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Lattice points of a polytope

A (convex) polytope is a bounded solution set of a finite system of linear inequalities,

or is the convex hull of a finite set of points.
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A (convex) polytope is a bounded solution set of a finite system of linear inequalities,

or is the convex hull of a finite set of points.

An integral polytope is a polytope whose vertices are all lattice points. i.e., points

with integer coordinates.

Definition. For any polytope P ⊂ R
d and positive integer t ∈ N, the tth dilation of P

is tP = {tx : x ∈ P}. We define

i(P, t) = |tP ∩ Z
d|

to be the number of lattice points in the tP.
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Lattice points of a polytope

A (convex) polytope is a bounded solution set of a finite system of linear inequalities,

or is the convex hull of a finite set of points.

An integral polytope is a polytope whose vertices are all lattice points. i.e., points

with integer coordinates.

Definition. For any polytope P ⊂ R
d and positive integer t ∈ N, the tth dilation of P

is tP = {tx : x ∈ P}. We define

i(P, t) = |tP ∩ Z
d|

to be the number of lattice points in the tP.

Example: For any d, let P = {x ∈ R
d : 0 ≤ xi ≤ 1, ∀i} be the unit cube in R

d.

Then tP = {x ∈ R
d : 0 ≤ xi ≤ t, ∀i} and i(P, t) = (t+ 1)d.

P 3P
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Theorem of Ehrhart (on integral polytopes)

Theorem 1 (Ehrhart). Let P be a d-dimensional integral polytope. Then i(P, t) is a

polynomial in t of degree d.

Therefore, we call i(P, t) the Ehrhart polynomial of P.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, t)?
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, t)?

➠ The leading coefficient of i(P, t) is the volume vol(P ) of P.

➠ The second coefficient equals 1/2 of the sum of the normalized volumes of each

facet.

➠ The constant term of i(P, t) is always 1.

➠ No simple forms known for other coefficients for general polytopes.

• It is NOT even true that all the coefficients are positive. For example, for the

polytope P with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 13), its Ehrhart

polynomial is

i(P, t) =
13

6
t3 + t2−

1

6
t+ 1.
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Ehrhart positivity

Definition. We say an integral polytope is Ehrhart positive if it has positive coefficients

in its Ehrhart polynomial.
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Ehrhart positivity

Definition. We say an integral polytope is Ehrhart positive if it has positive coefficients

in its Ehrhart polynomial.

Families of integral polytopes that are known to be Ehrhart positive.

• Standard simplices.

• Zonotopes.

• Stanley-Pitman polytopes.

• Cyclic polytopes.

Conjecture 2 (DeLoera-Haws-Koeppe). All matroid polytopes are Ehrhart positive.

We consider generalized permutohedra, a family of polytopes that include both Stanley-

Pitman polytopes and matroid polytopes.

Conjecture 3 (Castillo-L.). All integral generalized permutohera are Ehrhart positive.
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Usual permutohedra

Definition. Suppose v = (v1, v2, · · · , vn) is a (nondecreasing) sequence. We define

the usual permutohedron

Perm (v) := conv
{(

vσ(1), vσ(2), · · · , vσ(n)
)
: σ ∈ Sn

}
.

• If v = (1, 2, · · · , n), we get the regular permutohedron Πn−1.

Example. Π2:

Any usual permutohedron in R
n is (n− 1)-dimensional.
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Generalized permutohedra

Definition (Postnikov). A generalized permutohedron is a polytope obtained from a

usual permutohedron by moving the facets while keeping the normal directions.
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Alternative definition

Let V be the subspace of Rn defined by x1 + x2 + · · · + xn = 0. The braid

arrangement fan denoted by Bn, is the complete fan in V given by the hyperplanes

xi − xj = 0 for all i 6= j.
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n is a generalized per-
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What is known about Ehrhart positivity?
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What is known about Ehrhart positivity?

Postnikov studied the y-family , a subset of generalized permutohedra defined by

P y =
∑

S⊆[n]

yS∆S

where

∆S = conv(ei : i ∈ S)

and the yS all nonnegative.

He gave an explicit formula for the Ehrhart polynomial of any polytope in this family.

