Universal Gröbner bases and Cartwright-Sturmfels ideals

Emanuela De Negri

Università di Genova

Joint with Aldo Conca (Genova), Elisa Gorla (Neuchatel)

[1] "Universal Gröbner Bases for Maximal Minors", International Mathematics Research Notices 2014

[2] "Universal Gröbner bases and Cartwright-Sturmfels ideals", preprint 2016

[3] "Multigraded gins of determinantal ideals", preprint 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

S a polynomial ring over a field K, τ a term order in S $I \subset S$ ideal

S a polynomial ring over a field K, τ a term order in S $I \subset S$ ideal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Initial ideal of I: $in_{\tau}(I) = (in_{\tau}(f) : f \in I)$

S a polynomial ring over a field K, au a term order in S $I \subset S$ ideal $g_1, \ldots, g_r \in I$

Initial ideal of I: $in_{\tau}(I) = (in_{\tau}(f) : f \in I)$

Definition

• $\{g_1, \ldots, g_r\}$ is a Gröbner basis of I wrt au if

$$\operatorname{in}_{\tau}(I) = (\operatorname{in}_{\tau}(g_1), \ldots, \operatorname{in}_{\tau}(g_r))$$

S a polynomial ring over a field K, au a term order in S $I \subset S$ ideal $g_1, \ldots, g_r \in I$

Initial ideal of I: $in_{\tau}(I) = (in_{\tau}(f) : f \in I)$

Definition

• $\{g_1, \ldots, g_r\}$ is a Gröbner basis of I wrt τ if

$$\operatorname{in}_{\tau}(I) = (\operatorname{in}_{\tau}(g_1), \ldots, \operatorname{in}_{\tau}(g_r))$$

► $\{g_1, \ldots, g_r\}$ is a universal Gröbner basis of I if $\operatorname{in}_{\tau}(I) = (\operatorname{in}_{\tau}(g_1), \ldots, \operatorname{in}_{\tau}(g_r))$ wrt every τ

S a polynomial ring over a field K, au a term order in S $I \subset S$ ideal $g_1, \ldots, g_r \in I$

Initial ideal of I: $in_{\tau}(I) = (in_{\tau}(f) : f \in I)$

Definition

• $\{g_1, \ldots, g_r\}$ is a Gröbner basis of I wrt τ if

$$\operatorname{in}_{\tau}(I) = (\operatorname{in}_{\tau}(g_1), \ldots, \operatorname{in}_{\tau}(g_r))$$

• $\{g_1, \ldots, g_r\}$ is a universal Gröbner basis of I if

 $\operatorname{in}_{ au}(I) = (\operatorname{in}_{ au}(g_1), \dots, \operatorname{in}_{ au}(g_r))$ wrt every au

Remark: Every ideal has a Universal Gröbner basis, BUT "natural" Universal Gröbner bases are rare

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ij} : 1 \le i, j \le n]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ij} : 1 \le i, j \le n]$

Given $1 \le r_1 < \cdots < r_t \le m$, $1 \le c_1 < \cdots < c_t \le n$: t-minor: $[r_1, \dots, r_t | c_1, \dots, c_t]_X = \det(x_{r_i c_j})_{i,j=1,\dots,t}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ij} : 1 \le i, j \le n]$

Given $1 \le r_1 < \cdots < r_t \le m$, $1 \le c_1 < \cdots < c_t \le n$: t-minor: $[r_1, \dots, r_t | c_1, \dots, c_t]_X = \det(x_{r_i c_j})_{i,j=1,\dots,t}$

Determinantal ring: $S/I_t(X)$ with $I_t(X) = (t-minors of X)$

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ij} : 1 \le i, j \le n]$

Given $1 \le r_1 < \cdots < r_t \le m$, $1 \le c_1 < \cdots < c_t \le n$: t-minor: $[r_1, \dots, r_t | c_1, \dots, c_t]_X = \det(x_{r_i c_j})_{i,j=1,\dots,t}$

Determinantal ring: $S/I_t(X)$ with $I_t(X) = (t-minors of X)$

Variants: generic symmetric matrix, generic skew-symmetric matrix (and ideals of pfaffians), generic Hankel matrices

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ij} : 1 \le i, j \le n]$

Given $1 \le r_1 < \cdots < r_t \le m$, $1 \le c_1 < \cdots < c_t \le n$: t-minor: $[r_1, \dots, r_t | c_1, \dots, c_t]_X = \det(x_{r_i c_j})_{i,j=1,\dots,t}$

Determinantal ring: $S/I_t(X)$ with $I_t(X) = (t-minors of X)$

Variants: generic symmetric matrix, generic skew-symmetric matrix (and ideals of pfaffians), generic Hankel matrices They appear in various contexts, e.g.

- classical invariant theory,
- ► t = 2: defining ideal of the Segre/Veronese/Grassmannian variety,
- higher t: secant varieties of Segre/Veronese/Grassmannian variety.

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ij} : 1 \le i, j \le n]$

Given $1 \le r_1 < \cdots < r_t \le m$, $1 \le c_1 < \cdots < c_t \le n$: t-minor: $[r_1, \dots, r_t | c_1, \dots, c_t]_X = \det(x_{r_i c_j})_{i,j=1,\dots,t}$

Determinantal ring: $S/I_t(X)$ with $I_t(X) = (t-minors of X)$

Theorem [Sturmfels 1990]

The *t*-minors form a GB of $I_t(X)$ w.r.t. any diagonal term order.

K a field, $X = (x_{ij})$ an $m \times n$ matrix of indeterminates. $S = K[x_{ij} : 1 \le i, j \le n]$

Given $1 \le r_1 < \cdots < r_t \le m$, $1 \le c_1 < \cdots < c_t \le n$: t-minor: $[r_1, \dots, r_t | c_1, \dots, c_t]_X = \det(x_{r_i c_j})_{i,j=1,\dots,t}$

Determinantal ring: $S/I_t(X)$ with $I_t(X) = (t-minors of X)$

Theorem [Sturmfels 1990]

The *t*-minors form a GB of $I_t(X)$ w.r.t. any diagonal term order.

But they are not universal GB in general!

