Powers of sums of ideals

Huy Tài Hà Tulane University

Partially supported by: Japan Society for the Promotion of Science and Bernick Faculty Grant of Tulane University

(Joint with Hop D. Nguyen, Ngo Viet Trung, Tran Nam Trung)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Let k be a field. Let A = k[x₁,..., x_r] and B = k[y₁,..., y_s] be polynomial rings over k.
- Let *I* ⊆ *A* and *J* ⊆ *B* be nonzero proper homogeneous ideals.

Problem

Investigate algebraic invariants and properties of

$$(I+J)^n$$
 and $(I+J)^{(n)} \subseteq R = A \otimes_k B$

via invariants and properties of powers of I and J.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Motivation

- **Powers of ideals** appear naturally in singularities and multiplicity theories.
- Fiber product: Let $X = \operatorname{Spec} A/I$ and $Y = \operatorname{Spec} B/J$. Then

 $X \times_k Y = \operatorname{Spec} R/(I+J).$

Disjoint union: Let G₁ and G₂ be simple graphs on vertex sets V = {x₁,..., x_r} and W = {y₁,..., y_s}, and let G = G₁ ⊔ G₂ be their disjoint union. Then

$$I(G) = I(G_1) + I(G_2).$$

• Hyperplane section: $J = (y) \subseteq k[y] = B$. In this case,

$$I+J=(I,y)\subseteq k[x_1,\ldots,x_r,y].$$

- **Powers of ideals** appear naturally in singularities and multiplicity theories.
- Fiber product: Let $X = \operatorname{Spec} A/I$ and $Y = \operatorname{Spec} B/J$. Then

$$X \times_k Y = \operatorname{Spec} R/(I+J).$$

Disjoint union: Let G₁ and G₂ be simple graphs on vertex sets V = {x₁,..., x_r} and W = {y₁,..., y_s}, and let G = G₁ ⊔ G₂ be their disjoint union. Then

$$I(G) = I(G_1) + I(G_2).$$

• Hyperplane section: $J = (y) \subseteq k[y] = B$. In this case,

$$I+J=(I,y)\subseteq k[x_1,\ldots,x_r,y].$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

- **Powers of ideals** appear naturally in singularities and multiplicity theories.
- Fiber product: Let $X = \operatorname{Spec} A/I$ and $Y = \operatorname{Spec} B/J$. Then

$$X \times_k Y = \operatorname{Spec} R/(I+J).$$

Disjoint union: Let G₁ and G₂ be simple graphs on vertex sets V = {x₁,..., x_r} and W = {y₁,..., y_s}, and let G = G₁ ⊔ G₂ be their disjoint union. Then

$$I(G)=I(G_1)+I(G_2).$$

• Hyperplane section: $J = (y) \subseteq k[y] = B$. In this case,

$$I+J=(I,y)\subseteq k[x_1,\ldots,x_r,y].$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

- **Powers of ideals** appear naturally in singularities and multiplicity theories.
- Fiber product: Let $X = \operatorname{Spec} A/I$ and $Y = \operatorname{Spec} B/J$. Then

$$X \times_k Y = \operatorname{Spec} R/(I+J).$$

Disjoint union: Let G₁ and G₂ be simple graphs on vertex sets V = {x₁,..., x_r} and W = {y₁,..., y_s}, and let G = G₁ ⊔ G₂ be their disjoint union. Then

$$I(G)=I(G_1)+I(G_2).$$

• Hyperplane section: $J = (y) \subseteq k[y] = B$. In this case,

$$I + J = (I, y) \subseteq k[x_1, \ldots, x_r, y].$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Problem

Suppose that

- $I \subseteq A = k[x_1, \ldots, x_r]$ is a homogeneous ideal,
- y is a new variable, and
- R = A[y].

Compute the depth and regularity of $(I, y)^n$ and $(I, y)^{(n)}$ in *R*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Let R be a standard graded k-algebra, and let \mathfrak{m} be its maximal homogenous ideal. Let M be a finitely generated graded R-module. Then

- depth $M := \min\{i \mid H^i_{\mathfrak{m}}(M) \neq 0\};$
- reg $M := \max\{t \mid H^i_{\mathfrak{m}}(M)_{t-i} = 0 \forall i \ge 0\}.$

• Over polynomial rings, these invariants are related to the minimal free resolution.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let *R* be a standard graded *k*-algebra, and let \mathfrak{m} be its maximal homogenous ideal. Let *M* be a finitely generated graded *R*-module. Then

• depth
$$M := \min\{i \mid H^i_{\mathfrak{m}}(M) \neq 0\};$$

- reg $M := \max\{t \mid H^i_{\mathfrak{m}}(M)_{t-i} = 0 \forall i \ge 0\}.$
- Over polynomial rings, these invariants are related to the minimal free resolution.