As a consequence of his formula, any polytope in the y-family is Ehrhart positive.
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What is known about Ehrhart positivity?

Postnikov studied the y-family , a subset of generalized permutohedra defined by

P y =
∑

S⊆[n]

yS∆S

where

∆S = conv(ei : i ∈ S)

and the yS all nonnegative.

He gave an explicit formula for the Ehrhart polynomial of any polytope in this family.

As a consequence of his formula, any polytope in the y-family is Ehrhart positive.

The y-family includes: regular permutohedra, associahedra, cyclohedra, Stanley-

Pitman polytopes, and more.

Unfortunately, it fails to contain the matroid polytopes.
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PART II:

McMullen’s formula and consequences
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McMullen’s formula

Definition. Suppose F is a face of P. The feasible cone of P at F , denoted by

fcone(F, P ), is the cone of all feasible directions of P at F .

The pointed feasible cone of P at F is fconep(F, P ) = fcone(F, P )/L, where L

is the subspace spanned by F. In general, fconep(F, P ) is k-dim pointed cone where

if F is codimensional k.
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Definition. Suppose F is a face of P. The feasible cone of P at F , denoted by

fcone(F, P ), is the cone of all feasible directions of P at F .

The pointed feasible cone of P at F is fconep(F, P ) = fcone(F, P )/L, where L

is the subspace spanned by F. In general, fconep(F, P ) is k-dim pointed cone where

if F is codimensional k.

In 1975 Danilov asked if it is possible to assign values Ψ(C) to all rational cones C

such that the following McMullen’s formula holds

|P ∩ Z
d| =

∑

F : a face of P

α(F, P ) vol(F ).

where α(F, P ) := Ψ(fconep(F, P )).
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McMullen’s formula

Definition. Suppose F is a face of P. The feasible cone of P at F , denoted by

fcone(F, P ), is the cone of all feasible directions of P at F .

The pointed feasible cone of P at F is fconep(F, P ) = fcone(F, P )/L, where L

is the subspace spanned by F. In general, fconep(F, P ) is k-dim pointed cone where

if F is codimensional k.

In 1975 Danilov asked if it is possible to assign values Ψ(C) to all rational cones C

such that the following McMullen’s formula holds

|P ∩ Z
d| =

∑

F : a face of P

α(F, P ) vol(F ).

where α(F, P ) := Ψ(fconep(F, P )).

• McMullen proved it was possible in a non constructive way.

• Subsequently, explicit constructions ofΨ/α(F, P )were given by Morelli, Pommersheim-

Thomas, and Berline-Vergne.

We will use Berline-Vergne’s construction, which we will refer to as the BV-construction.
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An expression for Ehrhart coefficients

Given an integral polytope P ⊆ R
d, any dilation tP of P is integral as well. We

have

i(P, t) = |tP ∩ Z
d| =

∑

F : a face of P

α(tF, tP ) vol(tF )

=
∑

F : a face of P

α(F, P ) vol(F )tdim(F )
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An expression for Ehrhart coefficients

Given an integral polytope P ⊆ R
d, any dilation tP of P is integral as well. We

have

i(P, t) = |tP ∩ Z
d| =

∑

F : a face of P

α(tF, tP ) vol(tF )

=
∑

F : a face of P

α(F, P ) vol(F )tdim(F )

Hence, the coefficient of tk in i(P, t) is given by
∑

F : a k-dimensional face of P

α(F, P ) vol(F ).

Hence, the coefficient of tk is positive if α(F, P ) is positive for any k-dimensional

face F of P.

Moreover, as long as all α for P are positive, P is Ehrhart positive.
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Reduction Theorem

For the rest of this part, we assume that α is the BV-construction.

Theorem 5 (Castillo-L.). Suppose α(F,Πn−1) > 0 for any k-dimensional face F of

the regular permutohedron Πn−1. Then α(G,Q) > 0 for any k-dimensional face G

of any generalized permutohedron Q in R
n.
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A stronger conjecture

Conjecture 6 (Castillo-L.). The α values (from the BV-construction) of the regular per-

mutoheron Πn−1 are all positive.

