13} \\ x_{21} & x_{21} + x_{22} & x_{21} + x_{23} \end{array}\right)
$$

The 2 minors of L have all degree $(1, 1)$ If $x_{11} > x_{21} > ...$, then $\text{in}_{\tau}(f) = x_{11}x_{21}$ for every 2-minor f Thus the 2-minors cannot be a universal GB[!](#page-40-0)

Column-graded case: all the minors have distinct multidegrees Row-graded case: all the minors have the same multidegrees

 \rightarrow we cannot expect that the maximal minors are a universal GB since they might have all the same initial term.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 $CDG1$: Results on Universal Gröbner basis for column and row-graded matrices but in the row-graded case under the assumption "maximal height"

Theorem

Assume L is column-graded or row-graded with $m \le n$. Then:

1. $I_m(L)$ is radical and has a linear resolution. Moreover, $\text{in}_{\tau}(I_m(L))$ is radical and has a linear resolution for every τ

KORK STRAIN A BAR SHOP

Theorem

Assume L is column-graded or row-graded with $m \le n$. Then:

- 1. $I_m(L)$ is radical and has a linear resolution. Moreover, $\text{in}_{\tau}(I_m(L))$ is radical and has a linear resolution for every τ
- 2. In the column-graded case the maximal minors of L form a universal Gröbner basis of $I_m(L)$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Theorem

Assume L is column-graded or row-graded with $m \le n$. Then:

- 1. $I_m(L)$ is radical and has a linear resolution. Moreover, $\text{in}_{\tau}(I_m(L))$ is radical and has a linear resolution for every τ
- 2. In the column-graded case the maximal minors of L form a universal Gröbner basis of $I_m(L)$
- 3. In the row-graded case $I_m(L)$ has a universal Gröbner basis of elements of multidegree equal to $\mathbf{1} = (1, \ldots, 1)$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Theorem

Assume L is column-graded or row-graded with $m \le n$. Then:

- 1. $I_m(L)$ is radical and has a linear resolution. Moreover, $\text{in}_{\tau}(I_m(L))$ is radical and has a linear resolution for every τ
- 2. In the column-graded case the maximal minors of L form a universal Gröbner basis of $I_m(L)$
- 3. In the row-graded case $I_m(L)$ has a universal Gröbner basis of elements of multidegree equal to $\mathbf{1} = (1, \ldots, 1)$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

4. $I_2(L)$ is radical. Moreover, $\text{in}_{\tau}(I_2(L))$ is radical for every τ

Theorem

Assume L is column-graded or row-graded with $m \le n$. Then:

- 1. $I_m(L)$ is radical and has a linear resolution. Moreover, $\text{in}_{\tau}(I_m(L))$ is radical and has a linear resolution for every τ
- 2. In the column-graded case the maximal minors of L form a universal Gröbner basis of $I_m(L)$
- 3. In the row-graded case $I_m(L)$ has a universal Gröbner basis of elements of multidegree equal to $\mathbf{1} = (1, \ldots, 1)$
- 4. $I_2(L)$ is radical. Moreover, $\text{in}_{\tau}(I_2(L))$ is radical for every τ
- 5. $I_2(L)$ has a univ. Gröbner basis of elements of multidegree ≤ 1

KORKAR KERKER EL VOLO

KID KARA KE KE KE A DAG

KORK ERKER ADE YOUR

Theorem/Definition (Generic initial ideal)

 $GL_n(K)$ acts by linear substitution on $R = K[x_1, \ldots, x_n]$. For $g \in GL_n(K)$ and $I \subset R$ consider $g(I)$

Theorem/Definition (Generic initial ideal)

 $GL_n(K)$ acts by linear substitution on $R = K[x_1, \ldots, x_n]$. For $g \in GL_n(K)$ and $I \subset R$ consider $g(I)$

Fix a term order. As g varies in $GL_n(K)$ compute $in(g(I))$

KORK ERKER ADE YOUR

Theorem/Definition (Generic initial ideal)

 $GL_n(K)$ acts by linear substitution on $R = K[x_1, \ldots, x_n]$. For $g \in GL_n(K)$ and $I \subset R$ consider $g(I)$

Fix a term order. As g varies in $GL_n(K)$ compute $in(g(I))$

KORK ERKER ADE YOUR

For almost all g one gets the same outcome $\rightarrow \text{gin}(I)$

Theorem/Definition (Generic initial ideal)

 $GL_n(K)$ acts by linear substitution on $R = K[x_1, \ldots, x_n]$. For $g \in GL_n(K)$ and $I \subset R$ consider $g(I)$

Fix a term order. As g varies in $GL_n(K)$ compute $in(g(I))$

For almost all g one gets the same outcome \rightarrow gin(1)

