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Universal Grobner basis

S a polynomial ring over a field K, 7 a term order in S
| C S ideal g1,--.,8r €1
Initial ideal of I: in (/) = (in (f) : f € 1)

Definition

» {g1,...,8} is a Grobner basis of | wrt 7 if

in,(/) = (in-(g1), - - -, in-(gr))

» {g1,...,&} is a universal Grobner basis of / if

in (l) = (in-(g1),...,in-(g)) wrt every 7

v

Remark: Every ideal has a Universal Grobner basis, BUT “natural”
Universal Grobner bases are rare
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K afield, X = (xjj) an m x n matrix of indeterminates.

S=Kl[xj:1<i,j<n]

Gvenl<n<---<n<m 1<c¢g<---<c¢g<n

t-minor: [r1,...,refcr, ..., ce]x = det(xq)ij=1,..t

Determinantal ring: S//¢(X) with I(X) = ( t-minors of X )

Variants: generic symmetric matrix, generic skew-symmetric matrix
(and ideals of pfaffians), generic Hankel matrices
They appear in various contexts, e.g.

» classical invariant theory,

» t = 2: defining ideal of the Segre/Veronese/Grassmannian
variety,

» higher t: secant varieties of Segre/Veronese/Grassmannian
variety.
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Generic Determinantal Rings
K afield, X = (xjj) an m x n matrix of indeterminates.
S=Kl[xj:1<i,j<n]
Givenl<n<---<n<m 1<qg<---<c¢<nm

t-minor: [r1,...,refcr,. .., celx = det(xpq)ij=1,..¢

Determinantal ring: S//¢(X) with I(X) = ( t-minors of X )

Theorem [Sturmfels 1990]

The t-minors form a GB of /;(X) w.r.t. any diagonal term order.

But they are not universal GB in general!
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Universal GB for minors, t = 2

Theorem (Sturmfels, Villareal)

Universal GB of h(X) is the set of all the binomials associated to
the cycles of the complete bipartite graph K, 5

All the initial ideals of /(X) are radical and define CM rings (indeed
they are associated to a shellable simplicial complex )

Example:

K33 : — X11X22X33 — X12X23X31
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Universal GB for maximal minors

X = (xjj) generic matrix of size m x n, m < n.
a minor of size m is called maximal minor: [c1, ..., cm]

Im(X) = ( maximal minors of X )

Bernstein-Sturmfels-Zelevinsky (1993-94)

The maximal minors of X form a universal GB of /,(X)

Boocher (2011)

For every term order 7:

> Bij(Im(X)) = Bij(inr(Im(X)))

» in particular in,(/,(X)) has a linear resolution
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Universal GB for maximal minors
Our first contribution: both results are consequence of a
degeneration argument
M f.g. graded S-module
Hilbert series of M: HS(M,y) = 3", (dimx M;)y’
Idea of the proof:

Fix a term order.

Consider y1, ..., ¥, are new indeterminates, and the map ¢ that
sends X to *y; where x is generic scalar.

d(Im(X)) = J with

J = (square free monomials of degree min y1,...,yn)

Let D = (in ([c1,...,cm]) 11 < a1 <...cm < n) Cin(Im(X)).
One has ¢(D) = J

This forces equality of the Hilbert series = D = in,(/(X))
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Generalizations?

Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if
one replaces some of the entries of X with 0's

Is it possible to prove similar results for matrices of linear forms?