This conjecture clearly implies our first conjecture by the reduction theorem.

Note. The “regular permutohedron Πn−1” can be replaced with “any generalized per-

mutohedron whose normal fan is the braid arrangement fan Bn”.

Thus we may state this conjecture as “the α values for Bn are all positive”.
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A more general form of the reduction theorem

The reduction theorem does not only work for Πn−1 and generalized permutohedra.

Theorem 7 (Castillo-L.). Suppose Q is a deformation of P, or the normal fan of P is a

refinement of the normal fan of Q. If α(F, P ) > 0 for any k-dimensional face F of P ,

then α(G,Q) > 0 for any k-dimensional face G of Q.
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What can we show?

Page 18



Ehrhart positivity for generalized permutohedra Fu Liu

What can we show?

Partial results to the second conjecture:

Page 18



Ehrhart positivity for generalized permutohedra Fu Liu

What can we show?

Partial results to the second conjecture:

Lemma (Castillo-L.). The α values for regular permutohedra of dimension ≤ 6 are all

positive.

Page 18



Ehrhart positivity for generalized permutohedra Fu Liu

What can we show?

Partial results to the second conjecture:

Lemma (Castillo-L.). The α values for regular permutohedra of dimension ≤ 6 are all

positive.

Lemma (Castillo-L.). α(F,Πn−1) > 0 for any face F of Πn−1 of codimension 2 or 3.

Page 18



Ehrhart positivity for generalized permutohedra Fu Liu

What can we show?

Partial results to the second conjecture:

Lemma (Castillo-L.). The α values for regular permutohedra of dimension ≤ 6 are all

positive.

Lemma (Castillo-L.). α(F,Πn−1) > 0 for any face F of Πn−1 of codimension 2 or 3.

Lemma (Castillo-L.). α(E,Πn−1) > 0 for any edge E of Πn−1 of dimension ≤ 100.

Page 18



Ehrhart positivity for generalized permutohedra Fu Liu

What can we show?

Partial results to the second conjecture:

Lemma (Castillo-L.). The α values for regular permutohedra of dimension ≤ 6 are all

positive.

Lemma (Castillo-L.). α(F,Πn−1) > 0 for any face F of Πn−1 of codimension 2 or 3.

Lemma (Castillo-L.). α(E,Πn−1) > 0 for any edge E of Πn−1 of dimension ≤ 100.

Applying the reduction theorem, we get:

Corollary (Castillo-L.). i. Any integral generalized permutohedron of dimension ≤ 6

is Ehrhart positive.

ii. The third and fourth coefficients in the Ehrhart polynomial of any integral generalized

permutohedron is positive.

iii. The linear coefficient in the Ehrhart polynomial of any integral generalized permuto-

hedron of dimension ≤ 100 is positive.
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PART III:

The BV-construction and idea of proofs
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Computing the BV-construction

In order to attack our conjectures, we want to compute α for cones arising from regu-

lar permutohedra Πn−1, or equivalently compute Ψ arising from the braid arrangement

fan Bn.
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Computing the BV-construction

In order to attack our conjectures, we want to compute α for cones arising from regu-

lar permutohedra Πn−1, or equivalently compute Ψ arising from the braid arrangement

fan Bn.

Different constructions were given for Ψ/α. We use Berline-Vergne’s construction

for its nice properties.

In general, the computation of Ψ(C) is quite complicated. However, when the cone

C is unimodular, computations are greatly simplified.

Lemma 8. Let C be a one-dimensional (unimodular) cone. Then Ψ(C) = 1/2.
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Computing the BV-Construction (cont’d)
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Computing the BV-Construction (cont’d)

Lemma 9. IfC = Cone(u1,u2),where {u1,u2} is a basis for the lattice span(u1,u2)∩

Z
n, then

Ψ(C) =
1

4
+

1

12

(
〈u1,u2〉

〈u1,u1〉
+

〈u1,u2〉

〈u2,u2〉

)

.
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Computing the BV-Construction (cont’d)

Lemma 9. IfC = Cone(u1,u2),where {u1,u2} is a basis for the lattice span(u1,u2)∩

Z
n, then

Ψ(C) =
1

4
+

1

12

(
〈u1,u2〉

〈u1,u1〉
+

〈u1,u2〉

〈u2,u2〉

)

.