- $A = k[x_1, \ldots, x_r], B = k[y_1, \ldots, y_s]$ and $R = A \otimes_k B$.
- $I \subseteq A$ and $J \subseteq B$ are proper homogeneous ideals.

Key observation: $(I + J)^n = \sum_{t=0}^n I^{n-t} J^t$.

• Set $Q_{
ho} := \sum_{t=0}^{
ho} I^{n-t} J^t$. Then

 $I^n = Q_0 \subset Q_1 \subset \cdots \subset Q_n = (I+J)^n.$

- $Q_p/Q_{p-1} = I^{n-p}J^p/I^{n-p+1}J^p$.
- There are 2 short exact sequences

 $0 \longrightarrow Q_p/Q_{p-1} \longrightarrow R/Q_{p-1} \longrightarrow R/Q_p \longrightarrow 0.$

 $0 \longrightarrow Q_p/Q_{p-1} \longrightarrow R/I^{n-p+1}J^p \longrightarrow R/I^{n-p}J^p \longrightarrow 0.$

(日) (圖) (E) (E) (E)

- $A = k[x_1, \ldots, x_r], B = k[y_1, \ldots, y_s]$ and $R = A \otimes_k B$.
- $I \subseteq A$ and $J \subseteq B$ are proper homogeneous ideals.

Key observation: $(I + J)^n = \sum_{t=0}^n I^{n-t} J^t$.

• Set $Q_p := \sum_{t=0}^p I^{n-t} J^t$. Then

 $I^n=Q_0\subset Q_1\subset\cdots\subset Q_n=(I+J)^n.$

• $Q_p/Q_{p-1} = I^{n-p}J^p/I^{n-p+1}J^p$.

There are 2 short exact sequences

 $0 \longrightarrow Q_p/Q_{p-1} \longrightarrow R/Q_{p-1} \longrightarrow R/Q_p \longrightarrow 0.$

 $0 \longrightarrow Q_p/Q_{p-1} \longrightarrow R/I^{n-p+1}J^p \longrightarrow R/I^{n-p}J^p \longrightarrow 0.$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

- $A = k[x_1, \ldots, x_r], B = k[y_1, \ldots, y_s]$ and $R = A \otimes_k B$.
- $I \subseteq A$ and $J \subseteq B$ are proper homogeneous ideals.

Key observation: $(I + J)^n = \sum_{t=0}^n I^{n-t} J^t$.

• Set
$$Q_p := \sum_{t=0}^{p} I^{n-t} J^t$$
. Then

$$I^n = Q_0 \subset Q_1 \subset \cdots \subset Q_n = (I+J)^n.$$

• $Q_p/Q_{p-1} = I^{n-p}J^p/I^{n-p+1}J^p$.

There are 2 short exact sequences

$$0 \longrightarrow Q_p/Q_{p-1} \longrightarrow R/Q_{p-1} \longrightarrow R/Q_p \longrightarrow 0.$$

 $0 \longrightarrow Q_p/Q_{p-1} \longrightarrow R/I^{n-p+1}J^p \longrightarrow R/I^{n-p}J^p \longrightarrow 0.$

- $A = k[x_1, \ldots, x_r], B = k[y_1, \ldots, y_s]$ and $R = A \otimes_k B$.
- $I \subseteq A$ and $J \subseteq B$ are proper homogeneous ideals.

Key observation: $(I + J)^n = \sum_{t=0}^n I^{n-t} J^t$.

• Set
$$Q_p := \sum_{t=0}^p I^{n-t} J^t$$
. Then

$$I^n = Q_0 \subset Q_1 \subset \cdots \subset Q_n = (I+J)^n.$$

•
$$Q_p/Q_{p-1} = I^{n-p}J^p/I^{n-p+1}J^p$$
.

There are 2 short exact sequences

$$0 \longrightarrow Q_p/Q_{p-1} \longrightarrow R/Q_{p-1} \longrightarrow R/Q_p \longrightarrow 0.$$

 $0 \longrightarrow Q_p/Q_{p-1} \longrightarrow R/I^{n-p+1}J^p \longrightarrow R/I^{n-p}J^p \longrightarrow 0.$

- $A = k[x_1, \ldots, x_r], B = k[y_1, \ldots, y_s]$ and $R = A \otimes_k B$.
- $I \subseteq A$ and $J \subseteq B$ are proper homogeneous ideals.

Key observation: $(I + J)^n = \sum_{t=0}^n I^{n-t} J^t$.