Theorem (Sturmfels, Villareal)

Universal GB of $I_2(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m,n}$

Theorem (Sturmfels, Villareal)

Universal GB of $I_2(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m,n}$

Example:

Theorem (Sturmfels, Villareal)

Universal GB of $I_2(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m,n}$

Example:

Theorem (Sturmfels, Villareal)

Universal GB of $I_2(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m,n}$

Example:

Theorem (Sturmfels, Villareal)

Universal GB of $I_2(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m,n}$

All the initial ideals of $I_2(X)$ are radical and define CM rings (indeed they are associated to a shellable simplicial complex)

Example:

 $X = (x_{ij})$ generic matrix of size $m \times n$, $m \le n$. a minor of size m is called maximal minor: $[c_1, \ldots, c_m]$ $I_m(X) = ($ maximal minors of X)

 $X = (x_{ij})$ generic matrix of size $m \times n$, $m \le n$. a minor of size m is called maximal minor: $[c_1, \ldots, c_m]$ $I_m(X) = ($ maximal minors of X)

Bernstein-Sturmfels-Zelevinsky (1993-94)

The maximal minors of X form a universal GB of $I_m(X)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $X = (x_{ij})$ generic matrix of size $m \times n$, $m \le n$. a minor of size m is called maximal minor: $[c_1, \ldots, c_m]$ $I_m(X) = ($ maximal minors of X)

Bernstein-Sturmfels-Zelevinsky (1993-94)

The maximal minors of X form a universal GB of $I_m(X)$

Boocher (2011)

For every term order τ :

- $\flat \ \beta_{ij}(I_m(X)) = \beta_{ij}(\operatorname{in}_{\tau}(I_m(X)))$
- in particular $in_{\tau}(I_m(X))$ has a linear resolution

Our first contribution: both results are consequence of a degeneration argument

Our first contribution: both results are consequence of a degeneration argument

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

M f.g. graded S-module

Hilbert series of M: $\operatorname{HS}(M, y) = \sum_{i \in \mathbb{Z}} (\dim_{\mathcal{K}} M_i) y^i$

Our first contribution: both results are consequence of a degeneration argument

M f.g. graded S-module

Hilbert series of M: $\operatorname{HS}(M, y) = \sum_{i \in \mathbb{Z}} (\dim_{\mathcal{K}} M_i) y^i$

Idea of the proof:

Fix a term order.

Consider $y_1, ..., y_n$ are new indeterminates, and the map ϕ that sends x_{ij} to $*y_j$ where * is generic scalar.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our first contribution: both results are consequence of a degeneration argument

M f.g. graded S-module

Hilbert series of M: $\operatorname{HS}(M, y) = \sum_{i \in \mathbb{Z}} (\dim_{\mathcal{K}} M_i) y^i$

Idea of the proof:

Fix a term order.

Consider $y_1, ..., y_n$ are new indeterminates, and the map ϕ that sends x_{ij} to $*y_j$ where * is generic scalar.

 $\phi(I_m(X)) = J$ with J = (square free monomials of degree m in $y_1, ..., y_n)$

Our first contribution: both results are consequence of a degeneration argument

M f.g. graded S-module

Hilbert series of M: $\operatorname{HS}(M, y) = \sum_{i \in \mathbb{Z}} (\dim_K M_i) y^i$

Idea of the proof:

Fix a term order.

Consider $y_1, ..., y_n$ are new indeterminates, and the map ϕ that sends x_{ij} to $*y_j$ where * is generic scalar.

 $\phi(I_m(X)) = J$ with $J = (\text{square free monomials of degree } m \text{ in } y_1, ..., y_n)$ Let $D = (\text{in}_{\tau}([c_1, ..., c_m]) : 1 \le c_1 < ... c_m \le n) \subseteq \text{in}(I_m(X)).$ One has $\phi(D) = J$

4日 + 4日 + 4日 + 4日 + 10 - 900

Our first contribution: both results are consequence of a degeneration argument

M f.g. graded S-module

Hilbert series of M: $\operatorname{HS}(M, y) = \sum_{i \in \mathbb{Z}} (\dim_{K} M_{i}) y^{i}$

Idea of the proof:

Fix a term order.

Consider $y_1, ..., y_n$ are new indeterminates, and the map ϕ that sends x_{ij} to $*y_j$ where * is generic scalar.

 $\phi(I_m(X)) = J$ with $J = (\text{square free monomials of degree } m \text{ in } y_1, ..., y_n)$ Let $D = (\text{in}_{\tau}([c_1, ..., c_m]) : 1 \le c_1 < ... c_m \le n) \subseteq \text{in}(I_m(X)).$ One has $\phi(D) = J$

This forces equality of the Hilbert series $\implies D = in_{\tau}(I_m(X))$

Generalizations?

Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if one replaces some of the entries of X with 0's

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generalizations?

Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if one replaces some of the entries of X with 0's

Question

Is it possible to prove similar results for matrices of linear forms?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generalizations?

Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if one replaces some of the entries of X with 0's

Question

Is it possible to prove similar results for matrices of linear forms?

Let
$$L = (L_{ij})$$
 an $m \times n$ matrix, $m \le n$, with $L_{ij} \in S_1$

Eagon-Northcott

 $\begin{aligned} & \text{height}(I_m(L)) \leq \text{height}(I_m(X)) = n - m + 1 \\ & \text{If} = \text{holds, then the Eagon-Northcott complex is a minimal free} \\ & \text{resolution of } I_m(L) \end{aligned}$

Example 1

$$L = \begin{pmatrix} 0 & x_1 & x_2 & x_3 \\ x_1 & x_2 & 0 & x_4 \end{pmatrix} \qquad m = 2, n = 4, \text{height}(I_2(L)) = 2 < 3$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

 $S/I_2(L)$ not koszul $\implies I_2(L)$ has no GB of quadrics (not even after a change of coordinates)

Example 1

$$L = \begin{pmatrix} 0 & x_1 & x_2 & x_3 \\ x_1 & x_2 & 0 & x_4 \end{pmatrix} \qquad m = 2, n = 4, \text{height}(I_2(L)) = 2 < 3$$

 $S/I_2(L)$ not koszul $\implies I_2(L)$ has no GB of quadrics (not even after a change of coordinates)