Properties:

 \triangleright gin(I) is Borel fixed, that is, it is fixed by every g in $B_n(K) = \{$ upper triangular invert. matrices $\} \subset GL_n(K)$

 \blacktriangleright HS(I, γ) = HS($\text{gin}(I), \gamma$)

$$
S = K[x_{ij} : i = 1, \ldots, v \text{ and } j = 1 \ldots, n_i]
$$

multigraded by deg(x_{ij}) = $e_i \in \mathbb{Z}^v$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

$$
S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1 ..., n_i]
$$

multipraded by deg(x_{ij}) = $e_i \in \mathbb{Z}^v$

(Multigraded) Hilbert series of a multi graded S-module M:

$$
HS(M, y) = HS(M, y_1, \ldots, y_v) = \sum_{a \in \mathbb{Z}^v} (\dim M_a) y^a
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

$$
S = K[x_{ij} : i = 1, \ldots, v \text{ and } j = 1 \ldots, n_i]
$$

multigraded by deg(x_{ij}) = $e_i \in \mathbb{Z}^v$

(Multigraded) Hilbert series of a multi graded S-module M:

$$
HS(M, y) = HS(M, y_1, \ldots, y_v) = \sum_{a \in \mathbb{Z}^v} (\dim M_a) y^a
$$

K □ ▶ K @ ▶ K 할 X K 할 X T 할 X 1 9 Q Q *

Fix a term order (such that $x_{ij}>x_{ik}$ for every $1\leq j < k \leq n_i.$)

$$
S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1 ..., n_i]
$$

multigraded by deg(x_{ij}) = $e_i \in \mathbb{Z}^v$

(Multigraded) Hilbert series of a multi graded S-module M:

$$
HS(M, y) = HS(M, y_1, \ldots, y_v) = \sum_{a \in \mathbb{Z}^v} (\dim M_a) y^a
$$

Fix a term order (such that $x_{ij}>x_{ik}$ for every $1\leq j < k \leq n_i.$)

Theorem/Definition

 $\mathrm{G} \, = \, \mathrm{GL}_{n_1}(\mathcal{K}) \times \cdots \times \mathrm{GL}_{n_v}(\mathcal{K})$ acts by linear substitution on S preserving the multigraded structure. $g \in G$, $I \subset S$ multigraded ideal $\rightarrow g(I)$ (multigraded)

$$
S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1 ..., n_i]
$$

multigraded by deg(x_{ij}) = $e_i \in \mathbb{Z}^v$

(Multigraded) Hilbert series of a multi graded S-module M:

$$
\operatorname{HS}(M, y) = \operatorname{HS}(M, y_1, \dots, y_v) = \sum_{a \in \mathbb{Z}^v} (\dim M_a) y^a
$$

Fix a term order (such that $x_{ij}>x_{ik}$ for every $1\leq j < k \leq n_i.$)

Theorem/Definition

 $\mathrm{G} \, = \, \mathrm{GL}_{n_1}(\mathcal{K}) \times \cdots \times \mathrm{GL}_{n_v}(\mathcal{K})$ acts by linear substitution on S preserving the multigraded structure. $g \in G$, $I \subset S$ multigraded ideal $\rightarrow g(I)$ (multigraded) As g varies in G compute $\text{in}(g(I))$ For almost all g one gets the same outcome \rightarrow multigin(*I*)

Properties of multigin(1):

In multigin(I) is Borel fixed, that is, it is fixed by every g in

 $B_{n_1}(K) \times \cdots \times B_{n_v}(K) \subset \mathrm{G}$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \blacktriangleright HS(l, y) = HS(multigin(l), y)

Properties of multigin(1):

In multigin(I) is Borel fixed, that is, it is fixed by every g in

 $B_{n_1}(K) \times \cdots \times B_{n_v}(K) \subset \mathrm{G}$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

$$
\blacktriangleright \ \text{HS}(I, y) = \text{HS}(\text{multigin}(I), y)
$$

Rmk: $J \subset S$, \mathbb{Z}^{ν} -graded, is Borel fixed if and only if

Properties of multigin(1):

In multigin(I) is Borel fixed, that is, it is fixed by every g in

 $B_{n_1}(K) \times \cdots \times B_{n_v}(K) \subset \mathrm{G}$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

$$
\blacktriangleright \ \text{HS}(I, y) = \text{HS}(\text{multigin}(I), y)
$$

Rmk: $J \subset S$, \mathbb{Z}^{ν} -graded, is Borel fixed if and only if

$$
\blacktriangleright
$$
 J is generated by monomials

Properties of multigin(1):

In multigin(I) is Borel fixed, that is, it is fixed by every g in

 $B_{n_1}(K) \times \cdots \times B_{n_v}(K) \subset \mathrm{G}$

 \blacktriangleright HS(l, v) = HS(multigin(l), v)

Rmk: $J \subset S$, \mathbb{Z}^{ν} -graded, is Borel fixed if and only if

- \blacktriangleright J is generated by monomials
- \triangleright for every monomial generator u and every variable x_{ij} appearing in u with exponent, say, c one has that $(\mathsf{x}_{\mathit{ik}}/\mathsf{x}_{\mathit{ij}})^d u \in I$ for every $k < j$ and every $0 \leq d \leq c$ such that \int_{a}^{c} $\binom{c}{d} \neq 0$ in the field K .

