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Definitions

Lattice polytope: P = conv(v1, . . . ,vn) ⊆ Rd where vi ∈ Zd

Proposition/Definition[Ehrhart]

∃ EhrP ∈ Q[t] (Ehrhart polynomial) s.t. EhrP (k) :=
∣∣k∆ ∩Zd

∣∣
(k ∈ Z).

Proposition/Definition

∃ h∗P ∈ Z≥0[t] s. t.
∑

k≥0 EhrP (k)tk =
h∗
P (t)

(1−t)d+1 .

Definition

degree of P : deg(P ) = deg h∗P (t).
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Motivation

Example

P = [0, a] ⊆ R (a ∈ Z)

EhrP (k) = ka+ 1∑
k≥0

(ka+ 1)tk

= a
∑
k≥0

ktk +
∑
k≥0

tk = a t
(1−t)2 + 1

1−t

= (a−1)t+1
(1−t)2 ⇒ h∗P (t) = (a− 1)t+ 1.

Question A

Can one characterize all polynomials which can be interpreted as the
h∗-polynomial of some lattice polytope?

Degree 1

All lin. polynomials 1 + at ∈ Z2
≥0[t] can be interpreted as h∗-vectors.
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Degree 2[Henk & Tagami, Treutlein]

All polynomials 1 + a1t+ a2t
2 ∈ Z≥0[t] with

a1 ≤

{
7 if a2 = 1

3a2 + 3 if a2 ≥ 2

can be interpreted as h∗-polynomials.

Remark

Need polytopes up to dimension 3.

Question B

What are the h∗-polynomials coming from lattice simplices?

Degree 1

All lin. polynomials 1 + at ∈ Z≥0[t] can be interpreted as
h∗-polynomials of lattice simplices.
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Degree 2

Interpret h∗ = 1 + a1t+ a2t
2 ∈ Z≥0[t] as point in the positive

orthant (a1, a2) ∈ R2
≥0.

M := {(a1, a2) ∈ Z2
≥0 : h∗P (t)=1+a1t+a2t

2 for a lattice triangle

P ⊆ R2}

Proposition[H.,Nill,Oeberg]

There is a family (σi)i∈Z≥0
of affine cones σi ⊆ R2

≥0 such that

M∩ σ◦i = ∅ for all i.
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Degree 2
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Corresponding Simplices

Question C

What are the simplices of a given degree (any dimension)?

Idea

Question C ⇒ Question B.
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What is a Lattice Simplex?

Usually

∆ ⊆ Rd d-dimensional lattice simplex if

∆ = conv(v1, . . . ,vd+1) for vi ∈ Zd (aff. indep.)

Observations

Lattice stays the same: Zd.

Vertices change: v0, . . . ,vd+1.

Idea

Let’s do it vice versa.

Lattice changes: Λ.

Vertices stay the same: What is a good choice?

Johannes Hofscheier LSD Thursday 4 August 2016 9 / 27



Motivation LLS LSD Deg. 2 Appl.

What is a Lattice Simplex?

Usually

∆ ⊆ Rd d-dimensional lattice simplex if

∆ = conv(v1, . . . ,vd+1) for vi ∈ Zd (aff. indep.)

Observations

Lattice stays the same: Zd.

Vertices change: v0, . . . ,vd+1.

Idea

Let’s do it vice versa.

Lattice changes: Λ.

Vertices stay the same: What is a good choice?

Johannes Hofscheier LSD Thursday 4 August 2016 9 / 27



Motivation LLS LSD Deg. 2 Appl.

What is a Lattice Simplex?

Usually

∆ ⊆ Rd d-dimensional lattice simplex if

∆ = conv(v1, . . . ,vd+1) for vi ∈ Zd (aff. indep.)

Observations

Lattice stays the same: Zd.

Vertices change: v0, . . . ,vd+1.

Idea

Let’s do it vice versa.

Lattice changes: Λ.

Vertices stay the same: What is a good choice?

Johannes Hofscheier LSD Thursday 4 August 2016 9 / 27



Motivation LLS LSD Deg. 2 Appl.

What is a Lattice Simplex?

Usually

∆ ⊆ Rd d-dimensional lattice simplex if

∆ = conv(v1, . . . ,vd+1) for vi ∈ Zd (aff. indep.)

Observations

Lattice stays the same: Zd.

Vertices change: v0, . . . ,vd+1.

Idea

Let’s do it vice versa.

