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Universal Gröbner basis

S a polynomial ring over a field K , τ a term order in S
I ⊂ S ideal

g1, . . . , gr ∈ I

Initial ideal of I : inτ (I ) = (inτ (f ) : f ∈ I )

Definition

I {g1, . . . , gr} is a Gröbner basis of I wrt τ if

inτ (I ) = (inτ (g1), . . . , inτ (gr ))

I {g1, . . . , gr} is a universal Gröbner basis of I if

inτ (I ) = (inτ (g1), . . . , inτ (gr )) wrt every τ

Remark: Every ideal has a Universal Gröbner basis, BUT “natural”
Universal Gröbner bases are rare
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S a polynomial ring over a field K , τ a term order in S
I ⊂ S ideal

g1, . . . , gr ∈ I

Initial ideal of I : inτ (I ) = (inτ (f ) : f ∈ I )

Definition

I {g1, . . . , gr} is a Gröbner basis of I wrt τ if
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Generic Determinantal Rings
K a field, X = (xij) an m × n matrix of indeterminates.

S = K [xij : 1 ≤ i , j ≤ n]

Given 1 ≤ r1 < · · · < rt ≤ m, 1 ≤ c1 < · · · < ct ≤ n:

t-minor: [r1, . . . , rt |c1, . . . , ct ]X = det(xricj )i ,j=1,...,t

Determinantal ring: S/It(X ) with It(X ) = ( t-minors of X )

Theorem [Sturmfels 1990]

The t-minors form a GB of It(X ) w.r.t. any diagonal term order.

But they are not universal GB in general!
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Universal GB for minors, t = 2

Theorem (Sturmfels, Villareal)

Universal GB of I2(X ) is the set of all the binomials associated to
the cycles of the complete bipartite graph Km,n

All the initial ideals of I2(X ) are radical and define CM rings (indeed
they are associated to a shellable simplicial complex )
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Universal GB for maximal minors

X = (xij) generic matrix of size m × n, m ≤ n.

a minor of size m is called maximal minor: [c1, . . . , cm]

Im(X ) = ( maximal minors of X )

Bernstein-Sturmfels-Zelevinsky (1993-94)

The maximal minors of X form a universal GB of Im(X )

Boocher (2011)

For every term order τ :

I βij(Im(X )) = βij(inτ (Im(X )))

I in particular inτ (Im(X )) has a linear resolution
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Universal GB for maximal minors

Our first contribution: both results are consequence of a
degeneration argument

M f.g. graded S-module

Hilbert series of M: HS(M, y) =
∑

i∈Z(dimK Mi )y
i

Idea of the proof:

Fix a term order.
Consider y1, ..., yn are new indeterminates, and the map φ that
sends xij to ∗yj where ∗ is generic scalar.

φ(Im(X )) = J with
J = (square free monomials of degree m in y1, ..., yn)

Let D = (inτ ([c1, . . . , cm]) : 1 ≤ c1 < . . . cm ≤ n) ⊆ in(Im(X )).
One has φ(D) = J

This forces equality of the Hilbert series =⇒ D = inτ (Im(X ))
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Generalizations?

Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if
one replaces some of the entries of X with 0’s

Question

Is it possible to prove similar results for matrices of linear forms?

Let L = (Lij) an m × n matrix, m ≤ n, with Lij ∈ S1

Eagon-Northcott

height(Im(L)) ≤ height(Im(X )) = n −m + 1
If = holds, then the Eagon-Northcott complex is a minimal free
resolution of Im(L)
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What can go wrong

Example 1

L =

(
0 x1 x2 x3
x1 x2 0 x4

)
m = 2, n = 4, height(I2(L)) = 2 < 3

S/I2(L) not koszul =⇒ I2(L) has no GB of quadrics
(not even after a change of coordinates)

Example 2

L =

(
x1 + x2 x3 x3

0 x1 x2

)
m = 2, n = 3, height(I2(L)) = 2

inτ (I2(L)) has a generator in degree 3 for every τ ( if char(K ) 6= 2)
=⇒ I2(L) has no GB of quadrics
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What can go wrong

Example 3

L =

(
x1 x4 x3
x5 x1 + x6 x2

)
The entries of L are linearly independent over K
(i.e., L arises from a matrix of variables by a change of coordinates)

For the most τ the 2-minors are a GB of I2(L)

But inτ (I2(L)) has a generator in degree 3 for every τ with
x1 � x2 � · · · � x6

=⇒ the 2-minors are not a UGB
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Our generalizations

Matrices of linear forms that are either column or row-graded

Column-graded

deg xij = ej ∈ Zn.