• Set
$$Q_p := \sum_{t=0}^p I^{n-t} J^t$$
. Then

$$I^n = Q_0 \subset Q_1 \subset \cdots \subset Q_n = (I+J)^n.$$

•
$$Q_p/Q_{p-1} = I^{n-p}J^p/I^{n-p+1}J^p$$
.

There are 2 short exact sequences

$$0 \longrightarrow Q_{\rho}/Q_{\rho-1} \longrightarrow R/Q_{\rho-1} \longrightarrow R/Q_{\rho} \longrightarrow 0.$$
$$0 \longrightarrow Q_{\rho}/Q_{\rho-1} \longrightarrow R/I^{n-\rho+1}J^{\rho} \longrightarrow R/I^{n-\rho}J^{\rho} \longrightarrow 0.$$

$$0 \longrightarrow Q_{p}/Q_{p-1} \longrightarrow R/Q_{p-1} \longrightarrow R/Q_{p} \longrightarrow 0.$$
$$0 \longrightarrow Q_{p}/Q_{p-1} \longrightarrow R/I^{n-p+1}J^{p} \longrightarrow R/I^{n-p}J^{p} \longrightarrow 0.$$

Lemma (Hoa - Tâm)

$$reg R/IJ = reg A/I + reg B/J + 1.$$

2 depth
$$R/IJ$$
 = depth A/I + depth B/J + 1.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

Theorem

(—, N.V. Trung and T.N. Trung) For all $n \ge 1$, we have • depth $R/(I+J)^n \ge$

$$\min_{i\in[1,n-1],\ j\in[1,n]} \left\{ \operatorname{depth} A/I^{n-i} + \operatorname{depth} B/J^i + 1, \right.$$

depth
$$A/I^{n-j+1}$$
 + depth B/J^j },

2 reg
$$R/(I+J)^n \leq$$

$$\max_{i\in[1,n-1],\ j\in[1,n]}\big\{\operatorname{reg} A/I^{n-i}+\operatorname{reg} B/J^i+1,$$

$$\operatorname{reg} A/I^{n-j+1} + \operatorname{reg} B/J^j \big\}.$$

(**Hop D. Nguyen**) If, in addition, either char k = 0 or I and J are monomial ideals then we have the equalities.

Proposition

Assume that depth $A/I^2 \ge \operatorname{depth} A/I + 1$.

- If depth $B/J^2 \ge$ depth B/J + 1 then depth $R/(I + J)^2 =$ depth A/I + depth B/J + 1.
- If depth $B/J^2 < \text{depth } B/J$ then depth $R/(I+J)^2 = \text{depth } A/I + \text{depth } B/J^2$.

イロト 不得 とくほ とくほ とうほ

Proposition

Assume that reg $A/I^2 \leq \operatorname{reg} A/I + 1$.

If
$$\operatorname{reg} B/J^2 \le \operatorname{reg} B/J + 1$$
 then
 $\operatorname{reg} R/(I+J)^2 = \operatorname{reg} A/I + \operatorname{reg} B/J + 1$.

If reg
$$B/J^2 > \operatorname{reg} B/J$$
 then
reg $R/(I+J)^2 = \operatorname{reg} A/I + \operatorname{reg} B/J^2$.

Example (Conca)

Let $A = k[x_1, x_2, x_3]$ and $I = (x_1^4, x_1^3 x_2, x_1 x_2^3, x_2^4, x_1^2 x_2^2 x_3^5)$. Using Macaulay2, we get reg A/I = 8 and reg $A/I^2 = 7$.

Proposition

Assume that reg $A/I^2 \leq \operatorname{reg} A/I + 1$.

• If reg
$$B/J^2 \le \operatorname{reg} B/J + 1$$
 then
reg $R/(I+J)^2 = \operatorname{reg} A/I + \operatorname{reg} B/J + 1$.

2 If reg
$$B/J^2 > \operatorname{reg} B/J$$
 then
reg $R/(I+J)^2 = \operatorname{reg} A/I + \operatorname{reg} B/J^2$.

Example (Conca)

Let $A = k[x_1, x_2, x_3]$ and $I = (x_1^4, x_1^3 x_2, x_1 x_2^3, x_2^4, x_1^2 x_2^2 x_3^5)$. Using Macaulay2, we get reg A/I = 8 and reg $A/I^2 = 7$.