Example. Consider the polygon P in R
2 with vertices v1 = (0, 0),v2 = (2, 0), and

v3 = (0, 1). Let Ci = fconep(vi, P ).

v1 = (0, 0)

v3 = (0, 1)

v2 = (2, 0)
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Computing the BV-Construction (cont’d)

Lemma 9. IfC = Cone(u1,u2),where {u1,u2} is a basis for the lattice span(u1,u2)∩

Z
n, then

Ψ(C) =
1

4
+

1

12

(
〈u1,u2〉

〈u1,u1〉
+

〈u1,u2〉

〈u2,u2〉

)

.

Example. Consider the polygon P in R
2 with vertices v1 = (0, 0),v2 = (2, 0), and

v3 = (0, 1). Let Ci = fconep(vi, P ).

v1 = (0, 0)

v3 = (0, 1)

v2 = (2, 0)

C1 = Cone((1, 0), (0, 1)) is a unimodular cone. Thus,

α(v1, P ) = Ψ(C1) =
1

4
+

1

12

(
0

1
+

0

1

)

=
1

4
.
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Computing the BV-Construction (cont’d)

Lemma 9. IfC = Cone(u1,u2),where {u1,u2} is a basis for the lattice span(u1,u2)∩

Z
n, then

Ψ(C) =
1

4
+

1

12

(
〈u1,u2〉

〈u1,u1〉
+

〈u1,u2〉

〈u2,u2〉

)

.

Example. Consider the polygon P in R
2 with vertices v1 = (0, 0),v2 = (2, 0), and

v3 = (0, 1). Let Ci = fconep(vi, P ).

v1 = (0, 0)

v3 = (0, 1)

v2 = (2, 0)

C1 = Cone((1, 0), (0, 1)) is a unimodular cone. Thus,

α(v1, P ) = Ψ(C1) =
1

4
+

1

12

(
0

1
+

0

1

)

=
1

4
.

C2 = Cone((−2, 1), (−1, 0)) is a unimodular cone. Thus,

α(v2, P ) = Ψ(C2) =
1

4
+

1

12

(
2

5
+

2

1

)

=
9

20
.
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Computing the BV-Construction (cont’d)

C3 = Cone((0,−1), (2,−1)), which is not unimodular. So we cannot directly

apply the formula to compute Ψ(C3).
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Computing the BV-Construction (cont’d)

C3 = Cone((0,−1), (2,−1)), which is not unimodular. So we cannot directly

apply the formula to compute Ψ(C3). In order to compute it, we first decompose C3:

[C3] =
[
Cone

(
(0,−1), (1,−1)

)]
+
[
Cone

(
(1,−1), (2,−1)

)]
−
[
Cone

(
(1,−1)

)]
.

v1 = (0, 0)

v3 = (0, 1)

v2 = (2, 0)(1,0)
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Computing the BV-Construction (cont’d)

C3 = Cone((0,−1), (2,−1)), which is not unimodular. So we cannot directly

apply the formula to compute Ψ(C3). In order to compute it, we first decompose C3:

[C3] =
[
Cone

(
(0,−1), (1,−1)

)]
+
[
Cone

(
(1,−1), (2,−1)

)]
−
[
Cone

(
(1,−1)

)]
.

v1 = (0, 0)

v3 = (0, 1)

v2 = (2, 0)(1,0)

We apply the formula to the two first cones in the above decomposition and get Ψ

values of 3/8 and 17/40. Since the last cone is one-dimensional, we get its Ψ value

to be 1/2.
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Computing the BV-Construction (cont’d)

C3 = Cone((0,−1), (2,−1)), which is not unimodular. So we cannot directly

apply the formula to compute Ψ(C3). In order to compute it, we first decompose C3:

[C3] =
[
Cone

(
(0,−1), (1,−1)

)]
+
[
Cone

(
(1,−1), (2,−1)

)]
−
[
Cone

(
(1,−1)

)]
.

v1 = (0, 0)

v3 = (0, 1)

v2 = (2, 0)(1,0)