L = (Lij) with deg Lij = ej

Example: L =

(
x11 0 x13 − 2x23 −x24
0 x12 + x22 x23 −x24

)
Row-graded

deg xij = ei ∈ Zm.

L = (Lij) with deg Lij = ei

Example: L =

(
x11 x11 + x12 x11 − x12 x14
0 x21 x21 + 4x24 x24

)
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Row-graded versus column-graded

Column-graded case: all the minors have distinct multidegrees

Row-graded case: all the minors have the same multidegrees

−→ we cannot expect that the maximal minors are a universal GB
since they might have all the same initial term.

CDG1: Results on Universal Gröbner basis for column and
row-graded matrices but in the row-graded case under the
assumption “maximal height”
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Column-graded case: all the minors have distinct multidegrees

Row-graded case: all the minors have the same multidegrees

−→ we cannot expect that the maximal minors are a universal GB
since they might have all the same initial term.

Example

Consider K [xij : i = 1, 2, j = 1, 2, 3] multigraded by
deg(x11) = deg(x12) = deg(x13) = (1, 0)
deg(x21) = deg(x22) = deg(x23) = (0, 1)

L =

(
x11 2x11 + x12 −x11 + x13
x21 x21 + x22 x21 + x23

)

The 2 minors of L have all degree (1, 1)
If x11 � x21 � . . ., then inτ (f ) = x11x21 for every 2-minor f

Thus the 2-minors cannot be a universal GB!

CDG1: Results on Universal Gröbner basis for column and
row-graded matrices but in the row-graded case under the
assumption “maximal height”
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Maximal minors and 2-minors

Theorem

Assume L is column-graded or row-graded with m ≤ n. Then:

1. Im(L) is radical and has a linear resolution. Moreover,
inτ (Im(L)) is radical and has a linear resolution for every τ

2. In the column-graded case the maximal minors of L form a
universal Gröbner basis of Im(L)

3. In the row-graded case Im(L) has a universal Gröbner basis of
elements of multidegree equal to 1 = (1, . . . , 1)

4. I2(L) is radical. Moreover, inτ (I2(L)) is radical for every τ

5. I2(L) has a univ. Gröbner basis of elements of multidegree ≤ 1
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Main tool in CDG1: a rigidity property of multigraded generic
initial ideals

Theorem/Definition (Generic initial ideal)

GLn(K ) acts by linear substitution on R = K [x1, . . . , xn].
For g ∈ GLn(K ) and I ⊂ R consider g(I )

Fix a term order. As g varies in GLn(K ) compute in(g(I ))

For almost all g one gets the same outcome → gin(I )

Properties:

I gin(I ) is Borel fixed, that is, it is fixed by every g in
Bn(K ) = {upper triangular invert. matrices} ⊂ GLn(K )

I HS(I , y) = HS(gin(I ), y)
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Multigraded generic initial ideal
S = K [xij : i = 1, . . . , v and j = 1 . . . , ni ]
multigraded by deg(xij) = ei ∈ Zv

(Multigraded) Hilbert series of a multi graded S-module M:

HS(M, y) = HS(M, y1, . . . , yv ) =
∑
a∈Zv

(dimMa)ya

Fix a term order (such that xij > xik for every 1 ≤ j < k ≤ ni .)

Theorem/Definition

G = GLn1(K ) × · · · × GLnv (K ) acts by linear substitution on S
preserving the multigraded structure.
g ∈ G, I ⊂ S multigraded ideal → g(I ) (multigraded)

As g varies in G compute in(g(I ))

For almost all g one gets the same outcome → multigin(I )
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Borel-fixed ideals

Properties of multigin(I ):

I multigin(I ) is Borel fixed, that is, it is fixed by every g in

Bn1(K )× · · · × Bnv (K ) ⊂ G

I HS(I , y) = HS(multigin(I ), y)

Rmk: J ⊂ S , Zv -graded, is Borel fixed if and only if

I J is generated by monomials

I for every monomial generator u and every variable xij
appearing in u with exponent, say, c one has that
(xik/xij)

du ∈ I for every k < j and every 0 ≤ d ≤ c such that(c
d

)
6= 0 in the field K .