Corollary

Assume that J is generated by variables. Then

• depth
$$R/(I+J)^n = \min_{i \le n} \operatorname{depth} A/I^i + \dim B/J$$
, and

2 reg
$$R/(I+J)^n = \max_{i \le n} \{ \operatorname{reg} A/I^i - i \} + n.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Powers of sums of ideals by decomposition

Proposition

$$(I+J)^n/(I+J)^{n+1} = \bigoplus_{i+j=n} (I^i/I^{i+1} \otimes_k J^j/J^{j+1}).$$

Lemma (Goto - Watanabe)

Let M and N be graded modules over A and B, respectively. Let \mathfrak{u} and \mathfrak{v} be the maximal homogeneous ideals of A and B, respectively, and let \mathfrak{m} be the maximal homogeneous ideal of R. Then

$$H^n_{\mathfrak{m}}(M \otimes_k N) = \bigoplus_{i+j=n} H^i_{\mathfrak{u}}(M) \otimes_k H^j_{\mathfrak{v}}(N).$$

In particular,

- O depth $M \otimes_k N =$ depth M + depth N, and
 -) reg $M \otimes_k N = \operatorname{reg} M + \operatorname{reg} N.$

ヘロン 人間 とくほ とくほとう

э

Powers of sums of ideals by decomposition

Proposition

$$(I+J)^n/(I+J)^{n+1} = \bigoplus_{i+j=n} (I^i/I^{i+1} \otimes_k J^j/J^{j+1}).$$

Lemma (Goto - Watanabe)

Let M and N be graded modules over A and B, respectively. Let \mathfrak{u} and \mathfrak{v} be the maximal homogeneous ideals of A and B, respectively, and let \mathfrak{m} be the maximal homogeneous ideal of R. Then

$$H^n_{\mathfrak{m}}(M \otimes_k N) = \bigoplus_{i+j=n} H^j_{\mathfrak{u}}(M) \otimes_k H^j_{\mathfrak{v}}(N).$$

In particular,

- O depth $M \otimes_k N =$ depth M + depth N, and
 -) reg $M \otimes_k N = \operatorname{reg} M + \operatorname{reg} N$.

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

э

Powers of sums of ideals by decomposition

Proposition

$$(I+J)^n/(I+J)^{n+1} = \bigoplus_{i+j=n} (I^i/I^{i+1} \otimes_k J^j/J^{j+1}).$$

Lemma (Goto - Watanabe)

Let M and N be graded modules over A and B, respectively. Let \mathfrak{u} and \mathfrak{v} be the maximal homogeneous ideals of A and B, respectively, and let \mathfrak{m} be the maximal homogeneous ideal of R. Then

$$H^n_{\mathfrak{m}}(M \otimes_k N) = \bigoplus_{i+j=n} H^i_{\mathfrak{u}}(M) \otimes_k H^j_{\mathfrak{v}}(N).$$

In particular,

• depth
$$M \otimes_k N =$$
 depth $M +$ depth N , and

$$2 reg $M \otimes_k N = reg M + reg N.$$$

イロト イヨト イヨト イヨト

Theorem (—, N.V. Trung and T.N. Trung)

For all
$$n \ge 1$$
, we have
a depth $\frac{(I+J)^n}{(I+J)^{n+1}} = \min_{i+j=n} \{ \text{depth } I^i / I^{i+1} + \text{depth } J^j / J^{j+1} \},$
a $\text{reg}(I+J)^n / (I+J)^{n+1} = \max_{i+j=n} \{ \text{reg } I^i / I^{i+1} + \text{reg } J^j / J^{j+1} \}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Cohen-Macaulayness of powers of sums of ideals

Corollary

The following are equivalent:

- $R/(I+J)^t$ is Cohen-Macaulay for all $t \le n$;
- (*I*+*J*)^{*n*-1}/(*I*+*J*)^{*n*} is Cohen-Macaulay;
- **(a)** A/I^t and B/J^t are Cohen-Macaulay for all $t \le n$;
- I^t/I^{t+1} and J^t/J^{t+1} are Cohen-Macaulay for all $t \le n-1$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

An ideal is said to have a *constant depth function* if the depth of all its powers are the same.

Proposition (---, N.V. Trung and T.N. Trung)

Let *I* and *J* be squarefree monomial ideals. Then I + J has a constant depth function if and only if so do *I* and *J*.

 Herzog-Vladiou: proved this result under an additional condition that the Rees algebras and *I* and *J* are Cohen-Macaulay.

イロト 不得 とくほ とくほ とうほ

An ideal is said to have a *constant depth function* if the depth of all its powers are the same.

Proposition (—, N.V. Trung and T.N. Trung)

Let *I* and *J* be squarefree monomial ideals. Then I + J has a constant depth function if and only if so do *I* and *J*.

• **Herzog-Vladiou:** proved this result under an additional condition that the Rees algebras and *I* and *J* are Cohen-Macaulay.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

An ideal is said to have a *constant depth function* if the depth of all its powers are the same.