We apply the formula to the two first cones in the above decomposition and get Ψ

values of 3/8 and 17/40. Since the last cone is one-dimensional, we get its Ψ value

to be 1/2. Finally, by Ψ is a valuation function, we get

α(v3, P ) = Ψ(C3) =
3

8
+

17

40
−

1

2
=

3

10
.
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Computing the BV-Construction (cont’d)

Lemma 10. If C = Cone(u1,u2,u3) where u1,u2,u3 is a basis for the lattice

span(u1,u2) ∩ Z
n, then

Ψ(C) =
1

8
+

1

24

(
〈u1,u2〉

〈u1,u1〉
+

〈u1,u2〉

〈u2,u2〉
+

〈u1,u3〉

〈u1,u1〉
+

〈u1,u3〉

〈u3,u3〉
+

〈u3,u2〉

〈u2,u2〉
+

〈u3,u2〉

〈u3,u3〉

)

.
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Computing the BV-Construction (cont’d)

Lemma 10. If C = Cone(u1,u2,u3) where u1,u2,u3 is a basis for the lattice

span(u1,u2) ∩ Z
n, then

Ψ(C) =
1

8
+

1

24

(
〈u1,u2〉

〈u1,u1〉
+

〈u1,u2〉

〈u2,u2〉
+

〈u1,u3〉

〈u1,u1〉
+

〈u1,u3〉

〈u3,u3〉
+

〈u3,u2〉

〈u2,u2〉
+

〈u3,u2〉

〈u3,u3〉

)

.

Remark 11. The formulas for 2-dim and 3-dim unimodular cones appear to be simple.

However, the apparent simplicity breaks down for dimension 4. The formula for 4-dim

unimodular cones include (way) more than 1000 terms.

Page 23



Ehrhart positivity for generalized permutohedra Fu Liu

Computing the BV-Construction (cont’d)

Lemma 10. If C = Cone(u1,u2,u3) where u1,u2,u3 is a basis for the lattice

span(u1,u2) ∩ Z
n, then

Ψ(C) =
1

8
+

1

24

(
〈u1,u2〉

〈u1,u1〉
+

〈u1,u2〉

〈u2,u2〉
+

〈u1,u3〉

〈u1,u1〉
+

〈u1,u3〉

〈u3,u3〉
+

〈u3,u2〉

〈u2,u2〉
+

〈u3,u2〉

〈u3,u3〉

)

.

Remark 11. The formulas for 2-dim and 3-dim unimodular cones appear to be simple.

However, the apparent simplicity breaks down for dimension 4. The formula for 4-dim

unimodular cones include (way) more than 1000 terms.

Fact 12. Ψ is computed recursively. So lower dimensional cones are easier to compute.

Recall that if F is a codimension k face of P , then fconep(F, P ) is k-dimensional.

Thus, α(F, P ) is easier to compute if F is a higher dimensional face.
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Proofs of lemmas

Lemma (Castillo-L.). The α values for regular permutohedra of dimension ≤ 6 are all

positive.

Proof. Directly compute all the α’s.
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Proofs of lemmas

Lemma (Castillo-L.). The α values for regular permutohedra of dimension ≤ 6 are all

positive.

Proof. Directly compute all the α’s.

Lemma (Castillo-L.). α(F,Πn−1) > 0 for any face F of Πn−1 of codimension 2 or 3.

Proof. We have precise formulas forΨ of unimodular cones of dimension ≤ 3. Applying

these to regular permutohedra, we get α-positivity for faces of codimension ≤ 3.
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Proofs of lemmas

Lemma (Castillo-L.). The α values for regular permutohedra of dimension ≤ 6 are all

positive.

Proof. Directly compute all the α’s.

Lemma (Castillo-L.). α(F,Πn−1) > 0 for any face F of Πn−1 of codimension 2 or 3.

Proof. We have precise formulas forΨ of unimodular cones of dimension ≤ 3. Applying

these to regular permutohedra, we get α-positivity for faces of codimension ≤ 3.

Lemma 13 (Castillo-L.). α(E,Πn−1) > 0 for any edge E of Πn−1 of dimension ≤

100.