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

Properties of multigin(1):

In multigin(I) is Borel fixed, that is, it is fixed by every g in

 $B_{n_1}(K) \times \cdots \times B_{n_v}(K) \subset \mathrm{G}$

 \blacktriangleright HS(l, v) = HS(multigin(l), v)

Rmk: $J \subset S$, \mathbb{Z}^{ν} -graded, is Borel fixed if and only if

- \blacktriangleright J is generated by monomials
- **F** for every monomial generator u and every variable x_{ii} appearing in u with exponent, say, c one has that $(\mathsf{x}_{\mathit{ik}}/\mathsf{x}_{\mathit{ij}})^d u \in I$ for every $k < j$ and every $0 \leq d \leq c$ such that \int_{a}^{c} $\binom{c}{d} \neq 0$ in the field K .

From now on we always consider the multigraded situation. We write gin instead of multigin

Theorem

Let I, J multi graded Borel-fixed ideals with $\text{HS}(I, y) = \text{HS}(J, y)$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Theorem

Let I, J multi graded Borel-fixed ideals with $\text{HS}(I, y) = \text{HS}(J, y)$.

If J is radical then $I = J$

Theorem

Let I, J multi graded Borel-fixed ideals with $\text{HS}(I, y) = \text{HS}(J, y)$.

If J is radical then $I = J$

Corollary

Let J be Borel-fixed and radical. I such that $\text{HS}(I, y) = \text{HS}(J, y)$. Then $\sin(I) = J$ wrt any term order.

KOD KAR KED KED E YORA

Theorem

Let I, J multi graded Borel-fixed ideals with $\text{HS}(I, y) = \text{HS}(J, y)$.

If J is radical then $I = J$

Corollary

Let J be Borel-fixed and radical. I such that $\text{HS}(I, y) = \text{HS}(J, y)$. Then $\text{gin}(I) = J$ wrt any term order. In particular, (a) I is radical (b) J has a linear resolution \implies I has a linear resolution

KORK ERKER ADE YOUR

 $\mathcal{S} = \mathcal{K}[x_{ij} : i = 1, \ldots, v \text{ and } j = 1 \ldots, n_i], \text{ } \deg(x_{ij}) = e_i \in \mathbb{Z}^{\nu}$ All the ideals are \mathbb{Z}^{ν} -graded

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

 $\mathcal{S} = \mathcal{K}[x_{ij} : i = 1, \ldots, v \text{ and } j = 1 \ldots, n_i], \text{ } \deg(x_{ij}) = e_i \in \mathbb{Z}^{\nu}$ All the ideals are \mathbb{Z}^{ν} -graded

 $CS = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ radical Borel-fixed}\}\$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 $\mathcal{S} = \mathcal{K}[x_{ij} : i = 1, \ldots, v \text{ and } j = 1 \ldots, n_i], \text{ } \deg(x_{ij}) = e_i \in \mathbb{Z}^{\nu}$ All the ideals are \mathbb{Z}^{ν} -graded $CS = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ radical Borel-fixed}\}\$ Set $T = K[x_{11}, x_{21}, \ldots, x_{v1}]$ $CS^* = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ whose genes are in } T\}$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 $\mathcal{S} = \mathcal{K}[x_{ij} : i = 1, \ldots, v \text{ and } j = 1 \ldots, n_i], \text{ } \deg(x_{ij}) = e_i \in \mathbb{Z}^{\nu}$ All the ideals are \mathbb{Z}^{ν} -graded $CS = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ radical Borel-fixed}\}\$ Set $T = K[x_{11}, x_{21}, \ldots, x_{v1}]$ $CS^* = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ whose genes are in } T\}$

Corollary

 $I \in \mathsf{CS} \implies \mathsf{in}_{\tau}(I) \in \mathsf{CS}$ and $J = \text{gin}_{\tau}(I)$ for every τ $I \in \mathsf{CS}^* \implies \mathrm{in}_{\tau}(I) \in \mathsf{CS}$ and $J = \mathrm{gin}_{\tau}(I)$ for every τ

