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Problems

Let k be a field. Let A = k [x1, . . . , xr ] and B = k [y1, . . . , ys]
be polynomial rings over k .
Let I ⊆ A and J ⊆ B be nonzero proper homogeneous
ideals.

Problem
Investigate algebraic invariants and properties of

(I + J)n and (I + J)(n) ⊆ R = A⊗k B

via invariants and properties of powers of I and J.
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Motivation

Powers of ideals appear naturally in singularities and
multiplicity theories.
Fiber product: Let X = Spec A/I and Y = Spec B/J.
Then

X ×k Y = Spec R/(I + J).

Disjoint union: Let G1 and G2 be simple graphs on vertex
sets V = {x1, . . . , xr} and W = {y1, . . . , ys}, and let
G = G1 tG2 be their disjoint union. Then

I(G) = I(G1) + I(G2).

Hyperplane section: J = (y) ⊆ k [y ] = B. In this case,

I + J = (I, y) ⊆ k [x1, . . . , xr , y ].
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Motivation

Problem
Suppose that

I ⊆ A = k [x1, . . . , xr ] is a homogeneous ideal,
y is a new variable, and
R = A[y ].

Compute the depth and regularity of (I, y)n and (I, y)(n) in R.
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Algebraic invariants

Definition
Let R be a standard graded k -algebra, and let m be its maximal
homogenous ideal. Let M be a finitely generated graded
R-module. Then

depth M := min{i
∣∣ H i

m(M) 6= 0};
reg M := max{t

∣∣ H i
m(M)t−i = 0 ∀ i ≥ 0}.

Over polynomial rings, these invariants are related to the
minimal free resolution.
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Powers of sums of ideals by approximation

A = k [x1, . . . , xr ],B = k [y1, . . . , ys] and R = A⊗k B.
I ⊆ A and J ⊆ B are proper homogeneous ideals.

Key observation: (I + J)n =
∑n

t=0 In−tJ t .

Set Qp :=
∑p

t=0 In−tJ t . Then

In = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = (I + J)n.

Qp/Qp−1 = In−pJp/In−p+1Jp.

There are 2 short exact sequences

0 −→ Qp/Qp−1 −→ R/Qp−1 −→ R/Qp −→ 0.

0 −→ Qp/Qp−1 −→ R/In−p+1Jp −→ R/In−pJp −→ 0.
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Powers of sums of ideals by approximation

0 −→ Qp/Qp−1 −→ R/Qp−1 −→ R/Qp −→ 0.

0 −→ Qp/Qp−1 −→ R/In−p+1Jp −→ R/In−pJp −→ 0.

Lemma (Hoa - Tâm)
1 reg R/IJ = reg A/I + reg B/J + 1.
2 depth R/IJ = depth A/I + depth B/J + 1.
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Depth and Castelnuovo-Mumford regularity

Theorem
(—, N.V. Trung and T.N. Trung) For all n ≥ 1, we have

1 depth R
/
(I + J)n≥

min
i∈[1,n−1], j∈[1,n]

{
depth A/In−i + depth B/J i + 1,

depth A/In−j+1 + depth B/J j},
2 reg R

/
(I + J)n≤

max
i∈[1,n−1], j∈[1,n]

{
reg A/In−i + reg B/J i + 1,

reg A/In−j+1 + reg B/J j}.
(Hop D. Nguyen) If, in addition, either char k = 0 or I and J are
monomial ideals then we have the equalities.
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Depth and Castelnuovo-Mumford regularity

Proposition

Assume that depth A/I2 ≥ depth A/I + 1.
1 If depth B/J2 ≥ depth B/J + 1 then

depth R/(I + J)2 = depth A/I + depth B/J + 1.
2 If depth B/J2 < depth B/J then

depth R/(I + J)2 = depth A/I + depth B/J2.
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Depth and Castelnuovo-Mumford regularity

Proposition

Assume that reg A/I2 ≤ reg A/I + 1.
1 If reg B/J2 ≤ reg B/J + 1 then

reg R/(I + J)2 = reg A/I + reg B/J + 1.
2 If reg B/J2 > reg B/J then

reg R/(I + J)2 = reg A/I + reg B/J2.

Example (Conca)

Let A = k [x1, x2, x3] and I = (x4
1 , x

3
1 x2, x1x3

2 , x
4
2 , x

2
1 x2

2 x5
3 ). Using

Macaulay2, we get reg A/I = 8 and reg A/I2 = 7.
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Depth and Castelnuovo-Mumford regularity

Corollary
Assume that J is generated by variables. Then

1 depth R/(I + J)n = mini≤n depth A/I i + dim B/J, and
2 reg R/(I + J)n = maxi≤n{reg A/I i − i}+ n.
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Powers of sums of ideals by decomposition

Proposition

(I + J)n/(I + J)n+1 =
⊕

i+j=n

(
I i/I i+1 ⊗k J j/J j+1).