Lattice changes: Λ.

Vertices stay the same: What is a good choice?

Johannes Hofscheier LSD Thursday 4 August 2016 9 / 27



Motivation LLS LSD Deg. 2 Appl.

What is a Lattice Simplex?

Usually

∆ ⊆ Rd d-dimensional lattice simplex if

∆ = conv(v1, . . . ,vd+1) for vi ∈ Zd (aff. indep.)

Observations

Lattice stays the same: Zd.

Vertices change: v0, . . . ,vd+1.

Idea

Let’s do it vice versa.

Lattice changes: Λ.

Vertices stay the same: What is a good choice?

Johannes Hofscheier LSD Thursday 4 August 2016 9 / 27



Motivation LLS LSD Deg. 2 Appl.

What is a Lattice Simplex?

Usually

∆ ⊆ Rd d-dimensional lattice simplex if

∆ = conv(v1, . . . ,vd+1) for vi ∈ Zd (aff. indep.)

Observations

Lattice stays the same: Zd.

Vertices change: v0, . . . ,vd+1.

Idea

Let’s do it vice versa.

Lattice changes: Λ.

Vertices stay the same: What is a good choice?

Johannes Hofscheier LSD Thursday 4 August 2016 9 / 27



Motivation LLS LSD Deg. 2 Appl.

Lattice of a Lattice Simplex

e1, . . . , ed ∈ Rd standard basis vectors.

Observation

All vertices should be “equivalent”

 bad choice: 0, e1, . . . , ed.
Better choice: e1, . . . , ed+1 ∈ Rd+1 (Dimension increases by 1).

∆ = conv(v1, . . . ,vd+1) ⊆ Rd d-dimensional lattice simplex. Cone
over ∆

C = cone({1} ×∆) ⊆ Rd+1.

Exists unique linear iso. ϕ : Rd+1 → Rd+1 with (1,vi) 7→ ei.

ϕ(∆) = conv(e1, . . . , ed+1)

Λ∆ := ϕ(Zd+1) ⊆ Rd lattice
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Example

Example

∆ = conv(0, 2e1, 2e2) ⊆ R2

Λ∆ = Z3 +Z

( −1
2
1
2
0

)
+Z

( −1
2
0
1
2

)

 short:

( −1
2

1
2 0

−1
2 0

1
2

)
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Properties of Λ∆

Proposition

∆ = conv(v1, . . . ,vd+1) ⊆ Rd d-dimensional lattice simplex.

ϕ : Rd+1 7→ Rd+1 with ϕ(1,vi) = ei. Λ∆ = ϕ
(
Zd+1

)
.

1 Zd+1 ⊆ Λ∆

2 Λ∆ ⊆
{
x ∈ Rd+1 :

∑d+1
i=1 xi ∈ Z

}
.

Idea of Proof

1 vi ∈ Zd ⇒ Zd+1 ⊆ Λ∆

2

∆

ϕ−→

ϕ(∆)
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Correspondence

Definition

A lattice Λ∆ ⊆ Rd+1 we call simplicial if

1 Zd+1 ⊆ Λ∆.

2 Λ∆ ⊆
{
x ∈ Rd+1 :

∑d+1
i=1 xi ∈ Z

}
.

Theorem

The assignment ∆ 7→ Λ∆ induces a bijection{
d-dim. lattice sim-
plices ∆ ⊆ Rd

}
/ ∼1↔

{
simplicial lattices
Λ ⊆ Rd+1

}
/ ∼2

1 ∼1= up to affine unimodular equivalence

2 ∼2= up to permutation of the coordinates
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Chabauty Topology

X :=
{
x ∈ Rd+1 :

∑d+1
i=1 xi ∈ Z

}
⊆ Rd+1 closed subgp.

C` := {C ⊆ X closed subgroup}

Chabauty topology

Basis of neighborhoods of C ∈ C`

NK,U (C)

= {D ∈ C` : C ∩K ⊆ D + U,

D ∩K ⊆ C + U

}.

where K ⊆ X compact and U ⊆ X open with 0 ∈ U .

Example

C

D

K C ∩K ⊆ D + U D ∩K ⊆ C + U
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Degree

Proposition

C :=
{
C ∈ C` : Zd+1 ⊆ C

}
⊆ C` closed

D := {C ∈ C` discrete} ⊆ C` open and dense.

In particular
{

Λ ⊆ Rd+1 simplicial lattice
}

= D ∩ C ⊆ C` is locally
closed.