KORK ERKER ADE YOUR
Cartwright-Sturmfels ideals

$$
S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1, ..., n_i], \text{ deg}(x_{ij}) = e_i \in \mathbb{Z}^v
$$

All the ideals are \mathbb{Z}^v -graded

$$
CS = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ radical Borel-fixed}\}
$$

Set $T = K[x_{11}, x_{21}, ..., x_{v1}]$

$$
CS^* = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ whose genes are in } T\}
$$

Corollary

\n- \n
$$
I \in \mathsf{CS} \implies \mathrm{in}_{\tau}(I) \in \mathsf{CS}
$$
\n and\n $J = \mathrm{gin}_{\tau}(I)$ \n for every\n τ \n
\n- \n $I \in \mathsf{CS}^* \implies \mathrm{in}_{\tau}(I) \in \mathsf{CS}$ \n and\n $J = \mathrm{gin}_{\tau}(I)$ \n for every\n τ \n
\n

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

From now on for $I \in CS$ or $I \in CS^*$ we just write $\text{gin}(I)$

Cartwright-Sturmfels ideals

$$
S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1, ..., n_i], \text{ deg}(x_{ij}) = e_i \in \mathbb{Z}^v
$$

All the ideals are \mathbb{Z}^v -graded

$$
CS = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ radical Borel-fixed}\}
$$

Set $T = K[x_{11}, x_{21}, ..., x_{v1}]$

$$
CS^* = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ whose genes are in } T\}
$$

Corollary

$$
\blacktriangleright \quad I \in \mathsf{CS} \quad \Longrightarrow \quad \mathrm{in}_{\tau}(I) \in \mathsf{CS} \text{ and } J = \mathrm{gin}_{\tau}(I) \text{ for every } \tau
$$

$$
\blacktriangleright \ l \in \mathsf{CS}^* \implies \mathrm{in}_\tau(I) \in \mathsf{CS} \text{ and } J = \mathrm{gin}_\tau(I) \text{ for every } \tau
$$

From now on for $I \in CS$ or $I \in CS^*$ we just write $\text{gin}(I)$

 $CS = \{J : \, \text{gin}_{\tau}(J) \text{ is radical for some (all) } \tau\}$

KORK EX KEY CRACK

Cartwright-Sturmfels ideals

$$
S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1, ..., n_i], \text{ deg}(x_{ij}) = e_i \in \mathbb{Z}^v
$$

All the ideals are \mathbb{Z}^v -graded

$$
CS = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ radical Borel-fixed}\}
$$

Set $T = K[x_{11}, x_{21}, ..., x_{v1}]$

$$
CS^* = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ whose genes are in } T\}
$$

Corollary

$$
\blacktriangleright \quad I \in \mathsf{CS} \quad \Longrightarrow \quad \mathrm{in}_{\tau}(I) \in \mathsf{CS} \text{ and } J = \mathrm{gin}_{\tau}(I) \text{ for every } \tau
$$

$$
\blacktriangleright \ l \in \mathsf{CS}^* \implies \mathrm{in}_\tau(I) \in \mathsf{CS} \text{ and } J = \mathrm{gin}_\tau(I) \text{ for every } \tau
$$

From now on for $I \in CS$ or $I \in CS^*$ we just write $\text{gin}(I)$

 $CS = \{J : \, \text{gin}_{\tau}(J) \text{ is radical for some (all) } \tau\}$ $\mathsf{CS}^* = \{J : \text{the generators of } \sin_\tau(I) \text{ are in } \mathcal{T} \text{ for some (all) } \tau\}$ K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Examples: $X = (x_{ij})$ generic, $m \times n$.

K ロ X K 메 X K B X X B X X D X O Q Q O

Examples: $X = (x_{ij})$ generic, $m \times n$.

► Conca: $\text{gin}(I_2(X))$ is radical. In particular $I_2(X) \in \mathsf{CS}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Examples: $X = (x_{ij})$ generic, $m \times n$.

► Conca: $\text{gin}(I_2(X))$ is radical. In particular $I_2(X) \in \mathsf{CS}$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

► CDG1: $I_m(X) \in CS$

Examples: $X = (x_{ij})$ generic, $m \times n$.

- ► Conca: $\text{gin}(I_2(X))$ is radical. In particular $I_2(X) \in \mathsf{CS}$
- ► CDG1: $I_m(X) \in \mathsf{CS}$

Proposition $I \in \mathsf{CS}$

Examples: $X = (x_{ij})$ generic, $m \times n$.

- ► Conca: $\text{gin}(I_2(X))$ is radical. In particular $I_2(X) \in \mathsf{CS}$
- ► CDG1: $I_m(X) \in CS$

Proposition $I \in \mathsf{CS}$ \blacktriangleright *I* is radical

Examples: $X = (x_{ii})$ generic, $m \times n$.