The approaches used above do not work. Since α(E,Πn−1) is Ψ of an (n − 2)-

dimensional cone, which is very hard to compute directly.
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Proofs of lemmas

Lemma (Castillo-L.). The α values for regular permutohedra of dimension ≤ 6 are all

positive.

Proof. Directly compute all the α’s.

Lemma (Castillo-L.). α(F,Πn−1) > 0 for any face F of Πn−1 of codimension 2 or 3.

Proof. We have precise formulas forΨ of unimodular cones of dimension ≤ 3. Applying

these to regular permutohedra, we get α-positivity for faces of codimension ≤ 3.

Lemma 13 (Castillo-L.). α(E,Πn−1) > 0 for any edge E of Πn−1 of dimension ≤

100.

The approaches used above do not work. Since α(E,Πn−1) is Ψ of an (n − 2)-

dimensional cone, which is very hard to compute directly.

Remark. The number “100” in the lemma can be pushed further.
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The symmetry property

Lemma. The valuation Ψ (from the BV-construction) is symmetric about the coordi-

nates, i.e., for any cone C ∈ R
n and any signed permutation (σ, s) ∈ Sn × {±1}n,

we have

Ψ(C) = Ψ((σ, s)(C)),
where (σ, s)(C) = {(s1xσ(1), s2xσ(2), . . . , snxσ(n)) : (x1, . . . , xn) ∈ C}.
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Idea of the proof of Lemma 13

Recall that the coefficient of tk in i(P, t) is given by
∑

F : a k-dimensional face of P

α(F, P ) vol(F ).

In particular, the coefficient of the linear term is given by
∑

E: edge of P

α(E, P ) vol(E).
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Idea of the proof of Lemma 13

Recall that the coefficient of tk in i(P, t) is given by
∑

F : a k-dimensional face of P

α(F, P ) vol(F ).

In particular, the coefficient of the linear term is given by
∑

E: edge of P

α(E, P ) vol(E).

General idea: Suppose you have a family of polytopes such that

• they have same pointed feasible cones (for edges) up to signed permutations, and

thus have the same α-values;

• the Ehrhart polynomial of each polytope in the family is known (or at least the linear

Ehrhart coefficient is known).

Then as long as you have enough “independent” polytopes in your family, you can figure

out the α-values.
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Idea of the proof of Lemma 13 (cont’d)

Example. When n = 3 : Π2 = Perm((1, 2, 3)) = conv{σ : σ ∈ S3}.

(3, 1, 2)

(3, 2, 1) (2, 3, 1)

(1, 3, 2)

(1, 2, 3)(2, 1, 3) The pointed feasible cones of the six edges of Π2 are

Cone((1, 1,−2)), Cone((2,−1,−1)), Cone((1,−2, 1)),

Cone((−1,−1, 2)), Cone((−2, 1, 1)), Cone((−1, 2,−1)),

Page 27



Ehrhart positivity for generalized permutohedra Fu Liu

Idea of the proof of Lemma 13 (cont’d)

Example. When n = 3 : Π2 = Perm((1, 2, 3)) = conv{σ : σ ∈ S3}.

(3, 1, 2)

(3, 2, 1) (2, 3, 1)

(1, 3, 2)

(1, 2, 3)(2, 1, 3) The pointed feasible cones of the six edges of Π2 are

Cone((1, 1,−2)), Cone((2,−1,−1)), Cone((1,−2, 1)),

Cone((−1,−1, 2)), Cone((−2, 1, 1)), Cone((−1, 2,−1)),

By the symmetry property of Ψ, these cones all have the same value. Therefore, all

α(E,Π2) are a single value, say α.
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Idea of the proof of Lemma 13 (cont’d)

Example. When n = 3 : Π2 = Perm((1, 2, 3)) = conv{σ : σ ∈ S3}.

(3, 1, 2)

(3, 2, 1) (2, 3, 1)

(1, 3, 2)

(1, 2, 3)(2, 1, 3) The pointed feasible cones of the six edges of Π2 are

Cone((1, 1,−2)), Cone((2,−1,−1)), Cone((1,−2, 1)),

Cone((−1,−1, 2)), Cone((−2, 1, 1)), Cone((−1, 2,−1)),

By the symmetry property of Ψ, these cones all have the same value. Therefore, all

α(E,Π2) are a single value, say α.