Let L = (L;) an m x n matrix, m < n, with L; € 5;

Eagon-Northcott

height(/m(L)) < height(/m(X)) =n—m+1
If = holds, then the Eagon-Northcott complex is a minimal free
resolution of /(L)
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What can go wrong

Example 1

_ 0 X1 X2 X3 . _ @ _
L_<x1 % 0 X4) m = 2,n =4, height(h(L)) =2<3

S/h(L) not koszul = k(L) has no GB of quadrics
(not even after a change of coordinates)

Example 2

| \

[ x1tx x3 X3 _ _ : _
L= ( 0 o ) m = 2,n =3, height(h(L)) =2
in-(h(L)) has a generator in degree 3 for every 7 ( if char(K) # 2)
= k(L) has no GB of quadrics

v
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What can go wrong

Example 3

[ — X1 X4 X3
S \Uxs X1+ Xe X
The entries of L are linearly independent over K

(i.e., L arises from a matrix of variables by a change of coordinates)

For the most 7 the 2-minors are a GB of k(L)

But in-(k(L)) has a generator in degree 3 for every 7 with
X1 =X >+ > Xp

— the 2-minors are not a UGB
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Our generalizations

Matrices of linear forms that are either column or row-graded

Column-graded

deg xjj = ¢j € Z".
L= (L,J) with deg L;; = ¢;

X 0 X13 — 2X —X
Example: L= 11 = 2 24
0 X2+ x2 X23 —Xo4

| A\

Row-graded
deg xjj = e; € Z™.

L= (L,J) with deg Lj; = ¢;

Example:
0 X21 x21 + 4x24  X24

[ — ( X11 X11 tX12 X111 — X12 X4 )
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Row-graded versus column-graded

Column-graded case: all the minors have distinct multidegrees
Row-graded case: all the minors have the same multidegrees

— we cannot expect that the maximal minors are a universal GB
since they might have all the same initial term.

Example

Consider K[x; : i = 1,2, j = 1,2,3] multigraded by
deg(x11) = deg(x12) = deg(x13) = (1,0)

deg(le) = deg(ng) = deg(xz3) = (0, 1)

J ! 2x11 + X12 —X11 + X13
X1  Xo1+ Xp2  Xo1 + X23

The 2 minors of L have all degree (1,1)
If x11 > %01 > ..., then in () = x11xp1 for every 2-minor f

Thus the 2-minors cannot be a universal GB!




Row-graded versus column-graded

Column-graded case: all the minors have distinct multidegrees
Row-graded case: all the minors have the same multidegrees

— we cannot expect that the maximal minors are a universal GB
since they might have all the same initial term.

CDG1: Results on Universal Grobner basis for column and
row-graded matrices but in the row-graded case under the
assumption “maximal height”
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Maximal minors and 2-minors

Assume L is column-graded or row-graded with m < n. Then:

1. Im(L) is radical and has a linear resolution. Moreover,
in;(Im(L)) is radical and has a linear resolution for every 7

2. In the column-graded case the maximal minors of L form a
universal Grobner basis of /,,(L)

3. In the row-graded case I,(L) has a universal Grébner basis of
elements of multidegree equal to 1 = (1,...,1)

4. I(L) is radical. Moreover, in,(k(L)) is radical for every T

5. k(L) has a univ. Grobner basis of elements of multidegree < 1
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Main tool in CDGL1: a rigidity property of multigraded generic
initial ideals

Theorem /Definition (Generic initial ideal)

GL,(K) acts by linear substitution on R = K|[x, ..., Xp].
For g € GL,(K) and I C R consider g(/)

Fix a term order. As g varies in GL,(K) compute in(g(/))

For almost all g one gets the same outcome — gin(/)

Properties:

» gin(/) is Borel fixed, that is, it is fixed by every g in
Bh(K) = {upper triangular invert. matrices} C GL,(K)

» HS(/,y) = HS(gin(/), y)
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Multigraded generic initial ideal
S=Kl[xj:i=1,...,vand j=1...,n)
multigraded by deg(x;) = ¢; € Z¥
(Multigraded) Hilbert series of a multi graded S-module M:

HS(M,y) =HS(M,y1,...,y,) = > _ (dim M,)y?
aczv

Fix a term order (such that xj; > xj for every 1 < j < k < n;.)