► Conca: $\sin(I_2(X))$ is radical. In particular $I_2(X) \in CS$

KORK ERKER ADE YOUR

► CDG1: $I_m(X) \in CS$

Proposition

$I \in \mathsf{CS}$

- \blacktriangleright *I* is radical
- reg(I) $\leq v$ (by duality)

Examples: $X = (x_{ij})$ generic, $m \times n$.

- ► Conca: $\sin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- ► CDG1: $I_m(X) \in \mathsf{CS}$

Proposition

 $I \in \mathsf{CS}$

- \blacktriangleright *I* is radical
- reg(I) $\leq v$ (by duality)
- I is generated by elements of multidegree ≤ 1

Examples: $X = (x_{ii})$ generic, $m \times n$.

- ► Conca: $\sin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- ► CDG1: $I_m(X) \in \mathsf{CS}$

Proposition

 $I \in \mathsf{CS}$

- \blacktriangleright *I* is radical
- reg(I) $\leq v$ (by duality)

I is generated by elements of multidegree ≤ 1

KORK ERKER ADE YOUR

Why Cartwright - Sturmfels?

Examples: $X = (x_{ii})$ generic, $m \times n$.

- ► Conca: $\sin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- ► CDG1: $I_m(X) \in \mathsf{CS}$

Proposition

 $I \in \mathbb{C}$

- \blacktriangleright *I* is radical
- reg(I) \lt \lt (by duality)

I is generated by elements of multidegree ≤ 1

Why Cartwright - Sturmfels?

[Cartwright - Sturmfels, 2010]:

J such that $\text{HS}(J, y) = \text{HS}(J, X), y$ \implies J is radical

Examples: $X = (x_{ii})$ generic, $m \times n$.

- ► Conca: $\sin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- ► CDG1: $I_m(X) \in \mathsf{CS}$

Proposition

 $I \in \mathsf{CS}$

- \blacktriangleright *I* is radical
- reg(I) $\leq v$ (by duality)
- I is generated by elements of multidegree ≤ 1

KORK ERKER ADE YOUR

Why CS[∗] ?

Examples: $X = (x_{ii})$ generic, $m \times n$.

- ► Conca: $\sin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- ► CDG1: $I_m(X) \in CS$

Proposition

 $I \in \mathsf{CS}$

- \blacktriangleright *I* is radical
- reg(I) $\leq v$ (by duality)
- I is generated by elements of multidegree ≤ 1

Why CS[∗] ?

Proposition

I square free monomial, I* its Alexander dual $I \in CS \Leftrightarrow I^*$ is in CS^* .

Examples: $X = (x_{ij})$ generic, $m \times n$.

- ► Conca: $\sin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- ► CDG1: $I_m(X) \in \mathsf{CS}$

Proposition

 $I \in \mathsf{CS}$

- \blacktriangleright *I* is radical
- reg(I) $\leq v$ (by duality)
- I is generated by elements of multidegree ≤ 1

Why CS[∗] ?

Proposition

I square free monomial, I* its Alexander dual $I \in CS \Leftrightarrow I^*$ is in CS^* . Moreover, if $I \in CS$, then $\text{gin}(I)^* = \text{pol}(\text{gin}(I^*)).$

Proposition

$$
I \in \mathsf{CS}^*, \ \mathsf{C} = (x_{11}^{a_1} \cdots x_{v1}^{a_v} : a \in \mathbb{Z}^v \ \text{and} \ I_a \neq 0)
$$

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q C

Proposition

$$
I \in CS^*, \ C = (x_{11}^{a_1} \cdots x_{v1}^{a_v} : a \in \mathbb{Z}^v \text{ and } I_a \neq 0)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 $C = \text{gin}(I)$ (for every term order)

Proposition

$$
I \in CS^*, \ C = (x_{11}^{a_1} \cdots x_{v1}^{a_v} : a \in \mathbb{Z}^v \text{ and } I_a \neq 0)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q ·

$$
\blacktriangleright \ \mathcal{C} = \text{gin}(I) \text{ (for every term order)}
$$

$$
\blacktriangleright \beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(C) \text{ for all } i, \mathbf{a}
$$

Proposition

$$
I\in\mathsf{CS}^*,\ \mathsf{C}=(x_{11}^{a_1}\cdots x_{v1}^{a_v}:a\in\mathbb{Z}^v\ \text{and}\ I_a\neq 0)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- $C = \text{gin}(I)$ (for every term order)
- \blacktriangleright $\beta_{i,a}(I) = \beta_{i,a}(C)$ for all *i*, **a**
- rojdim $(S/I) \leq v$