Lemma (Goto - Watanabe)
Let M and N be graded modules over A and B, respectively.
Let u and v be the maximal homogeneous ideals of A and B,
respectively, and let m be the maximal homogeneous ideal of
R. Then

Hn
m(M ⊗k N) =

⊕
i+j=n

H i
u(M)⊗k H j

v(N).

In particular,
1 depth M ⊗k N = depth M + depth N, and
2 reg M ⊗k N = reg M + reg N.
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Depth and Castelnuovo-Mumford regularity

Theorem (—, N.V. Trung and T.N. Trung)
For all n ≥ 1, we have

1 depth
(I + J)n

(I + J)n+1 = min
i+j=n

{depth I i/I i+1 + depth J j/J j+1},

2 reg(I + J)n/(I + J)n+1 = max
i+j=n

{reg I i/I i+1 + reg J j/J j+1}.
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Cohen-Macaulayness of powers of sums of ideals

Corollary
The following are equivalent:

1 R/(I + J)t is Cohen-Macaulay for all t ≤ n;
2 (I + J)n−1/(I + J)n is Cohen-Macaulay;
3 A/I t and B/J t are Cohen-Macaulay for all t ≤ n;
4 I t/I t+1 and J t/J t+1 are Cohen-Macaulay for all t ≤ n − 1.
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Behaviors of depth function

Definition
An ideal is said to have a constant depth function if the depth of
all its powers are the same.

Proposition (—, N.V. Trung and T.N. Trung)

Let I and J be squarefree monomial ideals. Then I + J has a
constant depth function if and only if so do I and J.

Herzog-Vladiou: proved this result under an additional
condition that the Rees algebras and I and J are
Cohen-Macaulay.
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Asymptotic depth and regularity

Brodmann: depth A/In = constant for n� 0.

Theorem (—, N.V. Trung and T.N. Trung)

lim
n→∞

depth R
/
(I + J)n = min

{
lim

i→∞
depth A/I i + min

j≥0
depth B/J j ,

min
i≥0

depth A/I i + lim
j→∞

depth B/J j}.
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Asymptotic depth and regularity

Cutkosky-Herzog-Trung; Kodiyalam; Trung-Wang:

reg In = an + b for n� 0.

Theorem (—, N.V. Trung and T.N. Trung)

Assume that reg In = dn + e for n ≥ lin(I) and reg Jn = cn + f
for n ≥ lin(J), where c ≥ d. Set e∗ = maxi≤lin(I){reg I i − ci} and
f ∗ = maxj≤lin(J){reg J j − dj}. Then, for n� 0, we have

reg(I + J)n =

{
c(n + 1) + f + e∗ − 1 if c > d ,
d(n + 1) + max{e∗ + f ,e + f ∗} − 1 if c = d .
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Symbolic powers of ideals

Definition
Let R be a commutative ring with identify, and let I ⊆ R be a
proper ideal. The n-th symbolic power of I is defined to be

I(n) := R ∩
( ⋂

p∈MinR(R/I)

InRp

)
.

Example
1 If I = ℘1 ∩ · · · ∩ ℘s is the defining ideal of s points in An

k
then

I(n) = ℘n
1 ∩ · · · ∩ ℘n

s .

2 If I is a squarefree monomial ideal, I =
⋂

℘∈Ass(R/I) ℘, then

I(n) =
⋂

℘∈Ass(R/I)

℘n.
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Binomial expansion for symbolic powers

A = k [x1, . . . , xr ], B = k [y1, . . . , ys] are polynomial rings.
I ⊆ A and J ⊆ B are nonzero proper homogeneous ideals.
R = A⊗k B = k [x1, . . . , xr , y1, . . . , ys].

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)
For all n ≥ 1, we have

(I + J)(n) =
n∑

t=0

I(n−t)J(t).

This expansion was recently proved for squarefree
monomial ideals by Bocci, Cooper, Guardo, Harbourne,
Janssen, Nagel, Seceleanu, Van Tuyl, and Vu.
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Corollaries

Corollary

(I + J)(n) = (I + J)n if and only if I(t) = I t and J(t) = J t for all
t ≤ n.

Definition
For a homogeneous ideal K set α(K ) := min{d | Kd 6= 0}. The
Waldschmidt constant of K is defined to be

α̂(K ) := lim
n→∞

α(K (n))

n
.

Corollary

α̂(I + J) = min{α̂(I), α̂(J)}.
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Depth, regularity of symbolic powers by approximation
Set Qp :=

∑p
t=0 I(n−t)J(t). Then

I(n) = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = (I + J)(n).