Example 2

$$L = \begin{pmatrix} x_1 + x_2 & x_3 & x_3 \\ 0 & x_1 & x_2 \end{pmatrix} \quad m = 2, n = 3, \text{ height}(I_2(L)) = 2$$

in_{τ}($l_2(L)$) has a generator in degree 3 for every τ (if char(K) \neq 2) $\implies l_2(L)$ has no GB of quadrics

Example 3

$$L = \left(\begin{array}{ccc} x_1 & x_4 & x_3 \\ x_5 & x_1 + x_6 & x_2 \end{array}\right)$$

The entries of L are linearly independent over K (i.e., L arises from a matrix of variables by a change of coordinates)

Example 3

$$L = \left(\begin{array}{ccc} x_1 & x_4 & x_3 \\ x_5 & x_1 + x_6 & x_2 \end{array}\right)$$

The entries of L are linearly independent over K (i.e., L arises from a matrix of variables by a change of coordinates)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For the most τ the 2-minors are a GB of $I_2(L)$

Example 3

$$L = \left(\begin{array}{ccc} x_1 & x_4 & x_3 \\ x_5 & x_1 + x_6 & x_2 \end{array}\right)$$

The entries of *L* are linearly independent over *K* (i.e., *L* arises from a matrix of variables by a change of coordinates) For the most τ the 2-minors are a GB of $I_2(L)$ But $in_{\tau}(I_2(L))$ has a generator in degree 3 for every τ with $x_1 \succ x_2 \succ \cdots \succ x_6$

 \implies the 2-minors are not a UGB
Our generalizations

Matrices of linear forms that are either column or row-graded

Our generalizations

Matrices of linear forms that are either column or row-graded

Column-graded

deg
$$x_{ij} = e_j \in \mathbb{Z}^n$$
.
 $L = (L_{ij})$ with deg $L_{ij} = e_j$
Example: $L = \begin{pmatrix} x_{11} & 0 & x_{13} - 2x_{23} & -x_{24} \\ 0 & x_{12} + x_{22} & x_{23} & -x_{24} \end{pmatrix}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Our generalizations

Matrices of linear forms that are either column or row-graded

Column-graded

deg
$$x_{ij} = e_j \in \mathbb{Z}^n$$
.
 $L = (L_{ij})$ with deg $L_{ij} = e_j$
Example: $L = \begin{pmatrix} x_{11} & 0 & x_{13} - 2x_{23} & -x_{24} \\ 0 & x_{12} + x_{22} & x_{23} & -x_{24} \end{pmatrix}$

Row-graded

deg
$$x_{ij} = e_i \in \mathbb{Z}^m$$
.
 $L = (L_{ij})$ with deg $L_{ij} = e_i$
Example: $L = \begin{pmatrix} x_{11} & x_{11} + x_{12} & x_{11} - x_{12} & x_{14} \\ 0 & x_{21} & x_{21} + 4x_{24} & x_{24} \end{pmatrix}$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Column-graded case: all the minors have distinct multidegrees Row-graded case: all the minors have the same multidegrees

Column-graded case: all the minors have distinct multidegrees Row-graded case: all the minors have the same multidegrees

 \longrightarrow we cannot expect that the maximal minors are a universal GB since they might have all the same initial term.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Column-graded case: all the minors have distinct multidegrees Row-graded case: all the minors have the same multidegrees

 \longrightarrow we cannot expect that the maximal minors are a universal GB since they might have all the same initial term.

Example

Consider
$$K[x_{ij} : i = 1, 2, j = 1, 2, 3]$$
 multigraded by
 $deg(x_{11}) = deg(x_{12}) = deg(x_{13}) = (1, 0)$
 $deg(x_{21}) = deg(x_{22}) = deg(x_{23}) = (0, 1)$

$$L = \begin{pmatrix} x_{11} & 2x_{11} + x_{12} & -x_{11} + x_{13} \\ x_{21} & x_{21} + x_{22} & x_{21} + x_{23} \end{pmatrix}$$

The 2 minors of *L* have all degree (1, 1)If $x_{11} \succ x_{21} \succ \ldots$, then $in_{\tau}(f) = x_{11}x_{21}$ for every 2-minor *f* Thus the 2-minors cannot be a universal GB!

Column-graded case: all the minors have distinct multidegrees Row-graded case: all the minors have the same multidegrees

 \rightarrow we cannot expect that the maximal minors are a universal GB since they might have all the same initial term.

・ロト・日本・モート モー うへぐ

CDG1: Results on Universal Gröbner basis for column and row-graded matrices but in the row-graded case under the assumption "maximal height"

Theorem Assume *L* is column-graded or row-graded with $m \le n$. Then:

Theorem

Assume L is column-graded or row-graded with $m \leq n$. Then:

1. $I_m(L)$ is radical and has a linear resolution. Moreover, in_{τ}($I_m(L)$) is radical and has a linear resolution for every τ

Theorem

Assume L is column-graded or row-graded with $m \leq n$. Then:

- 1. $I_m(L)$ is radical and has a linear resolution. Moreover, in_{τ}($I_m(L)$) is radical and has a linear resolution for every τ
- 2. In the column-graded case the maximal minors of L form a universal Gröbner basis of $I_m(L)$

Theorem

Assume L is column-graded or row-graded with $m \leq n$. Then:

- 1. $I_m(L)$ is radical and has a linear resolution. Moreover, in_{τ}($I_m(L)$) is radical and has a linear resolution for every τ
- 2. In the column-graded case the maximal minors of L form a universal Gröbner basis of $I_m(L)$
- 3. In the row-graded case $I_m(L)$ has a universal Gröbner basis of elements of multidegree equal to $\mathbf{1} = (1, ..., 1)$

Theorem

Assume L is column-graded or row-graded with $m \leq n$. Then:

- 1. $I_m(L)$ is radical and has a linear resolution. Moreover, in_{τ}($I_m(L)$) is radical and has a linear resolution for every τ
- 2. In the column-graded case the maximal minors of L form a universal Gröbner basis of $I_m(L)$
- 3. In the row-graded case $I_m(L)$ has a universal Gröbner basis of elements of multidegree equal to $\mathbf{1} = (1, ..., 1)$

4. $I_2(L)$ is radical. Moreover, $in_{\tau}(I_2(L))$ is radical for every τ

Theorem

Assume L is column-graded or row-graded with $m \leq n$. Then:

- 1. $I_m(L)$ is radical and has a linear resolution. Moreover, in_{τ}($I_m(L)$) is radical and has a linear resolution for every τ
- 2. In the column-graded case the maximal minors of L form a universal Gröbner basis of $I_m(L)$
- 3. In the row-graded case $I_m(L)$ has a universal Gröbner basis of elements of multidegree equal to $\mathbf{1} = (1, ..., 1)$
- 4. $I_2(L)$ is radical. Moreover, $in_{\tau}(I_2(L))$ is radical for every τ
- 5. $I_2(L)$ has a univ. Gröbner basis of elements of multidegree ≤ 1

Theorem/Definition (Generic initial ideal)

 $\operatorname{GL}_n(K)$ acts by linear substitution on $R = K[x_1, \ldots, x_n]$. For $g \in \operatorname{GL}_n(K)$ and $I \subset R$ consider g(I)

Theorem/Definition (Generic initial ideal)

 $\operatorname{GL}_n(K)$ acts by linear substitution on $R = K[x_1, \ldots, x_n]$. For $g \in \operatorname{GL}_n(K)$ and $I \subset R$ consider g(I)

Fix a term order. As g varies in $GL_n(K)$ compute in(g(I))

Theorem/Definition (Generic initial ideal)

 $\operatorname{GL}_n(K)$ acts by linear substitution on $R = K[x_1, \ldots, x_n]$. For $g \in \operatorname{GL}_n(K)$ and $I \subset R$ consider g(I)

Fix a term order. As g varies in $GL_n(K)$ compute in(g(I))

For almost all g one gets the same outcome $\rightarrow gin(I)$

Theorem/Definition (Generic initial ideal)

 $\operatorname{GL}_n(K)$ acts by linear substitution on $R = K[x_1, \ldots, x_n]$. For $g \in \operatorname{GL}_n(K)$ and $I \subset R$ consider g(I)

Fix a term order. As g varies in $GL_n(K)$ compute in(g(I))

For almost all g one gets the same outcome $\rightarrow gin(I)$

Properties:

- gin(I) is Borel fixed, that is, it is fixed by every g in $B_n(K) = \{\text{upper triangular invert. matrices}\} \subset GL_n(K)$
- $\blacktriangleright \operatorname{HS}(I, y) = \operatorname{HS}(\operatorname{gin}(I), y)$

$$S = K[x_{ij} : i = 1, \dots, v \text{ and } j = 1, \dots, n_i]$$

multigraded by deg $(x_{ij}) = e_i \in \mathbb{Z}^v$

$$S = K[x_{ij} : i = 1, \dots, v \text{ and } j = 1, \dots, n_i]$$

multigraded by deg $(x_{ij}) = e_i \in \mathbb{Z}^v$

(Multigraded) Hilbert series of a multi graded S-module M:

$$\mathrm{HS}(M, y) = \mathrm{HS}(M, y_1, \dots, y_v) = \sum_{a \in \mathbb{Z}^v} (\dim M_a) y^a$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$S = K[x_{ij} : i = 1, \dots, v \text{ and } j = 1, \dots, n_i]$$

multigraded by deg $(x_{ij}) = e_i \in \mathbb{Z}^v$

(Multigraded) Hilbert series of a multi graded S-module M:

$$\mathrm{HS}(M, y) = \mathrm{HS}(M, y_1, \dots, y_v) = \sum_{a \in \mathbb{Z}^v} (\dim M_a) y^a$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fix a term order (such that $x_{ij} > x_{ik}$ for every $1 \le j < k \le n_{i}$.)

$$S = K[x_{ij} : i = 1, \dots, v \text{ and } j = 1, \dots, n_i]$$

multigraded by deg $(x_{ij}) = e_i \in \mathbb{Z}^v$

(Multigraded) Hilbert series of a multi graded S-module M:

$$\mathrm{HS}(M,y) = \mathrm{HS}(M,y_1,\ldots,y_v) = \sum_{a \in \mathbb{Z}^v} (\dim M_a) y^a$$

Fix a term order (such that $x_{ij} > x_{ik}$ for every $1 \le j < k \le n_i$.)

Theorem/Definition

 $G = GL_{n_1}(K) \times \cdots \times GL_{n_v}(K)$ acts by linear substitution on S preserving the multigraded structure. $g \in G, \ I \subset S$ multigraded ideal $\rightarrow g(I)$ (multigraded)

$$S = K[x_{ij} : i = 1, \dots, v \text{ and } j = 1, \dots, n_i]$$

multigraded by deg $(x_{ij}) = e_i \in \mathbb{Z}^v$

(Multigraded) Hilbert series of a multi graded S-module M:

$$\mathrm{HS}(M,y) = \mathrm{HS}(M,y_1,\ldots,y_v) = \sum_{a \in \mathbb{Z}^v} (\dim M_a) y^a$$

Fix a term order (such that $x_{ij} > x_{ik}$ for every $1 \le j < k \le n_i$.)

Theorem/Definition

 $G = GL_{n_1}(K) \times \cdots \times GL_{n_v}(K)$ acts by linear substitution on Spreserving the multigraded structure. $g \in G, I \subset S$ multigraded ideal $\rightarrow g(I)$ (multigraded) As g varies in G compute in(g(I))For almost all g one gets the same outcome \rightarrow multigin(I)

Properties of multigin(1):

• $\operatorname{multigin}(I)$ is Borel fixed, that is, it is fixed by every g in

 $B_{n_1}(K) \times \cdots \times B_{n_v}(K) \subset G$

• $\operatorname{HS}(I, y) = \operatorname{HS}(\operatorname{multigin}(I), y)$

Properties of multigin(1):

• $\operatorname{multigin}(I)$ is Borel fixed, that is, it is fixed by every g in

 $B_{n_1}(K) \times \cdots \times B_{n_v}(K) \subset G$

•
$$\operatorname{HS}(I, y) = \operatorname{HS}(\operatorname{multigin}(I), y)$$

Rmk: $J \subset S$, \mathbb{Z}^{v} -graded, is Borel fixed if and only if

Properties of multigin(1):

• multigin(I) is Borel fixed, that is, it is fixed by every g in

 $B_{n_1}(K) \times \cdots \times B_{n_v}(K) \subset G$

•
$$\operatorname{HS}(I, y) = \operatorname{HS}(\operatorname{multigin}(I), y)$$

Rmk: J ⊂ S, Z^v-graded, is Borel fixed if and only if
J is generated by monomials

Properties of multigin(*I*):

• $\operatorname{multigin}(I)$ is Borel fixed, that is, it is fixed by every g in

 $B_{n_1}(K) \times \cdots \times B_{n_v}(K) \subset G$

• $\operatorname{HS}(I, y) = \operatorname{HS}(\operatorname{multigin}(I), y)$

Rmk: $J \subset S$, \mathbb{Z}^{v} -graded, is Borel fixed if and only if

- J is generated by monomials
- For every monomial generator u and every variable x_{ij} appearing in u with exponent, say, c one has that (x_{ik}/x_{ij})^d u ∈ I for every k < j and every 0 ≤ d ≤ c such that (^c_d) ≠ 0 in the field K.