Proposition

$$
I\in\mathsf{CS}^*,\; \mathsf{C}=(x_{11}^{a_1}\cdots x_{v1}^{a_v}:a\in\mathbb{Z}^v\;\text{and}\;I_a\neq 0)
$$

- $C = \text{gin}(I)$ (for every term order)
- \blacktriangleright $\beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(C)$ for all *i*, **a**
- r projdim $(S/I) \leq v$
- \blacktriangleright minimal generators have incomparable multidegrees

Proposition

$$
I\in\mathsf{CS}^*,\; \mathsf{C}=(x_{11}^{a_1}\cdots x_{v1}^{a_v}:a\in\mathbb{Z}^v\;\text{and}\;I_a\neq 0)
$$

- $C = \text{gin}(I)$ (for every term order)
- \triangleright $\beta_{i,a}(I) = \beta_{i,a}(C)$ for all *i*, **a**
- rioprojdim $(S/I) \leq v$
- \blacktriangleright minimal generators have incomparable multidegrees

Theorem

If $I \in \mathsf{CS}^*$, then any minimal system of \mathbb{Z}^{ν} -graded generators of I is a universal Gröbner basis

Proposition

$$
I\in\mathsf{CS}^*,\; \mathsf{C}=(x_{11}^{a_1}\cdots x_{v1}^{a_v}:a\in\mathbb{Z}^v\;\text{and}\;I_a\neq 0)
$$

- $C = \text{gin}(I)$ (for every term order)
- \triangleright $\beta_{i,a}(I) = \beta_{i,a}(C)$ for all *i*, **a**
- rioprojdim $(S/I) \leq v$
- \triangleright minimal generators have incomparable multidegrees

Theorem

If $I \in \mathsf{CS}^*$, then any minimal system of \mathbb{Z}^{ν} -graded generators of I is a universal Gröbner basis

KORK ERKER ADE YOUR

Proof: Let τ be any term order, $H = \text{in}_{\tau}(I)$.

I, $H \in \mathsf{CS}^* \implies \beta_{i,a}(I) = \beta_{i,a}(H)$

Proposition

$$
I \in \mathsf{CS}^*, \ C = (x_{11}^{a_1} \cdots x_{v1}^{a_v} : a \in \mathbb{Z}^v \text{ and } I_a \neq 0)
$$

- \triangleright $C = \text{gin}(I)$ (for every term order)
- \triangleright $\beta_{i,a}(I) = \beta_{i,a}(C)$ for all *i*, **a**
- rioprojdim $(S/I) \leq v$
- \triangleright minimal generators have incomparable multidegrees

Theorem

If $I \in \mathsf{CS}^*$, then any minimal system of \mathbb{Z}^{ν} -graded generators of I is a universal Gröbner basis

Proof: Let τ be any term order, $H = \text{in}_{\tau}(I)$.

$$
I, H \in \mathsf{CS}^* \implies \beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(H)
$$

their generators have incomparable degrees \implies any minimal system [of](#page-93-0) gene[r](#page-87-0)a[t](#page-94-0)[o](#page-0-0)rs of *I* is a Gröbner basis of *I* [w](#page-86-0)rt [t](#page-95-0)o τ

Main tool:

Main tool:

Proposition

Let L be a \mathbb{Z}^{ν} -graded linear form of S. Then:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Main tool:

Proposition

Let L be a \mathbb{Z}^{ν} -graded linear form of S. Then:

 $I \in CS \implies I : L, I + (L), I + (L)/(L) \in CS$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Main tool:

Proposition

Let L be a \mathbb{Z}^{ν} -graded linear form of S. Then:

$$
\blacktriangleright \ l \in \mathsf{CS} \implies l : L, \ l + (L), \ l + (L)/(L) \in \mathsf{CS}
$$

$$
\blacktriangleright \ l \in \mathsf{CS}^* \implies l : L, \ l + (L)/(L), \ l \cap (L) \in \mathsf{CS}^*
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Main tool:

Proposition

Let L be a \mathbb{Z}^{ν} -graded linear form of S. Then:

$$
\blacktriangleright \ l \in \mathsf{CS} \implies l : L, \ l + (L), \ l + (L) / (L) \in \mathsf{CS}
$$

$$
\blacktriangleright \ l \in \mathsf{CS}^* \implies l : L, \ l + (L)/(L), \ l \cap (L) \in \mathsf{CS}^*
$$

Rmk If $I \in \mathsf{CS}^*$ and L is a \mathbb{Z}^{ν} -graded linear form, then $I + (L) \notin \mathsf{CS}^*$ in general.

Example: $(x_{11}) \in CS^*$, but $(x_{11}, x_{12}) \notin CS^*$ because ideals in CS^* have generators with incomparable degrees.