The Ehrhart polynomial of Π2 is 3t2 + 3t+ 1. Thus,

3 =
∑

E

α(E,Π2) · vol(E) = 6α ⇒ α = 1/2 > 0.
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Idea of the proof of Lemma 13 (cont’d)

Example. When n = 4 : Π3 = Perm((1, 2, 3, 4)) = {σ : σ ∈ S4}.
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Idea of the proof of Lemma 13 (cont’d)

Example. When n = 4 : Π3 = Perm((1, 2, 3, 4)) = {σ : σ ∈ S4}.

Π3 have 36 edges of two kinds.

24 short edges have the same α-

values, say α1, and 12 long edges

have the same α-values, say α2.
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Idea of the proof of Lemma 13 (cont’d)

Example. When n = 4 : Π3 = Perm((1, 2, 3, 4)) = {σ : σ ∈ S4}.

Π3 have 36 edges of two kinds.

24 short edges have the same α-

values, say α1, and 12 long edges

have the same α-values, say α2.

The Ehrhart polynomial of Π3 is 16t3 + 15t2 + 6t+ 1. Thus,

6 =
∑

E

α(E,Π3) · vol(E) = 24α1 + 12α2.
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Idea of the proof of Lemma 13 (cont’d)

Example. When n = 4 : Π3 = Perm((1, 2, 3, 4)) = {σ : σ ∈ S4}.

Π3 have 36 edges of two kinds.

24 short edges have the same α-

values, say α1, and 12 long edges

have the same α-values, say α2.

The Ehrhart polynomial of Π3 is 16t3 + 15t2 + 6t+ 1. Thus,

6 =
∑

E

α(E,Π3) · vol(E) = 24α1 + 12α2.

Not enough equations!
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Idea of the proof of Lemma 13 (cont’d)

Consider the hypersimplex ∆2,4 = Perm((0, 0, 1, 1)). It has 12 edges whose cor-

responding pointed feasible cones are the same as that of the 12 long edges of Π3. So

they all have α-values α2.

Page 29



Ehrhart positivity for generalized permutohedra Fu Liu

Idea of the proof of Lemma 13 (cont’d)

Consider the hypersimplex ∆2,4 = Perm((0, 0, 1, 1)). It has 12 edges whose cor-

responding pointed feasible cones are the same as that of the 12 long edges of Π3. So

they all have α-values α2.

The Ehrhart polynomial of ∆2,4 is
2

3
t3 + 2t2 +

7

3
t+ 1. Thus,

7

3
=

∑

E

α(E,∆2,4) · vol(E) = 12α2.
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Idea of the proof of Lemma 13 (cont’d)

Consider the hypersimplex ∆2,4 = Perm((0, 0, 1, 1)). It has 12 edges whose cor-

responding pointed feasible cones are the same as that of the 12 long edges of Π3. So

they all have α-values α2.

The Ehrhart polynomial of ∆2,4 is
2

3
t3 + 2t2 +

7

3
t+ 1. Thus,

7

3
=

∑

E

α(E,∆2,4) · vol(E) = 12α2.

Therefore, we solve the 2× 2 linear system, and get

α1 =
11

72
> 0, α2 =

7

36
> 0.
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Idea of the proof of Lemma 13 (cont’d)

Consider the hypersimplex ∆2,4 = Perm((0, 0, 1, 1)). It has 12 edges whose cor-

responding pointed feasible cones are the same as that of the 12 long edges of Π3. So

they all have α-values α2.

The Ehrhart polynomial of ∆2,4 is
2

3
t3 + 2t2 +

7

3
t+ 1. Thus,

7

3
=

∑

E

α(E,∆2,4) · vol(E) = 12α2.

Therefore, we solve the 2× 2 linear system, and get

α1 =
11

72
> 0, α2 =

7

36
> 0.