Proposition (—, N.V. Trung and T.N. Trung)

Let *I* and *J* be squarefree monomial ideals. Then I + J has a constant depth function if and only if so do *I* and *J*.

• **Herzog-Vladiou:** proved this result under an additional condition that the Rees algebras and *I* and *J* are Cohen-Macaulay.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Asymptotic depth and regularity

• **Brodmann:** depth A/I^n = constant for $n \gg 0$.

Theorem (--, N.V. Trung and T.N. Trung) $\lim_{n \to \infty} \operatorname{depth} R/(I+J)^n = \min \left\{ \lim_{i \to \infty} \operatorname{depth} A/I^i + \min_{j \ge 0} \operatorname{depth} B/J^j, \\ \min_{i \ge 0} \operatorname{depth} A/I^i + \lim_{j \to \infty} \operatorname{depth} B/J^j \right\}.$

• **Brodmann:** depth A/I^n = constant for $n \gg 0$.

Theorem (--, N.V. Trung and T.N. Trung) $\lim_{n \to \infty} \operatorname{depth} R/(I+J)^n = \min \left\{ \lim_{i \to \infty} \operatorname{depth} A/I^i + \min_{j \ge 0} \operatorname{depth} B/J^j, \\ \min_{i \ge 0} \operatorname{depth} A/I^i + \lim_{j \to \infty} \operatorname{depth} B/J^j \right\}.$

Asymptotic depth and regularity

Outkosky-Herzog-Trung; Kodiyalam; Trung-Wang:

reg $I^n = an + b$ for $n \gg 0$.

Theorem (—, N.V. Trung and T.N. Trung)

Assume that reg $I^n = dn + e$ for $n \ge lin(I)$ and reg $J^n = cn + f$ for $n \ge lin(J)$, where $c \ge d$. Set $e^* = \max_{i \le lin(I)} \{ reg I^i - ci \}$ and $f^* = \max_{j \le lin(J)} \{ reg J^j - dj \}$. Then, for $n \gg 0$, we have

$$\operatorname{reg}(I+J)^n = \begin{cases} c(n+1) + f + e^* - 1 & \text{if } c > d, \\ d(n+1) + \max\{e^* + f, e + f^*\} - 1 & \text{if } c = d. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Asymptotic depth and regularity

• Cutkosky-Herzog-Trung; Kodiyalam; Trung-Wang:

reg $I^n = an + b$ for $n \gg 0$.

Theorem (—, N.V. Trung and T.N. Trung)

Assume that reg $I^n = dn + e$ for $n \ge lin(I)$ and reg $J^n = cn + f$ for $n \ge lin(J)$, where $c \ge d$. Set $e^* = \max_{i \le lin(I)} \{ reg I^i - ci \}$ and $f^* = \max_{j \le lin(J)} \{ reg J^j - dj \}$. Then, for $n \gg 0$, we have

$$\operatorname{reg}(I+J)^n = \begin{cases} c(n+1) + f + e^* - 1 & \text{if } c > d, \\ d(n+1) + \max\{e^* + f, e + f^*\} - 1 & \text{if } c = d. \end{cases}$$

Symbolic powers of ideals

Definition

Let *R* be a commutative ring with identify, and let $I \subseteq R$ be a proper ideal. The *n*-th *symbolic power* of *I* is defined to be

$$I^{(n)} := R \cap \Big(\bigcap_{\mathfrak{p} \in \mathsf{Min}_R(R/I)} I^n R_{\mathfrak{p}}\Big).$$

Example

• If $I = \wp_1 \cap \cdots \cap \wp_s$ is the defining ideal of *s* points in \mathbb{A}^n_k then

$$I^{(n)} = \wp_1^n \cap \cdots \cap \wp_s^n.$$

If *I* is a squarefree monomial ideal, $I = \bigcap_{\varphi \in Ass(B/I)} \varphi$, then

$$I^{(n)} = \bigcap_{\varphi \in \operatorname{Ass}(R/I)} \varphi^n.$$

Symbolic powers of ideals

Definition

Let *R* be a commutative ring with identify, and let $I \subseteq R$ be a proper ideal. The *n*-th *symbolic power* of *I* is defined to be

$$I^{(n)} := R \cap \Big(\bigcap_{\mathfrak{p} \in \mathsf{Min}_R(R/I)} I^n R_{\mathfrak{p}}\Big).$$

Example

• If $I = \wp_1 \cap \cdots \cap \wp_s$ is the defining ideal of *s* points in \mathbb{A}_k^n then

$$I^{(n)} = \wp_1^n \cap \cdots \cap \wp_s^n.$$

3 If *I* is a squarefree monomial ideal, $I = \bigcap_{\wp \in Ass(R/I)} \wp$, then

$$I^{(n)} = \bigcap_{\wp \in \operatorname{Ass}(R/I)} \wp^n.$$

Binomial expansion for symbolic powers

- $A = k[x_1, \ldots, x_r], B = k[y_1, \ldots, y_s]$ are polynomial rings.
- $I \subseteq A$ and $J \subseteq B$ are nonzero proper homogeneous ideals.