Example 2

Rmk: F a product of \mathbb{Z}^{ν} -graded linear forms:

$$
I \in \mathsf{CS} \quad \Longrightarrow \quad I : F \in \mathsf{CS}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

But if F is a \mathbb{Z}^{ν} -graded form: $I : F \notin CS$ in general.

Example 2

Rmk: F a product of \mathbb{Z}^{ν} -graded linear forms:

$$
I \in \mathsf{CS} \quad \Longrightarrow \quad I : F \in \mathsf{CS}
$$

But if F is a \mathbb{Z}^{ν} -graded form: $I : F \notin CS$ in general.

Example $S = K[x_{ii} | 1 \le i, j \le 3]$ with deg $x_{ii} = e_i$

$$
X = \left(\begin{array}{ccc} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & 0 \\ 0 & 0 & x_{33} \end{array}\right) \quad I = I_2(X) \in \mathsf{CS}
$$

Example 2

Rmk: F a product of \mathbb{Z}^{ν} -graded linear forms:

$$
I \in \mathsf{CS} \quad \Longrightarrow \quad I : F \in \mathsf{CS}
$$

But if F is a \mathbb{Z}^{ν} -graded form: $I : F \notin CS$ in general.

Example $S = K[x_{ii} | 1 \le i, j \le 3]$ with deg $x_{ii} = e_i$

$$
X = \left(\begin{array}{ccc} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & 0 \\ 0 & 0 & x_{33} \end{array}\right) \quad I = I_2(X) \in \text{CS}
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 $F = x_{11}x_{21}x_{32} + x_{13}x_{23}x_{33} \rightarrow I : F = I + (x_{12}x_{13}, x_{11}x_{13})$ $deg(x_{12}x_{13}) = (2, 0, 0) \implies I : F \notin CS$

Thm 1

- $L = (L_{ii})$ row-graded, of size $m \times n$ with $m \leq n$. Then:
- (a) There is a universal GB of elements of degree 1
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

Thm 1

- $L = (L_{ii})$ row-graded, of size $m \times n$ with $m \leq n$. Then:
- (a) There is a universal GB of elements of degree 1
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

KORK ERKER ADE YOUR

Thm 1

- $L = (L_{ii})$ row-graded, of size $m \times n$ with $m \leq n$. Then:
- (a) There is a universal GB of elements of degree 1
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

KORK ERKER ADE YOUR

Let
$$
Y = (y_{ij})
$$
 be an $m \times n$ matrix of variables

Thm 1

- $L = (L_{ii})$ row-graded, of size $m \times n$ with $m \leq n$. Then:
- (a) There is a universal GB of elements of degree 1
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

KORK ERKER ADE YOUR

Let
$$
Y = (y_{ij})
$$
 be an $m \times n$ matrix of variables
\n $R = S[Y]$ \mathbb{Z}^m -graded by deg $(y_{ij}) = e_i \in \mathbb{Z}^m$

Thm 1

- $L = (L_{ii})$ row-graded, of size $m \times n$ with $m \leq n$. Then:
- (a) There is a universal GB of elements of degree 1
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

KORK ERKER ADE YOUR

Let
$$
Y = (y_{ij})
$$
 be an $m \times n$ matrix of variables
\n $R = S[Y]$ \mathbb{Z}^m -graded by deg $(y_{ij}) = e_i \in \mathbb{Z}^m$
\n Y generic $\implies I_m(Y) \in CS$
Maximal minors, row-graded

Thm 1

- $L = (L_{ii})$ row-graded, of size $m \times n$ with $m \leq n$. Then:
- (a) There is a universal GB of elements of degree 1
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

Idea of the proof:

Let
$$
Y = (y_{ij})
$$
 be an $m \times n$ matrix of variables
\n $R = S[Y]$ Z^m-graded by deg $(y_{ij}) = e_i \in \mathbb{Z}^m$
\n Y generic $\implies I_m(Y) \in CS$

 $S \supset I_m(L) \simeq I_m(Y) + (y_{ii} - L_{ii})/(y_{ii} - L_{ii}) \subset R/(y_{ii} - L_{ii})$

KORK ERKER ADE YOUR

Maximal minors, row-graded

Thm 1

- $L = (L_{ii})$ row-graded, of size $m \times n$ with $m \leq n$. Then:
- (a) There is a universal GB of elements of degree 1
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

Idea of the proof:

Let
$$
Y = (y_{ij})
$$
 be an $m \times n$ matrix of variables
\n $R = S[Y]$ Z^m-graded by deg $(y_{ij}) = e_i \in \mathbb{Z}^m$
\n Y generic $\implies I_m(Y) \in CS$
\n $S \supset I_m(L) \simeq I_m(Y) + (y_{ij} - L_{ij})/(y_{ij} - L_{ij}) \subset R/(y_{ij} - L_{ij})$
\n $I_m(Y) \in CS \implies I_m(L) \in CS \implies \inf_t(I_m(L)) \in CS$ for all τ

 Ω

KORK ERKER ADE YOUR

KORK ERKER ADE YOUR

Crucial point: We have that $I_m(L) \in CS$ and $I_2(L) \in CS$.