For arbitrary n: The linear Ehrhart coeffcient of some polytopes in the y-family can be

easily described. Using these, we were able to set up an explicit triangular linear system

for {α(E,Πn−1) : E is an edge of Πn−1} for any n.
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PART IV:

Other questions and results
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Uniqueness of the construction of Ψ

The solution Ψ to McMullen’s formula is not unique since we know there are different

constructions.

Observation 14. When we prove Lemma 13, we did not really compute Berline-Vergne’s

construction. Instead, we just use the fact that their construction is symmetric about the

coordinates to set up linear system to solve.

E.g., in the case of Π3 we did in the last example, as long as we know a construction

Ψ

• satisfies McMullen’s formula, and

• is symmetric about the coordinates,

we will set up exactly the same 2 × 2 linear system, and find exactly the same two

α-values.

So Ψ of the cones appeared in the example or the values of α(E,Π3) are unique.
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Uniqueness of the construction of Ψ

Question 15. Is it true that Ψ in McMullen’s formula is uniquely determined if we require

it to be symmetric about the coordinates?
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Uniqueness of the construction of Ψ

Question 15. Is it true that Ψ in McMullen’s formula is uniquely determined if we require

it to be symmetric about the coordinates?

If so, then the BV-construction is the only symmetric construction.
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Uniqueness of the construction of Ψ

Question 15. Is it true that Ψ in McMullen’s formula is uniquely determined if we require

it to be symmetric about the coordinates?

If so, then the BV-construction is the only symmetric construction.

Theorem 16 (Castillo-L.). Suppose Ψ is a solution to McMullen’s formula and is sym-

metric about the coordinates. Then the values of Ψ on cones arising from generalized

permutohedron are uniquely determined.
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Uniqueness of the construction of Ψ

Question 15. Is it true that Ψ in McMullen’s formula is uniquely determined if we require

it to be symmetric about the coordinates?

If so, then the BV-construction is the only symmetric construction.

Theorem 16 (Castillo-L.). Suppose Ψ is a solution to McMullen’s formula and is sym-

metric about the coordinates. Then the values of Ψ on cones arising from generalized

permutohedron are uniquely determined.

Idea of proof: Use mixed Ehrhart theory.
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Mixed Ehrhart Theorem

Consider the following Minkwoski sum:

P = w1P1 + w2P2 + · · ·+ wkPk,

where wi are variables and Pi are polytopes.

Mixed Ehrhart Theorem The number of integer points in P is a polynomial in wi’s.

The coefficients are called mixed Ehrhart coefficients.
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Mixed Ehrhart Theorem

Consider the following Minkwoski sum:

P = w1P1 + w2P2 + · · ·+ wkPk,

where wi are variables and Pi are polytopes.

Mixed Ehrhart Theorem The number of integer points in P is a polynomial in wi’s.

The coefficients are called mixed Ehrhart coefficients.

Postnikov showed that usual permutohedra are Minkowski sums of hypersimplices.

Perm(v) = w1∆1,n + w2∆2,n + · · ·+ wn−1∆n−1,n,

where

wi := vi+1 − vi for i = 1, 2, . . . , n− 1,

and the hypersimplex ∆k,n is defined as

∆k,n = Perm(0, · · · , 0
︸ ︷︷ ︸

n−k

, 1, · · · , 1
︸ ︷︷ ︸

k

).
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A formula

Theorem 17 (Castillo-L.). Suppose Ψ is a solution to McMullen’s formula and is sym-

metric about the coordinates. Then the α values for the regular permutohedron Πn−1

(or the braid arrangement fan Bn) are positive scalars of mixed Ehrhart coefficients of

hypersimplices.
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Consequences

i. We obtain a proof for Theorem 16 (the theorem on uniqueness of Ψ).
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Consequences

i. We obtain a proof for Theorem 16 (the theorem on uniqueness of Ψ).

ii. The following three statements are equivalent:

(a) All α values of Πn−1 are positive. (The strong conjecture).

(b) All mixed Ehrhart coefficients of hypersimplices are positive.

(c) Let X be corresponding toric variety to the braid arrangement fan Bn. The Todd

class is positive with respect to the torus invariant cycles, that is

Todd(X) =
∑

σ∈Bn

rσ[V (σ)],

for some rσ > 0.
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