Definition

Degree deg(C) of C ∈ C :

deg(C) := max

{∑d+1

i=1
xi : (x1, . . . , xd+1) ∈ C ∩ [0, 1[d+1

}
.

Proposition

For ∆ ⊆ Rd a d-dim. lattice simplex, we have deg(Λ∆) = deg(∆).
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Finiteness

Proposition

C≤s := {C ∈ C : C ∩ [0, 1[d+1⊆ {x ∈ [0, 1[d+1 :
∑d+1

i=1 xi ≤ s}} ⊆
C closed.

Proposition

The assignment ∆ 7→ Λ∆ induces a bijection between the lattice
simplices with deg(∆) ≤ s and C≤s ∩ D (up to equivalence).

Proposition [Chabauty]

X locally compact ⇒ C` is compact. In particular C≤s ⊆ C`
compact.

Partial ordering on C`: C ≤ D : ⇔ C ⊆ D (C,D ∈ C`).

Theorem

The set of maximal elements in C≤s is finite.
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Idea of Proof

Set M := {C ∈ C≤s maximal}.

Assume |M| =∞. C≤s compact ⇒ M has a limit point, say
C0 ∈ C≤s, i. e., there is a sequence (Cn)n∈Z>0

⊆ C≤s with
Cn 6= C0 for all n and Cn → C0.

Chabauty-Pontryagin Duality[Cornulier]

The duality map

∗ :
{

cl. subgrp. ⊆ Rd+1
}
→
{

cl. subgrp. ⊆ Rd+1
}

;

C 7→ C∗ :=

{
x ∈ Rd+1 :

d+1∑
i=1

xiyi ∈ Z ∀y ∈ C

}

is an involutory homeomorphism.
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Idea of Proof (continued)

Hence C∗n → C∗0 .

C∗i ⊆ Zd+1 for all i ∈ Z≥0 ⇒ for every compact K ⊆ Rd+1 there
is N > 0 such that C∗n ∩K = C∗0 ∩K for n ≥ N .

For K big enough C∗0 ∩K contains a basis of C∗0 .

We obtain C∗0 ⊆ C∗n for n >> 0. So Cn ( C0. Contradiction to
maximality.

Remark

Could be also proved using a result due to Lawrence.
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Lattice Pyramids

Definition

Let ∆ ⊆ Rd be a lattice polytope. Lattice pyramid over ∆:

conv(∆× {0}, ed+1) ⊆ Rd+1.

Example

∆ = conv(±e1 ± e2) ⊆ R2

∆× {0}

Proposition

The d-dim. lattice simplex ∆ ⊆ Rd is a lattice pyramid iff
πi(Λ∆) = Z where πi : R

d+1 → R;x 7→ xi for i = 1, . . . , d+ 1.
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Simplices of given Degree

Theorem[Nill]

Let ∆ ⊆ Rd be a d-dim. lattice simplex. If d ≥ 4 deg(∆)− 1, then
∆ is a lattice pyramid.

Corollary

The assignment ∆ 7→ Λ∆ induces a bijection{
lattice simplices ∆
with deg(∆) ≤ s

}
/ ∼1↔ (C≤s ∩ D)/ ∼2

where C≤s ⊆ R4s−1

and

∼1= up to affine unimodular equiv. and lattice pyramid constr.

∼2= up to permutation of the coordinates.

Johannes Hofscheier LSD Thursday 4 August 2016 20 / 27



Motivation LLS LSD Deg. 2 Appl.

Simplices of given Degree

Theorem[Nill]

Let ∆ ⊆ Rd be a d-dim. lattice simplex. If d ≥ 4 deg(∆)− 1, then
∆ is a lattice pyramid.

Corollary

The assignment ∆ 7→ Λ∆ induces a bijection{
lattice simplices ∆
with deg(∆) ≤ s

}
/ ∼1↔ (C≤s ∩ D)/ ∼2

where C≤s ⊆ R4s−1

and

∼1= up to affine unimodular equiv. and lattice pyramid constr.

∼2= up to permutation of the coordinates.

Johannes Hofscheier LSD Thursday 4 August 2016 20 / 27



Motivation LLS LSD Deg. 2 Appl.

Simplices of given Degree

Theorem[Nill]

Let ∆ ⊆ Rd be a d-dim. lattice simplex. If d ≥ 4 deg(∆)− 1, then
∆ is a lattice pyramid.