From now on we always consider the multigraded situation.
We write gin instead of multigin
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Rigidity property of Radical Borel-fixed ideals

Theorem

Let I , J multi graded Borel-fixed ideals with HS(I , y) = HS(J, y).

If J is radical then I = J

Corollary

Let J be Borel-fixed and radical. I such that HS(I , y) = HS(J, y).
Then gin(I ) = J wrt any term order.

In particular,

(a) I is radical

(b) J has a linear resolution =⇒ I has a linear resolution
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Cartwright-Sturmfels ideals

S = K [xij : i = 1, . . . , v and j = 1 . . . , ni ], deg(xij) = ei ∈ Zv

All the ideals are Zv -graded

CS = {I : HS(I , y) = HS(J, y) for some J radical Borel-fixed}

Set T = K [x11, x21, . . . , xv1]

CS∗ = {I : HS(I , y) = HS(J, y) for some J whose gens are in T}

Corollary

I I ∈ CS =⇒ inτ (I ) ∈ CS and J = ginτ (I ) for every τ

I I ∈ CS∗ =⇒ inτ (I ) ∈ CS and J = ginτ (I ) for every τ

From now on for I ∈ CS or I ∈ CS∗ we just write gin(I )

CS = {J : ginτ (J) is radical for some (all) τ}

CS∗ = {J : the generators of ginτ (I ) are in T for some (all) τ}
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Ideals in CS

Examples: X = (xij) generic, m × n.

I Conca: gin(I2(X )) is radical. In particular I2(X ) ∈ CS
I CDG1: Im(X ) ∈ CS

Proposition

I ∈ CS

I I is radical

I reg(I ) ≤ v (by duality)

I I is generated by elements of multidegree ≤ 1

Why CS∗?

Proposition

I square free monomial, I ∗ its Alexander dual
I ∈ CS ⇔ I ∗ is in CS∗.

Moreover, if I ∈ CS, then gin(I )∗ = pol(gin(I ∗)).



Ideals in CS

Examples: X = (xij) generic, m × n.

I Conca: gin(I2(X )) is radical. In particular I2(X ) ∈ CS

I CDG1: Im(X ) ∈ CS

Proposition

I ∈ CS

I I is radical

I reg(I ) ≤ v (by duality)

I I is generated by elements of multidegree ≤ 1

Why CS∗?

Proposition

I square free monomial, I ∗ its Alexander dual
I ∈ CS ⇔ I ∗ is in CS∗.

Moreover, if I ∈ CS, then gin(I )∗ = pol(gin(I ∗)).



Ideals in CS

Examples: X = (xij) generic, m × n.

I Conca: gin(I2(X )) is radical. In particular I2(X ) ∈ CS
I CDG1: Im(X ) ∈ CS

Proposition

I ∈ CS

I I is radical

I reg(I ) ≤ v (by duality)

I I is generated by elements of multidegree ≤ 1

Why CS∗?

Proposition

I square free monomial, I ∗ its Alexander dual
I ∈ CS ⇔ I ∗ is in CS∗.

Moreover, if I ∈ CS, then gin(I )∗ = pol(gin(I ∗)).



Ideals in CS

Examples: X = (xij) generic, m × n.

I Conca: gin(I2(X )) is radical. In particular I2(X ) ∈ CS
I CDG1: Im(X ) ∈ CS

Proposition

I ∈ CS

I I is radical

I reg(I ) ≤ v (by duality)

I I is generated by elements of multidegree ≤ 1

Why CS∗?

Proposition

I square free monomial, I ∗ its Alexander dual
I ∈ CS ⇔ I ∗ is in CS∗.

Moreover, if I ∈ CS, then gin(I )∗ = pol(gin(I ∗)).



Ideals in CS

Examples: X = (xij) generic, m × n.

I Conca: gin(I2(X )) is radical. In particular I2(X ) ∈ CS
I CDG1: Im(X ) ∈ CS

Proposition

I ∈ CS

I I is radical

I reg(I ) ≤ v (by duality)

I I is generated by elements of multidegree ≤ 1

Why CS∗?

Proposition

I square free monomial, I ∗ its Alexander dual
I ∈ CS ⇔ I ∗ is in CS∗.

Moreover, if I ∈ CS, then gin(I )∗ = pol(gin(I ∗)).



Ideals in CS

Examples: X = (xij) generic, m × n.