Theorem /Definition

G = GLp,(K) x -+ x GLp,(K) acts by linear substitution on S
preserving the multigraded structure.
g € G, | C S multigraded ideal — g(/) (multigraded)

As g varies in G compute in(g(/))

For almost all g one gets the same outcome — multigin(/)
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Borel-fixed ideals

Properties of multigin(/):
» multigin(/) is Borel fixed, that is, it is fixed by every g in

B (K) x -+ x By (K) C G

» HS(/, y) = HS(multigin(/), y)

Rmk: J C S, ZY-graded, is Borel fixed if and only if
» J is generated by monomials
» for every monomial generator u and every variable x;;
appearing in u with exponent, say, ¢ one has that

(xik/x;)%u € I for every k < j and every 0 < d < c such that
(§) # 0in the field K.

From now on we always consider the multigraded situation.
We write gin instead of multigin
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Rigidity property of Radical Borel-fixed ideals

Let /, J multi graded Borel-fixed ideals with HS(/,y) = HS(J, y).
If J is radical then | = J

Let J be Borel-fixed and radical. / such that HS(/, y) = HS(J, y).
Then gin(/) = J wrt any term order. In particular,

(a) I is radical

(b) J has a linear resolution = [ has a linear resolution
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Cartwright-Sturmfels ideals
S=Kl[xj:i=1,...,vand j=1...,nj], deg(xj)=¢e €Z"
All the ideals are Z"-graded
CS = {Il:HS(/,y) = HS(J, y) for some J radical Borel-fixed}
Set T = K[x11, X21, - - - , Xv1]
CS* = {l : HS(/,y) = HS(J, y) for some J whose gens are in T}

» /€ CS = in,(/) € CSand J = gin_(/) for every T

» | € CS* = in, (/) € CS and J = gin_ (/) for every 7

From now on for I € CS or | € CS* we just write gin(/)
CS ={J: gin_(J) is radical for some (all) 7}

CS* = {J : the generators of gin (/) are in T for some (all) 7}
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Ideals in CS

Examples: X = (xj;) generic, m x n.
» Conca: gin(h(X)) is radical. In particular L(X) € CS
» CDGL1: In(X) € CS

Proposition

I eCS
> [ is radical
» reg(/) < v (by duality)

» [ is generated by elements of multidegree < 1

Why Cartwright - Sturmfels?
[Cartwright - Sturmfels, 2010]:
J such that HS(J,y) = HS(h(X),y) = J is radical
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Ideals in CS

Examples: X = (xj;) generic, m x n.

» Conca: gin(h(X)) is radical. In particular L(X) € CS
» CDGI: In(X) € CS

Proposition

I eCS
> [ is radical
» reg(/) < v (by duality)

» [ is generated by elements of multidegree < 1

Why CS*?
Proposition

| square free monomial, /* its Alexander dual
leCS & [*isin CS*.
Moreover, if | € CS, then gin(/)* = pol(gin(/*)).
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Proof: Let 7 be any term order, H = in, (/).

I, He CS* = Bia(l) = Bia(H)



Ideals in CS*

€ CS", C=(x}--x¥:aeZ" and I, #0)
» C = gin(/) (for every term order)
> Bia(l) = Bia(C) forall i,a
» projdim(S/l) <v

» minimal generators have incomparable multidegrees

| A

Theorem
If | € CS*, then any minimal system of Z"-graded generators of /
is a universal Grobner basis )

Proof: Let 7 be any term order, H = in, (/).
/, HeCS" — Bi,a(l) = ,B;7a(H)

their generators have incomparable degrees = any minimal
system of generators of | is a Grobner basis of | wrt to 7
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Closure of CS and CS*

Main tool:

Proposition

Let L be a ZV-graded linear form of S. Then:

> 1€CS = [:L I+(L), I+ (L)/(L) € CS
> 1€CS* = [:L, [+(L)/(L), IN(L)eCS*

Rmk If / € CS* and L is a Z"-graded linear form, then
I + (L) ¢ CS* in general.