Properties of multigin(*I*):

• $\operatorname{multigin}(I)$ is Borel fixed, that is, it is fixed by every g in

 $B_{n_1}(K) \times \cdots \times B_{n_v}(K) \subset G$

• $\operatorname{HS}(I, y) = \operatorname{HS}(\operatorname{multigin}(I), y)$

Rmk: $J \subset S$, \mathbb{Z}^{v} -graded, is Borel fixed if and only if

- J is generated by monomials
- For every monomial generator u and every variable x_{ij} appearing in u with exponent, say, c one has that (x_{ik}/x_{ij})^d u ∈ I for every k < j and every 0 ≤ d ≤ c such that (^c_d) ≠ 0 in the field K.

From now on we always consider the multigraded situation. We write gin instead of multigin

Theorem

Let I, J multi graded Borel-fixed ideals with HS(I, y) = HS(J, y).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

Let I, J multi graded Borel-fixed ideals with HS(I, y) = HS(J, y).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

If J is radical then I = J

Theorem

Let I, J multi graded Borel-fixed ideals with HS(I, y) = HS(J, y).

If J is radical then I = J

Corollary

Let J be Borel-fixed and radical. I such that HS(I, y) = HS(J, y). Then gin(I) = J wrt any term order.

Theorem

Let I, J multi graded Borel-fixed ideals with HS(I, y) = HS(J, y).

If J is radical then I = J

Corollary

Let J be Borel-fixed and radical. I such that HS(I, y) = HS(J, y). Then gin(I) = J wrt any term order. In particular, (a) I is radical (b) J has a linear resolution $\implies I$ has a linear resolution

 $S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1..., n_i], \quad \deg(x_{ij}) = e_i \in \mathbb{Z}^v$ All the ideals are \mathbb{Z}^v -graded

 $S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1..., n_i], \quad \deg(x_{ij}) = e_i \in \mathbb{Z}^v$ All the ideals are \mathbb{Z}^v -graded

 $CS = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ radical Borel-fixed} \}$

 $S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1..., n_i], \quad \deg(x_{ij}) = e_i \in \mathbb{Z}^v$ All the ideals are \mathbb{Z}^v -graded $CS = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ radical Borel-fixed} \}$ Set $T = K[x_{11}, x_{21}, ..., x_{v1}]$ $CS^* = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ whose gens are in } T\}$

 $S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1..., n_i], \quad \deg(x_{ij}) = e_i \in \mathbb{Z}^v$ All the ideals are \mathbb{Z}^v -graded $CS = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ radical Borel-fixed} \}$ Set $T = K[x_{11}, x_{21}, ..., x_{v1}]$ $CS^* = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ whose gens are in } T\}$

Corollary

► $I \in CS \implies in_{\tau}(I) \in CS$ and $J = gin_{\tau}(I)$ for every τ ► $I \in CS^* \implies in_{\tau}(I) \in CS$ and $J = gin_{\tau}(I)$ for every τ
Cartwright-Sturmfels ideals

$$S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1..., n_i], \quad \deg(x_{ij}) = e_i \in \mathbb{Z}^v$$

All the ideals are \mathbb{Z}^v -graded
$$CS = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ radical Borel-fixed} \}$$

Set $T = K[x_{11}, x_{21}, ..., x_{v1}]$
$$CS^* = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ whose gens are in } T\}$$

Corollary

$$I \in \mathsf{CS} \implies \text{in}_{\tau}(I) \in \mathsf{CS} \text{ and } J = \text{gin}_{\tau}(I) \text{ for every } \tau$$
$$I \in \mathsf{CS}^* \implies \text{in}_{\tau}(I) \in \mathsf{CS} \text{ and } J = \text{gin}_{\tau}(I) \text{ for every } \tau$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

From now on for $I \in CS$ or $I \in CS^*$ we just write gin(I)

Cartwright-Sturmfels ideals

$$S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1..., n_i], \quad \deg(x_{ij}) = e_i \in \mathbb{Z}^v$$

All the ideals are \mathbb{Z}^v -graded
$$CS = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ radical Borel-fixed} \}$$

Set $T = K[x_{11}, x_{21}, ..., x_{v1}]$
$$CS^* = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ whose gens are in } T\}$$

Corollary

▶
$$I \in CS \implies in_{\tau}(I) \in CS$$
 and $J = gin_{\tau}(I)$ for every τ
▶ $I \in CS^* \implies in_{\tau}(I) \in CS$ and $J = gin_{\tau}(I)$ for every τ

From now on for $I \in CS$ or $I \in CS^*$ we just write gin(I)

 $\mathsf{CS} = \{J : \ \operatorname{gin}_{\tau}(J) \text{ is radical for some (all) } \tau\}$

Cartwright-Sturmfels ideals

$$S = K[x_{ij} : i = 1, ..., v \text{ and } j = 1..., n_i], \quad \deg(x_{ij}) = e_i \in \mathbb{Z}^v$$

All the ideals are \mathbb{Z}^v -graded
$$CS = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ radical Borel-fixed} \}$$

Set $T = K[x_{11}, x_{21}, ..., x_{v1}]$
$$CS^* = \{I : HS(I, y) = HS(J, y) \text{ for some } J \text{ whose gens are in } T\}$$

Corollary

$$I \in CS \implies in_{\tau}(I) \in CS \text{ and } J = gin_{\tau}(I) \text{ for every } \tau$$

 $I \in CS^* \implies in_{\tau}(I) \in CS \text{ and } J = gin_{\tau}(I) \text{ for every } \tau$

From now on for $I \in CS$ or $I \in CS^*$ we just write gin(I)

 $CS = \{J : gin_{\tau}(J) \text{ is radical for some (all) } \tau\}$ $CS^* = \{J : \text{the generators of } gin_{\tau}(I) \text{ are in } T \text{ for some (all) } \tau\}$

Examples: $X = (x_{ij})$ generic, $m \times n$.