•
$$R = A \otimes_k B = k[x_1, \ldots, x_r, y_1, \ldots, y_s].$$

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung) For all $n \ge 1$, we have

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}.$$

 This expansion was recently proved for squarefree monomial ideals by Bocci, Cooper, Guardo, Harbourne, Janssen, Nagel, Seceleanu, Van Tuyl, and Vu.

イロト 不得 とくほ とくほ とうほ

Binomial expansion for symbolic powers

- $A = k[x_1, \ldots, x_r], B = k[y_1, \ldots, y_s]$ are polynomial rings.
- $I \subseteq A$ and $J \subseteq B$ are nonzero proper homogeneous ideals.

•
$$R = A \otimes_k B = k[x_1, \ldots, x_r, y_1, \ldots, y_s].$$

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)

For all $n \ge 1$, we have

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}.$$

• This expansion was recently proved for *squarefree monomial ideals* by **Bocci, Cooper, Guardo, Harbourne, Janssen, Nagel, Seceleanu, Van Tuyl,** and **Vu**.

イロト 不得 とくほ とくほ とうほ

Corollary

$$(I + J)^{(n)} = (I + J)^n$$
 if and only if $I^{(t)} = I^t$ and $J^{(t)} = J^t$ for all $t \le n$.

Definition

For a homogeneous ideal *K* set $\alpha(K) := \min\{d \mid K_d \neq 0\}$. The *Waldschmidt constant* of *K* is defined to be

$$\hat{\alpha}(K) := \lim_{n \to \infty} \frac{\alpha(K^{(n)})}{n}.$$

Corollary

$$\hat{\alpha}(I+J) = \min\{\hat{\alpha}(I), \hat{\alpha}(J)\}.$$

イロン 不得 とくほ とくほう 一日

Corollary

$$(I + J)^{(n)} = (I + J)^n$$
 if and only if $I^{(t)} = I^t$ and $J^{(t)} = J^t$ for all $t \le n$.

Definition

For a homogeneous ideal *K* set $\alpha(K) := \min\{d \mid K_d \neq 0\}$. The *Waldschmidt constant* of *K* is defined to be

$$\hat{\alpha}(\mathbf{K}) := \lim_{n \to \infty} \frac{\alpha(\mathbf{K}^{(n)})}{n}.$$

Corollary

$$\hat{\alpha}(I+J) = \min\{\hat{\alpha}(I), \hat{\alpha}(J)\}.$$

イロン 不得 とくほ とくほう 一日

Corollary

$$(I + J)^{(n)} = (I + J)^n$$
 if and only if $I^{(t)} = I^t$ and $J^{(t)} = J^t$ for all $t \le n$.

Definition

For a homogeneous ideal *K* set $\alpha(K) := \min\{d \mid K_d \neq 0\}$. The *Waldschmidt constant* of *K* is defined to be

$$\hat{\alpha}(K) := \lim_{n \to \infty} \frac{\alpha(K^{(n)})}{n}.$$

Corollary

$$\hat{\alpha}(I+J) = \min\{\hat{\alpha}(I), \hat{\alpha}(J)\}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• Set
$$Q_p := \sum_{t=0}^{p} I^{(n-t)} J^{(t)}$$
. Then
 $I^{(n)} = Q_0 \subset Q_1 \subset \cdots \subset Q_n = (I+J)^{(n)}$.
• $Q_p / Q_{p-1} = I^{(n-p)} J^{(p)} / I^{(n-p+1)} J^{(p)}$.

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)

• Set
$$Q_p := \sum_{t=0}^{p} I^{(n-t)} J^{(t)}$$
. Then
 $I^{(n)} = Q_0 \subset Q_1 \subset \cdots \subset Q_n = (I+J)^{(n)}$.
• $Q_p/Q_{p-1} = I^{(n-p)} J^{(p)}/I^{(n-p+1)} J^{(p)}$.

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)

• Set
$$Q_p := \sum_{t=0}^{p} I^{(n-t)} J^{(t)}$$
. Then
 $I^{(n)} = Q_0 \subset Q_1 \subset \cdots \subset Q_n = (I+J)^{(n)}$.
• $Q_p/Q_{p-1} = I^{(n-p)} J^{(p)}/I^{(n-p+1)} J^{(p)}$.