Example: (x11) € CS*, but (x11,x12) ¢ CS* because ideals in CS*
have generators with incomparable degrees.
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Example 2

Rmk: F a product of ZY-graded linear forms:
leCS — [I|:FeCS
But if F is a ZY-graded form: [ : F & CS in general.
Example S = K[x; | 1 <i,j < 3] with deg xjj = ¢
X11 X12  X13
X = X21 X222 0 | = /Q(X) e CS
0 0 xs3

F = x11x01x32 + x13x03x33 — | 1 F = | 4+ (x12x13, X11x13)

deg(x12X13) = (2,0,0) = [:F Q CS
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L = (Ljj) row-graded, of size m x n with m < n. Then:
(a) There is a universal GB of elements of degree 1

(b) Im(L) is radical and it has a linear resolution. The same it is
true for all its initial ideals.
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Maximal minors, row-graded

L = (Ljj) row-graded, of size m x n with m < n. Then:
(a) There is a universal GB of elements of degree 1

(b) Im(L) is radical and it has a linear resolution. The same it is
true for all its initial ideals.

Idea of the proof:

Let Y = (y;;) be an m x n matrix of variables
R = S[Y] Z™-graded by deg(y;) = e € Z™
Y generic = In(Y) € CS

52 Im(L) = Im(Y) + (vij — L) /(vis — Lij) € R/(yis — Lij)



Maximal minors, row-graded

L = (Ljj) row-graded, of size m x n with m < n. Then:
(a) There is a universal GB of elements of degree 1

(b) Im(L) is radical and it has a linear resolution. The same it is
true for all its initial ideals.

Idea of the proof:
Let Y = (y;;) be an m x n matrix of variables
R = S[Y] Z™-graded by deg(y;) = e € Z™
Y generic = In(Y) € CS
S D (L) 2= In(Y) + (vig = Lip) /(v — Lip) € R/(yis = Ly)

Im(Y) € CS = In(L) € CS = in (In(L)) € CS for all 7



Why column-graded is easier that row-graded?

Assume L = (Lj;) is column-graded of size m x n with m < n. Then:

(a) the maximal minors of L form a universal GB

(b) Im(L) is radical and it has a linear resolution. The same it is
true for all its initial ideals.
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Why column-graded is easier that row-graded?

Assume L = (Lj;) is column-graded of size m x n with m < n. Then:

(a) the maximal minors of L form a universal GB

(b) Im(L) is radical and it has a linear resolution. The same it is
true for all its initial ideals.

Crucial point: We have that /(L) € CS and k(L) € CS.

Moreover, in the column-graded case:
if Y = (yjj) is generic, m x n with m < n, then /,(Y) € CS*.

It follows that /,,(L) € CSNCS™.
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Equality of Betty numbers

Recall: 1 € CS* = fia(l) = Bia(in (1)) for every 7.

It follows:

In the column-graded case

Bia(lm(L)) = Bia(in-(Im(L))) for all 7

TRUE also in the row-graded case!

Not true for 2-minors in general
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Generic initial ideals

gin(J) = (x{]---xy :a€Z” and J, #0)

[CDG1]:
column-graded:

gin(lm(L)) = (x1jy = Xmjim | Uts -+ -5 Jml1 # 0)

row-graded, height(/,(L)) =n— m+ 1:

gin(Im(L)) = (Xij, - Xmj 1 J1 + -+ +Jjm < n)



Generic initial ideals [CDG3]

Maximal minors, row-graded

L= (Lj) row-graded mx n, m < n, | = I,(L)

A C [m]:

b(A) = dimk < columns of the matrix La = (L;j)ica je[n >

gin(/) = (x1p, -+ * Xmb,, : Z bi < b(A) for every A C [m])
i€eA




Generic initial ideals [CDG3]

L = (Lj) row or column-graded, / = (L)
gin(/l) = (H xib; : A C [m] and b; satisfying )
icA
1< b < n—dimg V; for every i € A
*