<□ > < @ > < E > < E > E のQ @

Examples: $X = (x_{ij})$ generic, $m \times n$.

▶ Conca: $gin(I_2(X))$ is radical. In particular $I_2(X) \in CS$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Examples: $X = (x_{ij})$ generic, $m \times n$.

▶ Conca: $gin(I_2(X))$ is radical. In particular $I_2(X) \in CS$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• CDG1: $I_m(X) \in CS$

Examples: $X = (x_{ij})$ generic, $m \times n$.

- ▶ Conca: $gin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- CDG1: $I_m(X) \in CS$

Proposition I ∈ CS

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Examples: $X = (x_{ij})$ generic, $m \times n$.

- ▶ Conca: $gin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- CDG1: $I_m(X) \in CS$

Proposition *I* ∈ CS ► *I* is radical

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Examples: $X = (x_{ij})$ generic, $m \times n$.

• Conca: $gin(I_2(X))$ is radical. In particular $I_2(X) \in CS$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• CDG1: $I_m(X) \in CS$

Proposition

$I \in CS$

- I is radical
- $reg(I) \leq v$ (by duality)

Examples: $X = (x_{ij})$ generic, $m \times n$.

- Conca: $gin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- CDG1: $I_m(X) \in CS$

Proposition

 $I \in CS$

- I is radical
- $reg(I) \leq v$ (by duality)
- I is generated by elements of multidegree ≤ 1

Examples: $X = (x_{ij})$ generic, $m \times n$.

- Conca: $gin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- CDG1: $I_m(X) \in CS$

Proposition

 $I \in CS$

- I is radical
- $reg(I) \leq v$ (by duality)

• I is generated by elements of multidegree ≤ 1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Why Cartwright - Sturmfels?

Examples: $X = (x_{ij})$ generic, $m \times n$.

- ▶ Conca: $gin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- CDG1: $I_m(X) \in CS$

Proposition

 $I \in \mathsf{CS}$

- I is radical
- ▶ reg(I) ≤ v (by duality)

 \blacktriangleright *I* is generated by elements of multidegree \leq **1**

Why Cartwright - Sturmfels?

[Cartwright - Sturmfels, 2010]:

J such that $\operatorname{HS}(J, y) = \operatorname{HS}(I_2(X), y) \implies J$ is radical

Examples: $X = (x_{ij})$ generic, $m \times n$.

- Conca: $gin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- CDG1: $I_m(X) \in CS$

Proposition

 $I \in CS$

- I is radical
- $reg(I) \leq v$ (by duality)
- I is generated by elements of multidegree ≤ 1

Why CS*?

Examples: $X = (x_{ij})$ generic, $m \times n$.

- Conca: $gin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- CDG1: $I_m(X) \in CS$

Proposition

 $I \in CS$

- I is radical
- $reg(I) \leq v$ (by duality)
- I is generated by elements of multidegree ≤ 1

Why CS*?

Proposition

I square free monomial, I^* its Alexander dual $I \in CS \Leftrightarrow I^*$ is in CS^* .

Examples: $X = (x_{ij})$ generic, $m \times n$.

- Conca: $gin(I_2(X))$ is radical. In particular $I_2(X) \in CS$
- CDG1: $I_m(X) \in CS$

Proposition

 $I \in CS$

- I is radical
- $reg(I) \leq v$ (by duality)
- I is generated by elements of multidegree ≤ 1

Why CS*?

PropositionI square free monomial, I^* its Alexander dual $I \in CS \Leftrightarrow I^*$ is in CS*.Moreover, if $I \in CS$, then $gin(I)^* = pol(gin(I^*))$.

Proposition

$$I \in \mathsf{CS}^*$$
, $C = (x_{11}^{a_1} \cdots x_{v1}^{a_v} : a \in \mathbb{Z}^v$ and $I_a \neq 0)$

Proposition

$$I \in \mathsf{CS}^*$$
, $C = (x_{11}^{a_1} \cdots x_{v1}^{a_v} : a \in \mathbb{Z}^v$ and $I_a \neq 0)$

• C = gin(I) (for every term order)

Proposition

$$I \in \mathsf{CS}^*$$
, $C = (x_{11}^{a_1} \cdots x_{v1}^{a_v} : a \in \mathbb{Z}^v$ and $I_a \neq 0)$

•
$$C = gin(I)$$
 (for every term order)

•
$$\beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(C)$$
 for all i, \mathbf{a}

Proposition

$$I \in \mathsf{CS}^*$$
, $C = (x_{11}^{a_1} \cdots x_{\nu 1}^{a_\nu} : a \in \mathbb{Z}^{\nu}$ and $I_a \neq 0)$

- C = gin(I) (for every term order)
- $\beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(C)$ for all i, \mathbf{a}
- $\operatorname{projdim}(S/I) \leq v$

Proposition

$$I \in \mathsf{CS}^*$$
, $C = (x_{11}^{a_1} \cdots x_{\nu 1}^{a_\nu} : a \in \mathbb{Z}^{\nu}$ and $I_a \neq 0)$

- C = gin(I) (for every term order)
- $\beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(C)$ for all i, \mathbf{a}
- $\operatorname{projdim}(S/I) \leq v$
- minimal generators have incomparable multidegrees

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

$$I \in \mathsf{CS}^*$$
, $C = (x_{11}^{a_1} \cdots x_{\nu 1}^{a_\nu} : a \in \mathbb{Z}^{\nu}$ and $I_a \neq 0)$

- C = gin(I) (for every term order)
- $\beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(C)$ for all i, \mathbf{a}
- $\operatorname{projdim}(S/I) \leq v$
- minimal generators have incomparable multidegrees

Theorem

If $I \in CS^*$, then any minimal system of \mathbb{Z}^{ν} -graded generators of I is a universal Gröbner basis

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

$$I \in \mathsf{CS}^*$$
, $C = (x_{11}^{a_1} \cdots x_{\nu 1}^{a_\nu} : a \in \mathbb{Z}^{\nu}$ and $I_a \neq 0)$

- C = gin(I) (for every term order)
- $\beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(C)$ for all i, \mathbf{a}
- $\operatorname{projdim}(S/I) \leq v$
- minimal generators have incomparable multidegrees

Theorem

If $I \in CS^*$, then any minimal system of \mathbb{Z}^{ν} -graded generators of I is a universal Gröbner basis

Proof: Let τ be any term order, $H = in_{\tau}(I)$.