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)

For
$$n \ge 1$$
, we have
a depth $R/(I + J)^{(n)} \ge$

$$\min_{i \in [1, n-1], j \in [1, n]} \{ \operatorname{depth} A/I^{(n-i)} + \operatorname{depth} B/J^{(i)} + 1, \\ \operatorname{depth} A/I^{(n-j+1)} + \operatorname{depth} B/J^{(j)} \}.$$
a reg $R/(I + J)^{(n)} \le$

$$\max_{i \in [1, n-1], j \in [1, n]} \{ \operatorname{reg} A/I^{(n-i)} + \operatorname{reg} B/J^{(i)} + 1, \\ \operatorname{reg} A/I^{(n-j+1)} + \operatorname{reg} B/J^{(j)} \}.$$
Moreover, if either char $k = 0$ or I and J are monomial ideals then we have the equalities.

Corollary

Assume that J is generated by variables. Then

• depth $R/(I+J)^{(n)} = \min_{i \le n} \operatorname{depth} A/I^{(i)} + \dim B/J$; and

2 reg
$$R/(I+J)^{(n)} = \max_{i \le n} \{ \operatorname{reg} A/I^{(i)} - i \} + n.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Depth, regularity of symbolic powers by decomposition

Proposition

$$(I+J)^{(n)}/(I+J)^{(n+1)} = \bigoplus_{i+j=n} (I^{(i)}/I^{(i+1)} \otimes_k J^{(j)}/J^{(j+1)}).$$

Theorem (--, H.D. Nguyen, N.V. Trung and T.N. Trung) For all $n \ge 1$, we have 1 depth $\frac{(I+J)^{(n)}}{(I+J)^{(n+1)}} = \min_{i+j=n} \left\{ \operatorname{depth} \frac{I^{(i)}}{I^{(i+1)}} + \operatorname{depth} \frac{J^{(j)}}{J^{(j+1)}} \right\}.$ 2 $\operatorname{reg} \frac{(I+J)^{(n)}}{(I+J)^{(n+1)}} = \max_{i+j=n} \left\{ \operatorname{reg} I^{(i)}/I^{(i+1)} + \operatorname{reg} J^{(j)}/J^{(j+1)} \right\}.$

<ロ> (四) (四) (三) (三) (三)

Depth, regularity of symbolic powers by decomposition

Proposition

$$(I+J)^{(n)}/(I+J)^{(n+1)} = \bigoplus_{i+j=n} (I^{(i)}/I^{(i+1)} \otimes_k J^{(j)}/J^{(j+1)}).$$

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)

For all
$$n \ge 1$$
, we have
a depth $\frac{(I+J)^{(n)}}{(I+J)^{(n+1)}} = \min_{i+j=n} \left\{ \operatorname{depth} \frac{I^{(i)}}{I^{(i+1)}} + \operatorname{depth} \frac{J^{(j)}}{J^{(j+1)}} \right\}.$
a reg $\frac{(I+J)^{(n)}}{(I+J)^{(n+1)}} = \max_{i+j=n} \left\{ \operatorname{reg} I^{(i)}/I^{(i+1)} + \operatorname{reg} J^{(j)}/J^{(j+1)} \right\}.$

イロン 不良 とくほう 不良 とうほ

Cohen-Macaulayness of symbolic powers

Corollary

The following are equivalent:

- $R/(I+J)^{(t)}$ is Cohen-Macaulay for all $t \leq n$;
- 2 $(I+J)^{(n-1)}/(I+J)^{(n)}$ is Cohen-Macaulay;
- **(3)** $A/I^{(t)}$ and $B/J^{(t)}$ are Cohen-Macaulay for all $t \le n$;
- I $I^{(t)}/I^{(t+1)}$ and $J^{(t)}/J^{(t+1)}$ are Cohen-Macaulay for all $t \le n-1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

How to prove the binomial expansion

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}?$$

• Let
$$S_n = \sum_{t=0}^n I^{(n-t)} J^{(t)}$$
.
• $S_n \subseteq (I + J)^{(n)}$.

Consider the short exact sequences

$$0 \longrightarrow S_{p-1}/S_p \longrightarrow R/S_p \longrightarrow R/S_{p-1} \longrightarrow 0$$

to get

$$Ass_{R}(R/S_{n}) = \bigcup_{p=1}^{n} Ass_{R}(S_{p-1}/S_{p}).$$

• $S_{p-1}/S_{p} = \bigoplus_{i+j=p-1} (I^{(i)}/I^{(i+1)} \otimes_{k} J^{(j)}/J^{(j+1)}).$

How to prove the binomial expansion

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}?$$

• Let
$$S_n = \sum_{t=0}^n I^{(n-t)} J^{(t)}$$
.