Corollary

The assignment ∆ 7→ Λ∆ induces a bijection{
lattice simplices ∆
with deg(∆) ≤ s

}
/ ∼1↔ (C≤s ∩ D)/ ∼2

where C≤s ⊆ R4s−1 and

∼1= up to affine unimodular equiv. and lattice pyramid constr.

∼2= up to permutation of the coordinates.

Johannes Hofscheier LSD Thursday 4 August 2016 20 / 27



Motivation LLS LSD Deg. 2 Appl.

Simplices of given Degree

Theorem[Nill]

Let ∆ ⊆ Rd be a d-dim. lattice simplex. If d ≥ 4 deg(∆)− 1, then
∆ is a lattice pyramid.

Corollary

The assignment ∆ 7→ Λ∆ induces a bijection{
lattice simplices ∆
with deg(∆) ≤ s

}
/ ∼1↔ (C≤s ∩ D)/ ∼2

where C≤s ⊆ R4s−1 and

∼1= up to affine unimodular equiv. and lattice pyramid constr.

∼2= up to permutation of the coordinates.

Johannes Hofscheier LSD Thursday 4 August 2016 20 / 27



Motivation LLS LSD Deg. 2 Appl.

Degree 1

Theorem [Batyrev, Nill]

A lattice simplex of degree ≤ 1 is either a lattice pyramid over an
interval or a lattice pyramid over twice a unimodular simplex.

Describe all lattice simplices of degree at most 1.
↔

Describe the maximal elements in C≤1 ∩ D ⊆ R3.

Corollary

The maximal elements in C≤1 ∩ D ⊆ R3 are the following:(
−1

2
1
2 0

−1
2 0

1
2

)
and Z3 +R(e1 − e2) =: ( 1 −1 0 )
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Degree 2 case

Recall: a1, . . . ,ap,b1, . . . ,bq ∈ Rd+1 linearly indep.
— a1 —

...
— ap —
— b1 —

...
— bq —

 :=

p⊕
i=1

Zai ⊕
q⊕

j=1

Rbj
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Degree 2 case (continued)

Theorem[Higashitani, H.]

The maximal elements in C≤2 ⊆ R7 are the following:

1

(
−1 1 0 0 0 0
−1 0 1 0 0 0

)
2

(
1 −1 0 0 0 0
0 0 −1 1 0 0

) ( 1
2 0

1
2 0 0 0

1
2 0 0

1
2 0 0

1 −1 0 0 0 0

) ( 1
2 0 0

1
2 0 0

1 1 −2 0 0 0

)
+9 more

discr. subgrp.

3

(
0 0

1
2

1
2 0 0

0 0 0
1
2

1
2 0

1 −1 0 0 0 0

) ( 1
2

1
2

1
2

1
2 0 0

0 0
1
2

1
4

1
4 0

) ( 1
3

2
3

1
3

2
3 0 0

0 0
1
3

1
3

1
3 0

)
 1

2 0
1
2 0 0 0

0
1
2 0

1
2 0 0

0 0
1
2

1
4

1
4 0


4 All other max. subgrp. are discrete and Λ ⊆ 1

2Z
d+1.
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Cayley Conjecture

Definition

∆ ⊆ Rd is a Cayley Polytope of lattice polytopes ∆1, . . . ,∆k ⊆ Rm

if k ≥ 2 and ∆ is unimodularly equivalent to
conv(∆1 × e1, . . . ,∆k × ek) ⊆ Rm ×Rk.

Example

∆1,∆2 ⊆ R two (lattice) intervals.

∆2 × e2

∆1 × e1

“Weak” Cayley Conjecture[Dickenstein, Nill]

A d-dim. lattice polytpe with degree s is a Cayley polytope, if
d > 2s.
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Cayley Conjecture

Proposition[Higashitani,H.]

The “Weak” Cayley Conjecture holds for degree 2 simplices.

Proposition

Let Λ ∈ C ∩ D ⊆ Rd+1.

Λ corresponds to a Cayley polytope iff
there is a proper subset I ( {1, . . . , d+ 1} such that fI(Λ) ⊆ Z
where fI : Λ→ R;x 7→

∑
i∈I xi.

Idea of Proof.

Need to consider the case of dim. at least 5, i. e., the
max. subgrp. satisfy Λ ⊆ 1

2Z
7. Example (6-dim.):
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 for instance I = {1, 2, 3, 4}.
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Not realizable h∗-vectors
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Thank you!
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