Qp/Qp−1 = I(n−p)J(p)/I(n−p+1)J(p).

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)
For n ≥ 1, we have

1 depth R
/
(I + J)(n)≥

min
i∈[1,n−1], j∈[1,n]

{
depth A/I(n−i) + depth B/J(i) + 1,

depth A/I(n−j+1) + depth B/J(j)}.
2 reg R

/
(I + J)(n)≤

max
i∈[1,n−1], j∈[1,n]

{
reg A/I(n−i) + reg B/J(i) + 1,

reg A/I(n−j+1) + reg B/J(j)}.
Moreover, if either char k = 0 or I and J are monomial ideals
then we have the equalities.
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I(n) = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = (I + J)(n).

Qp/Qp−1 = I(n−p)J(p)/I(n−p+1)J(p).

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)
For n ≥ 1, we have

1 depth R
/
(I + J)(n)≥

min
i∈[1,n−1], j∈[1,n]

{
depth A/I(n−i) + depth B/J(i) + 1,

depth A/I(n−j+1) + depth B/J(j)}.
2 reg R

/
(I + J)(n)≤

max
i∈[1,n−1], j∈[1,n]

{
reg A/I(n−i) + reg B/J(i) + 1,

reg A/I(n−j+1) + reg B/J(j)}.
Moreover, if either char k = 0 or I and J are monomial ideals
then we have the equalities.
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Depth, regularity of symbolic powers by approximation

Corollary
Assume that J is generated by variables. Then

1 depth R/(I + J)(n) = mini≤n depth A/I(i) + dim B/J; and
2 reg R/(I + J)(n) = maxi≤n{reg A/I(i) − i}+ n.
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Depth, regularity of symbolic powers by decomposition

Proposition

(I + J)(n)/(I + J)(n+1) =
⊕

i+j=n

(
I(i)/I(i+1) ⊗k J(j)/J(j+1)).

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)
For all n ≥ 1, we have

1 depth
(I + J)(n)

(I + J)(n+1) = min
i+j=n

{
depth

I(i)

I(i+1) + depth
J(j)

J(j+1)

}
.

2 reg
(I + J)(n)

(I + J)(n+1) = max
i+j=n

{
reg I(i)/I(i+1) + reg J(j)/J(j+1)}.

Huy Tài Hà Tulane University Powers of sums of ideals



Depth, regularity of symbolic powers by decomposition

Proposition

(I + J)(n)/(I + J)(n+1) =
⊕

i+j=n

(
I(i)/I(i+1) ⊗k J(j)/J(j+1)).

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)
For all n ≥ 1, we have

1 depth
(I + J)(n)

(I + J)(n+1) = min
i+j=n

{
depth

I(i)

I(i+1) + depth
J(j)

J(j+1)

}
.

2 reg
(I + J)(n)

(I + J)(n+1) = max
i+j=n

{
reg I(i)/I(i+1) + reg J(j)/J(j+1)}.

Huy Tài Hà Tulane University Powers of sums of ideals



Cohen-Macaulayness of symbolic powers

Corollary
The following are equivalent:

1 R/(I + J)(t) is Cohen-Macaulay for all t ≤ n;
2 (I + J)(n−1)/(I + J)(n) is Cohen-Macaulay;
3 A/I(t) and B/J(t) are Cohen-Macaulay for all t ≤ n;
4 I(t)/I(t+1) and J(t)/J(t+1) are Cohen-Macaulay for all

t ≤ n − 1.
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Proof of the binomial expansion

How to prove the binomial expansion

(I + J)(n) =
n∑

t=0

I(n−t)J(t)?

Let Sn =
∑n

t=0 I(n−t)J(t).

Sn ⊆ (I + J)(n).
Consider the short exact sequences

0 −→ Sp−1/Sp −→ R/Sp −→ R/Sp−1 −→ 0

to get

AssR(R/Sn) =
n⋃

p=1

AssR(Sp−1/Sp).

Sp−1/Sp =
⊕

i+j=p−1

(
I(i)/I(i+1) ⊗k J(j)/J(j+1)).
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Associated primes of tensor products

Problem
Let M and N be nonzero finitely generated modules over A and
B, respectively. Describe the associated primes of the
R-module M ⊗k N in terms of the associated primes of M and
N.

Theorem (—, H.D. Nguyen, N.V. Trung and T.N. Trung)

Let Ass−(−) and Min−(−) denote the set of associated and
minimal primes. Then

1 MinR(M ⊗k N) =
⋃

p∈MinA(M),q∈MinB(N)

MinR(R/p+ q).

2 AssR(M ⊗k N) =
⋃

p∈AssA(M),q∈AssB(N)

MinR(R/p+ q).
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