I Conca: gin(I2(X )) is radical. In particular I2(X ) ∈ CS
I CDG1: Im(X ) ∈ CS

Proposition

I ∈ CS

I I is radical

I reg(I ) ≤ v (by duality)

I I is generated by elements of multidegree ≤ 1

Why CS∗?

Proposition

I square free monomial, I ∗ its Alexander dual
I ∈ CS ⇔ I ∗ is in CS∗.

Moreover, if I ∈ CS, then gin(I )∗ = pol(gin(I ∗)).



Ideals in CS

Examples: X = (xij) generic, m × n.

I Conca: gin(I2(X )) is radical. In particular I2(X ) ∈ CS
I CDG1: Im(X ) ∈ CS

Proposition

I ∈ CS

I I is radical

I reg(I ) ≤ v (by duality)

I I is generated by elements of multidegree ≤ 1

Why CS∗?

Proposition

I square free monomial, I ∗ its Alexander dual
I ∈ CS ⇔ I ∗ is in CS∗.

Moreover, if I ∈ CS, then gin(I )∗ = pol(gin(I ∗)).



Ideals in CS

Examples: X = (xij) generic, m × n.

I Conca: gin(I2(X )) is radical. In particular I2(X ) ∈ CS
I CDG1: Im(X ) ∈ CS

Proposition

I ∈ CS

I I is radical

I reg(I ) ≤ v (by duality)

I I is generated by elements of multidegree ≤ 1

Why Cartwright - Sturmfels?

Why CS∗?

Proposition

I square free monomial, I ∗ its Alexander dual
I ∈ CS ⇔ I ∗ is in CS∗.

Moreover, if I ∈ CS, then gin(I )∗ = pol(gin(I ∗)).



Ideals in CS

Examples: X = (xij) generic, m × n.

I Conca: gin(I2(X )) is radical. In particular I2(X ) ∈ CS
I CDG1: Im(X ) ∈ CS

Proposition

I ∈ CS

I I is radical

I reg(I ) ≤ v (by duality)

I I is generated by elements of multidegree ≤ 1

Why Cartwright - Sturmfels?

[Cartwright - Sturmfels, 2010]:

J such that HS(J, y) = HS(I2(X ), y) =⇒ J is radical

Why CS∗?

Proposition

I square free monomial, I ∗ its Alexander dual
I ∈ CS ⇔ I ∗ is in CS∗.

Moreover, if I ∈ CS, then gin(I )∗ = pol(gin(I ∗)).



Ideals in CS

Examples: X = (xij) generic, m × n.

I Conca: gin(I2(X )) is radical. In particular I2(X ) ∈ CS
I CDG1: Im(X ) ∈ CS

Proposition

I ∈ CS

I I is radical

I reg(I ) ≤ v (by duality)

I I is generated by elements of multidegree ≤ 1

Why CS∗?

Proposition

I square free monomial, I ∗ its Alexander dual
I ∈ CS ⇔ I ∗ is in CS∗.

Moreover, if I ∈ CS, then gin(I )∗ = pol(gin(I ∗)).



Ideals in CS

Examples: X = (xij) generic, m × n.

I Conca: gin(I2(X )) is radical. In particular I2(X ) ∈ CS
I CDG1: Im(X ) ∈ CS

Proposition

I ∈ CS

I I is radical

I reg(I ) ≤ v (by duality)

I I is generated by elements of multidegree ≤ 1

Why CS∗?

Proposition

I square free monomial, I ∗ its Alexander dual
I ∈ CS ⇔ I ∗ is in CS∗.

Moreover, if I ∈ CS, then gin(I )∗ = pol(gin(I ∗)).



Ideals in CS

Examples: X = (xij) generic, m × n.

I Conca: gin(I2(X )) is radical. In particular I2(X ) ∈ CS
I CDG1: Im(X ) ∈ CS

Proposition

I ∈ CS

I I is radical

I reg(I ) ≤ v (by duality)

I I is generated by elements of multidegree ≤ 1
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Proposition

I ∈ CS∗, C = (xa111 · · · x
av
v1 : a ∈ Zv and Ia 6= 0)

I C = gin(I ) (for every term order)

I βi ,a(I ) = βi ,a(C ) for all i , a

I projdim(S/I ) ≤ v

I minimal generators have incomparable multidegrees

Theorem

If I ∈ CS∗, then any minimal system of Zv -graded generators of I
is a universal Gröbner basis

Proof: Let τ be any term order, H = inτ (I ).