•
$$S_n \subseteq (I+J)^{(n)}$$

Consider the short exact sequences

$$0 \longrightarrow S_{p-1}/S_p \longrightarrow R/S_p \longrightarrow R/S_{p-1} \longrightarrow 0$$

to get

$$\operatorname{Ass}_{R}(R/S_{n}) = \bigcup_{p=1}^{n} \operatorname{Ass}_{R}(S_{p-1}/S_{p}).$$

$$S_{p-1}/S_{p} = \bigoplus_{i+j=p-1} (I^{(i)}/I^{(i+1)} \otimes_{k} J^{(j)}/J^{(j+1)}).$$

Huy Tài Hà Tulane University

Powers of sums of ideals

How to prove the binomial expansion

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}?$$

• Let
$$S_n = \sum_{t=0}^n I^{(n-t)} J^{(t)}$$
.
• $S_n \subseteq (I+J)^{(n)}$.

Consider the short exact sequences

$$0 \longrightarrow S_{p-1}/S_p \longrightarrow R/S_p \longrightarrow R/S_{p-1} \longrightarrow 0$$

to get

$$Ass_{R}(R/S_{n}) = \bigcup_{p=1}^{n} Ass_{R}(S_{p-1}/S_{p}).$$

$$S_{p-1}/S_{p} = \bigoplus_{i+j=p-1}^{n} (I^{(i)}/I^{(i+1)} \otimes_{k} J^{(j)}/J^{(j+1)}).$$

Huy Tài Hà Tulane University

Powers of sums of ideals

How to prove the binomial expansion

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}?$$

• Let
$$S_n = \sum_{t=0}^n I^{(n-t)} J^{(t)}$$
.
• $S_n \subseteq (I+J)^{(n)}$.

• Consider the short exact sequences

$$0 \longrightarrow S_{p-1}/S_p \longrightarrow R/S_p \longrightarrow R/S_{p-1} \longrightarrow 0$$

to get

$$\operatorname{Ass}_{R}(R/S_{n}) = \bigcup_{p=1}^{n} \operatorname{Ass}_{R}(S_{p-1}/S_{p}).$$

•
$$S_{p-1}/S_p = \bigoplus_{i+i-p-1} \left(I^{(i)}/I^{(i+1)} \otimes_k J^{(j)}/J^{(j+1)} \right)$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

How to prove the binomial expansion

$$(I+J)^{(n)} = \sum_{t=0}^{n} I^{(n-t)} J^{(t)}?$$

• Let
$$S_n = \sum_{t=0}^n I^{(n-t)} J^{(t)}$$
.
• $S_n \subset (I + J)^{(n)}$

• Consider the short exact sequences

$$0 \longrightarrow S_{\rho-1}/S_{\rho} \longrightarrow R/S_{\rho} \longrightarrow R/S_{\rho-1} \longrightarrow 0$$

to get

$$Ass_{R}(R/S_{n}) = \bigcup_{p=1}^{n} Ass_{R}(S_{p-1}/S_{p}).$$

• $S_{p-1}/S_{p} = \bigoplus_{i+j=p-1}^{n} (I^{(i)}/I^{(i+1)} \otimes_{k} J^{(j)}/J^{(j+1)}).$

Problem

Let M and N be nonzero finitely generated modules over A and B, respectively. Describe the associated primes of the R-module $M \otimes_k N$ in terms of the associated primes of M and N.

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)

Let $Ass_{-}(-)$ and $Min_{-}(-)$ denote the set of associated and minimal primes. Then

- $\operatorname{Min}_{R}(M \otimes_{k} N) = \bigcup_{\mathfrak{p} \in \operatorname{Min}_{A}(M), \mathfrak{q} \in \operatorname{Min}_{B}(N)} \operatorname{Min}_{R}(R/\mathfrak{p} + \mathfrak{q}).$
- Ass_R($M \otimes_k N$) = $\bigcup_{\mu \in \Lambda \circ \mathfrak{s}} \operatorname{Min}_R(R/\mathfrak{p} + \mathfrak{q})$

 $\mathfrak{p}\in\mathsf{Ass}_A(M),\mathfrak{q}\in\mathsf{Ass}_B(N)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Problem

Let M and N be nonzero finitely generated modules over A and B, respectively. Describe the associated primes of the R-module $M \otimes_k N$ in terms of the associated primes of M and N.

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)

Let $Ass_{-}(-)$ and $Min_{-}(-)$ denote the set of associated and minimal primes. Then

・ロット (雪) () () () ()

Huy Tài Hà Tulane University Powers of sums of ideals

<ロ> (四) (四) (三) (三) (三)