 $I, H \in \mathsf{CS}^* \implies \beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(H)$

Proposition

$$I \in \mathsf{CS}^*$$
, $C = (x_{11}^{a_1} \cdots x_{\nu 1}^{a_\nu} : a \in \mathbb{Z}^{\nu}$ and $I_a \neq 0)$

•
$$C = gin(I)$$
 (for every term order)

•
$$\beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(C)$$
 for all i, \mathbf{a}

- $\operatorname{projdim}(S/I) \leq v$
- minimal generators have incomparable multidegrees

Theorem

If $I \in CS^*$, then any minimal system of \mathbb{Z}^{ν} -graded generators of I is a universal Gröbner basis

Proof: Let τ be any term order, $H = in_{\tau}(I)$.

$$I, H \in \mathsf{CS}^* \implies \beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(H)$$

their generators have incomparable degrees \implies any minimal system of generators of I is a Gröbner basis of I wrt to τ

Closure of CS and CS^*

Main tool:

Main tool:

Proposition

Let *L* be a \mathbb{Z}^{v} -graded linear form of *S*. Then:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Main tool:

Proposition

Let *L* be a \mathbb{Z}^{v} -graded linear form of *S*. Then:

► $I \in CS \implies I:L, I+(L), I+(L)/(L) \in CS$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Main tool:

Proposition

Let *L* be a \mathbb{Z}^{v} -graded linear form of *S*. Then:

►
$$I \in CS \implies I: L, I + (L), I + (L)/(L) \in CS$$

►
$$I \in \mathsf{CS}^* \implies I : L, I + (L)/(L), I \cap (L) \in \mathsf{CS}^*$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Main tool:

Proposition

Let *L* be a \mathbb{Z}^{v} -graded linear form of *S*. Then:

►
$$I \in CS \implies I : L, I + (L), I + (L)/(L) \in CS$$

$$\bullet \ I \in \mathsf{CS}^* \implies I : L, \ I + (L)/(L), \ I \cap (L) \in \mathsf{CS}^*$$

Rmk If $I \in CS^*$ and L is a \mathbb{Z}^{ν} -graded linear form, then $I + (L) \notin CS^*$ in general.

Example: $(x_{11}) \in CS^*$, but $(x_{11}, x_{12}) \notin CS^*$ because ideals in CS^* have generators with incomparable degrees.

Example 2

Rmk: *F* a product of \mathbb{Z}^{v} -graded linear forms:

$$I \in CS \implies I : F \in CS$$

・ロト・日本・モト・モート ヨー うへで

But if F is a \mathbb{Z}^{v} -graded form: $I : F \notin CS$ in general.

Example 2

Rmk: *F* a product of \mathbb{Z}^{v} -graded linear forms:

$$I \in CS \implies I : F \in CS$$

But if F is a \mathbb{Z}^{v} -graded form: $I : F \notin CS$ in general.

Example $S = K[x_{ij} \mid 1 \le i, j \le 3]$ with deg $x_{ij} = e_i$

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & 0 \\ 0 & 0 & x_{33} \end{pmatrix} \quad I = I_2(X) \in \mathsf{CS}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example 2

Rmk: *F* a product of \mathbb{Z}^{v} -graded linear forms:

$$I \in CS \implies I: F \in CS$$

But if F is a \mathbb{Z}^{ν} -graded form: $I : F \notin CS$ in general.

Example $S = K[x_{ij} \mid 1 \le i, j \le 3]$ with deg $x_{ij} = e_i$

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & 0 \\ 0 & 0 & x_{33} \end{pmatrix} \quad I = I_2(X) \in \mathsf{CS}$$

 $F = x_{11}x_{21}x_{32} + x_{13}x_{23}x_{33} \rightarrow I : F = I + (x_{12}x_{13}, x_{11}x_{13})$ $\deg(x_{12}x_{13}) = (2, 0, 0) \implies I : F \notin CS$

Thm 1

- $L = (L_{ij})$ row-graded, of size $m \times n$ with $m \le n$. Then:
- (a) There is a universal GB of elements of degree ${\bf 1}$
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thm 1

- $L = (L_{ij})$ row-graded, of size $m \times n$ with $m \le n$. Then:
- (a) There is a universal GB of elements of degree ${\bf 1}$
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thm 1

- $L = (L_{ij})$ row-graded, of size $m \times n$ with $m \le n$. Then:
- (a) There is a universal GB of elements of degree ${\bf 1}$
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let
$$Y = (y_{ij})$$
 be an $m \times n$ matrix of variables

Thm 1

- $L = (L_{ij})$ row-graded, of size $m \times n$ with $m \le n$. Then:
- (a) There is a universal GB of elements of degree ${\bf 1}$
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let
$$Y = (y_{ij})$$
 be an $m \times n$ matrix of variables
 $R = S[Y] \quad \mathbb{Z}^m$ -graded by $\deg(y_{ij}) = e_i \in \mathbb{Z}^m$

Thm 1

- $L = (L_{ij})$ row-graded, of size $m \times n$ with $m \le n$. Then:
- (a) There is a universal GB of elements of degree ${\bf 1}$
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let
$$Y = (y_{ij})$$
 be an $m \times n$ matrix of variables
 $R = S[Y] \quad \mathbb{Z}^m$ -graded by $\deg(y_{ij}) = e_i \in \mathbb{Z}^m$
 Y generic $\implies I_m(Y) \in CS$
Maximal minors, row-graded

Thm 1

- $L = (L_{ij})$ row-graded, of size $m \times n$ with $m \le n$. Then:
- (a) There is a universal GB of elements of degree ${\bf 1}$
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

Idea of the proof:

Let
$$Y = (y_{ij})$$
 be an $m \times n$ matrix of variables
 $R = S[Y] \quad \mathbb{Z}^m$ -graded by $\deg(y_{ij}) = e_i \in \mathbb{Z}^m$
 Y generic $\implies I_m(Y) \in \mathsf{CS}$

 $S \supset I_m(L) \simeq I_m(Y) + (y_{ij} - L_{ij})/(y_{ij} - L_{ij}) \subset R/(y_{ij} - L_{ij})$

Maximal minors, row-graded

Thm 1

- $L = (L_{ij})$ row-graded, of size $m \times n$ with $m \le n$. Then:
- (a) There is a universal GB of elements of degree ${\bf 1}$
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

Idea of the proof:

Let
$$Y = (y_{ij})$$
 be an $m \times n$ matrix of variables
 $R = S[Y] \quad \mathbb{Z}^m$ -graded by $\deg(y_{ij}) = e_i \in \mathbb{Z}^m$
 Y generic $\implies I_m(Y) \in CS$
 $S \supset I_m(L) \simeq I_m(Y) + (y_{ij} - L_{ij})/(y_{ij} - L_{ij}) \subset R/(y_{ij} - L_{ij})$
 $I_m(Y) \in CS \implies I_m(L) \in CS \implies \operatorname{in}_{\tau}(I_m(L)) \in CS$ for all τ

æ

Thm 1

Assume $L = (L_{ij})$ is column-graded of size $m \times n$ with $m \le n$. Then:

- (a) the maximal minors of L form a universal GB
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

Thm 1

Assume $L = (L_{ij})$ is column-graded of size $m \times n$ with $m \le n$. Then:

- (a) the maximal minors of L form a universal GB
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

Crucial point: We have that $I_m(L) \in CS$ and $I_2(L) \in CS$.

Thm 1

Assume $L = (L_{ij})$ is column-graded of size $m \times n$ with $m \le n$. Then:

- (a) the maximal minors of L form a universal GB
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

Crucial point: We have that $I_m(L) \in CS$ and $I_2(L) \in CS$.

Moreover, in the column-graded case: if $Y = (y_{ij})$ is generic, $m \times n$ with $m \le n$, then $I_m(Y) \in CS^*$.

Thm 1

Assume $L = (L_{ij})$ is column-graded of size $m \times n$ with $m \le n$. Then:

- (a) the maximal minors of L form a universal GB
- (b) $I_m(L)$ is radical and it has a linear resolution. The same it is true for all its initial ideals.

Crucial point: We have that $I_m(L) \in CS$ and $I_2(L) \in CS$.

Moreover, in the column-graded case: if $Y = (y_{ij})$ is generic, $m \times n$ with $m \le n$, then $I_m(Y) \in CS^*$. It follows that $I_m(L) \in CS \cap CS^*$.

Recall: $I \in CS^* \implies \beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(\operatorname{in}_{\tau}(I))$ for every τ .

It follows:

Recall:
$$I \in CS^* \implies \beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(\operatorname{in}_{\tau}(I))$$
 for every τ .

It follows:

In the column-graded case $\beta_{i,\mathbf{a}}(I_m(L)) = \beta_{i,\mathbf{a}}(\operatorname{in}_{\tau}(I_m(L))) \text{ for all } \tau$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ 差 − のへぐ

Recall:
$$I \in CS^* \implies \beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(\operatorname{in}_{\tau}(I))$$
 for every τ .

It follows:

In the column-graded case $\beta_{i,\mathbf{a}}(I_m(L)) = \beta_{i,\mathbf{a}}(\operatorname{in}_{\tau}(I_m(L))) \text{ for all } \tau$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

TRUE also in the row-graded case!

Recall:
$$I \in CS^* \implies \beta_{i,\mathbf{a}}(I) = \beta_{i,\mathbf{a}}(\operatorname{in}_{\tau}(I))$$
 for every τ .

It follows:

In the column-graded case $\beta_{i,\mathbf{a}}(I_m(L)) = \beta_{i,\mathbf{a}}(\operatorname{in}_{\tau}(I_m(L))) \text{ for all } \tau$

TRUE also in the row-graded case!

Not true for 2-minors in general

Generic initial ideals

Generic initial ideals

$J \in CS^*$:

$$gin(J) = (x_{11}^{a_1} \cdots x_{v1}^{a_v} : a \in \mathbb{Z}^v \text{ and } J_a \neq 0)$$

Generic initial ideals

$J \in CS^*$:

$$\operatorname{gin}(J) = (x_{11}^{a_1} \cdots x_{v1}^{a_v} : a \in \mathbb{Z}^v \text{ and } J_a \neq 0)$$

[CDG1]: column-graded:

$$gin(I_m(L)) = (x_{1j_1} \cdots x_{mj_m} \mid [j_1, \dots, j_m]_L \neq 0)$$

row-graded, height($I_m(L)$) = n - m + 1:

$$gin(I_m(L)) = (x_{1j_1} \cdots x_{mj_m} : j_1 + \cdots + j_m \le n)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Generic initial ideals [CDG3]

Maximal minors, row-graded

$$L = (L_{ij}) \text{ row-graded } m \times n, \ m \le n, \ l = l_m(L)$$

$$A \subseteq [m]:$$

$$b(A) = \dim_K < \text{columns of the matrix } L_A = (L_{ij})_{i \in A, j \in [n]} >$$

$$gin(l) = (x_{1b_1} \cdots x_{mb_m} : \sum_{i \in A} b_i \le b(A) \text{ for every } A \subseteq [m])$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Generic initial ideals [CDG3]

2-minors $L = (L_{ii})$ row or column-graded, $I = I_2(L)$ $gin(I) = (\prod x_{ib_i} : A \subseteq [m] \text{ and } b_i \text{ satisfying } *)$ i∈A $*: \left\{ \begin{array}{l} 1 \leq b_i \leq n - \dim_{\mathcal{K}} V_i \text{ for every } i \in A \\ \sum_{i \in A} b_i \leq n(|A| - 1) + \dim_{\mathcal{K}} V_A - \sum_{i \in A} \dim_{\mathcal{K}} V_i \end{array} \right.$ with $V_i = \{\lambda \in K^n | \sum_{i=1}^n \lambda_i L_{ii} = 0\}$ and $V_A = \sum_{i \in A} V_i$.