I , H ∈ CS∗ =⇒ βi ,a(I ) = βi ,a(H)

their generators have incomparable degrees =⇒ any minimal
system of generators of I is a Gröbner basis of I wrt to τ
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Closure of CS and CS∗

Main tool:

Proposition

Let L be a Zv -graded linear form of S . Then:

I I ∈ CS =⇒ I : L, I + (L), I + (L)/(L) ∈ CS

I I ∈ CS∗ =⇒ I : L, I + (L)/(L), I ∩ (L) ∈ CS∗

Rmk If I ∈ CS∗ and L is a Zv -graded linear form, then
I + (L) 6∈ CS∗ in general.

Example: (x11) ∈ CS∗, but (x11, x12) 6∈ CS∗ because ideals in CS∗

have generators with incomparable degrees.
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Example 2

Rmk: F a product of Zv -graded linear forms:

I ∈ CS =⇒ I : F ∈ CS

But if F is a Zv -graded form: I : F 6∈ CS in general.

Example S = K [xij | 1 ≤ i , j ≤ 3] with deg xij = ei

X =

 x11 x12 x13
x21 x22 0
0 0 x33

 I = I2(X ) ∈ CS

F = x11x21x32 + x13x23x33 → I : F = I + (x12x13, x11x13)

deg(x12x13) = (2, 0, 0) =⇒ I : F 6∈ CS
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Maximal minors, row-graded

Thm 1

L = (Lij) row-graded, of size m × n with m ≤ n. Then:

(a) There is a universal GB of elements of degree 1

(b) Im(L) is radical and it has a linear resolution. The same it is
true for all its initial ideals.

Idea of the proof:

Let Y = (yij) be an m × n matrix of variables

R = S [Y ] Zm-graded by deg(yij) = ei ∈ Zm

Y generic =⇒ Im(Y ) ∈ CS

S ⊃ Im(L) ' Im(Y ) + (yij − Lij)/(yij − Lij) ⊂ R/(yij − Lij)

Im(Y ) ∈ CS =⇒ Im(L) ∈ CS =⇒ inτ (Im(L)) ∈ CS for all τ
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Why column-graded is easier that row-graded?

Thm 1

Assume L = (Lij) is column-graded of size m×n with m ≤ n. Then:

(a) the maximal minors of L form a universal GB

(b) Im(L) is radical and it has a linear resolution. The same it is
true for all its initial ideals.

Crucial point: We have that Im(L) ∈ CS and I2(L) ∈ CS.

Moreover, in the column-graded case:
if Y = (yij) is generic, m × n with m ≤ n, then Im(Y ) ∈ CS∗ .

It follows that Im(L) ∈ CS∩CS∗.
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Equality of Betty numbers

Recall: I ∈ CS∗ =⇒ βi ,a(I ) = βi ,a(inτ (I )) for every τ .

It follows:

In the column-graded case

βi ,a(Im(L)) = βi ,a(inτ (Im(L))) for all τ

TRUE also in the row-graded case!

Not true for 2-minors in general
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Generic initial ideals

J ∈ CS∗:

gin(J) = (xa111 · · · x
av
v1 : a ∈ Zv and Ja 6= 0)

[CDG1]:
column-graded:

gin(Im(L)) = (x1j1 · · · xmjm | [j1, . . . , jm]L 6= 0)

row-graded, height(Im(L)) = n −m + 1:

gin(Im(L)) = (x1j1 · · · xmjm : j1 + · · ·+ jm ≤ n)
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Generic initial ideals [CDG3]

Maximal minors, row-graded

L = (Lij) row-graded m × n, m ≤ n, I = Im(L)

A ⊆ [m]:

b(A) = dimK < columns of the matrix LA = (Lij)i∈A,j∈[n] >

gin(I ) = (x1b1 · · · xmbm :
∑
i∈A

bi ≤ b(A) for every A ⊆ [m])



Generic initial ideals [CDG3]

2-minors

L = (Lij) row or column-graded, I = I2(L)

gin(I ) = (
∏
i∈A

xibi : A ⊆ [m] and bi satisfying ∗)

∗ :

{
1 ≤ bi ≤ n − dimK Vi for every i ∈ A∑

i∈A bi ≤ n(|A| − 1) + dimK VA −
∑

i∈A dimK Vi

with Vi = {λ ∈ Kn|
∑n

i=1 λjLij = 0} and VA =
∑

i∈A Vi .