Crucial point: We have that $I_m(L) \in CS$ and $I_2(L) \in CS$.

Moreover, in the column-graded case: if $Y = (y_{ij})$ is generic, $m \times n$ with $m \leq n$, then $I_m(Y) \in \mathsf{CS}^*$.

KORKAR KERKER EL VOLO

Crucial point: We have that $I_m(L) \in CS$ and $I_2(L) \in CS$.

Moreover, in the column-graded case: if $Y = (y_{ij})$ is generic, $m \times n$ with $m \leq n$, then $I_m(Y) \in \mathsf{CS}^*$. It follows that $I_m(L) \in \mathsf{CS} \cap \mathsf{CS}^*$.

KORKAR KERKER EL VOLO

Recall: $I \in \mathsf{CS}^* \implies \beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(\text{in}_{\tau}(I))$ for every τ .

It follows:

Recall:
$$
I \in \mathsf{CS}^* \implies \beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(\text{in}_{\tau}(I))
$$
 for every τ .

It follows:

In the column-graded case $\beta_{i,\mathbf{a}}(I_m(L)) = \beta_{i,\mathbf{a}}(\text{in}_{\tau}(I_m(L)))$ for all τ

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Recall:
$$
I \in \mathsf{CS}^* \implies \beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(\text{in}_{\tau}(I))
$$
 for every τ .

It follows:

In the column-graded case $\beta_{i,\mathbf{a}}(I_m(L)) = \beta_{i,\mathbf{a}}(\text{in}_{\tau}(I_m(L)))$ for all τ

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

TRUE also in the row-graded case!

Recall:
$$
I \in \mathsf{CS}^* \implies \beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(\text{in}_{\tau}(I))
$$
 for every τ .

It follows:

In the column-graded case $\beta_{i,\mathbf{a}}(I_m(L)) = \beta_{i,\mathbf{a}}(\text{in}_{\tau}(I_m(L)))$ for all τ

KORK ERKER ADE YOUR

TRUE also in the row-graded case!

Not true for 2-minors in general

Generic initial ideals

Generic initial ideals

$J \in \mathsf{CS}^*$:

$$
\mathrm{gin}(J)=(x_{11}^{a_1}\cdots x_{v1}^{a_v}:a\in\mathbb{Z}^v\text{ and }J_a\neq 0)
$$

K ロ X イロ X X を X X を X と ミ X の Q Q へ

Generic initial ideals

$$
J\in\mathsf{CS}^*\!\!:
$$

$$
\mathrm{gin}(J)=(x_{11}^{a_1}\cdots x_{v1}^{a_v}:a\in\mathbb{Z}^v\text{ and }J_a\neq 0)
$$

[CDG1]: column-graded:

$$
\text{gin}(I_m(L))=(x_{1j_1}\cdots x_{mj_m}\mid [j_1,\ldots,j_m]_L\neq 0)
$$

row-graded, height($I_m(L)$) = $n - m + 1$:

$$
\text{gin}(I_m(L))=(x_{1j_1}\cdots x_{mj_m}:j_1+\cdots+j_m\leq n)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Generic initial ideals [CDG3]

Maximal minors, row-graded

$$
L = (L_{ij}) \text{ row-graded } m \times n, \ m \le n, \ l = I_m(L)
$$

$$
A \subseteq [m]:
$$

$$
b(A) = \dim_K < \text{columns of the matrix } L_A = (L_{ij})_{i \in A, j \in [n]} >
$$

$$
\text{gin}(I) = (x_{1b_1} \cdots x_{mb_m} : \sum_{i \in A} b_i \leq b(A) \text{ for every } A \subseteq [m])
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Generic initial ideals [CDG3]

2-minors $L = (L_{ii})$ row or column-graded, $I = I_2(L)$ $\mathrm{gin}(I) = (\prod x_{ib_i} : A \subseteq [m]$ and b_i satisfying $*)$ i∈A ∗ : $\begin{array}{c} \n\set{1 \leq b_i \leq n - \dim_K V_i \text{ for every } i \in A}\n\end{array}$ $\sum_{i\in A}b_i\le n(|A|-1)+\dim_KV_A-\sum_{i\in A}\dim_KV_i$ with $V_i = \{ \lambda \in K^n | \sum_{i=1}^n \lambda_j L_{ij} = 0 \}$ and $V_A = \sum_{i \in A} V_i$.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +