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Section 1

General setting
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Notation and conventions

k: some field.
S = k[x1, . . . , xn]: polynomial ring over k, either with the standard
grading or with the fine Zn-grading.
I ⊂ S: homogeneous ideal
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Reminder: Minimal free resolutions

A minimal free resolution of S/I is an exact sequence of free S-modules

F• : 0→ Fp
∂→ Fp−1

∂→ · · · ∂→ F1
∂→ F0

such that F0/∂(F1) ∼= S/I and ∂(Fi ) ⊂ mFi−1 where m = (x1, . . . , xn).

Some facts:
A minimal free resolution always exists and it is unique up to
isomorphism. So we may speak about “the” minimal free resolution
of S/I.
All maps in F• can be chosen homogeneous with respect to the
grading from S.
We consider F• as the free S-module

⊕
i Fi . Note that we have two

gradings: The homological one, and the one coming from S.
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More notation and conventions

F•: minimal free resolution of S/I.
For g ∈ F•:

I |g |: homological degree,
I deg g : degree with respect to the grading on S.

βi (S/I) := rank Fi : ith Betti number of S/I.

Remark: F0 ∼= S, so β0(S/I) = 1. Further, β1(S/I) is the minimal number
of generators of I.
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Multiplications on free resolutions

General idea: Turn the whole resolution into an algebra over S.

Definition
A multiplication on F• is a map · : F• ⊗S F• → F• which is

1 S-linear and respects both the homological and the internal grading,
2 satisfies a Leibniz rule: ∂(a · b) = (∂a) · b + (−1)|a|a · ∂b.
3 and extends the multiplication on F0 = S.

Definition
A DGA structure on F• is a multiplication, which in addition is

4 graded-commutative: a · b = (−1)|a|·|b|b · a and
5 associative.

DGA: Differential graded algebra.
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Example 1

Let I = 〈x2, xy , y2〉 ⊂ k[x , y ].

F• : 0→ S2 −→ S3 −→ S → S/I
g1 7→ x2

g2 7→ xy
g3 7→ y2

g12 7→ xg2 − yg1
g23 7→ xg3 − yg2

1 3

2

Multiplication on F•?
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Existence of multiplications: Motivation

Why do we care about multiplications?
DGA Structures on F• allow us to infer statements about F•. For example:

Proposition (Eisenbud-Buchsbaum ’77)
If F• admits a DGA structure, then

βi (S/I) ≥
(
g
i

)

for 0 ≤ i ≤ g, where g = grade I.

Recall: grade I is the maximal length of a regular sequence in I.
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Existence of multiplications

Proposition
Every resolution of S/I admits a multiplication, and it is unique up to
homotopy.

Proof: Comparison Theorem (or Homotopy Transfer Theorem).
“up to homotopy”: If µ, µ′ are two multiplications, then there exists a
map σ : F• ⊗ F• → F• of homological degree +1, such that
µ− µ′ = σ ◦ ∂ + ∂ ◦ σ.
(Eisenbud-Buchsbaum ’77) There always exists a multiplication which
is graded-commutative.

From now on: All multiplications are assumed to be graded-commutative.
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Existence of multiplications

What about associative multiplications, i.e. DGA structures?

(Buchsbaum-Eisenbud ’77) Conjecture: One can always find a DGA
structure on F•.
This is not true (Avramov-Khimich ’74)

Remark: For a given ideal I ⊂ S, one can always find a non-minimal free
resolution which does admit a DGA structure.
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An ideal without a DGA resolution
Consider the ideal I ⊂ k[x , y , z , v ] with generators

m1 = x2, m2 = xy , m3 = y2z2, m4 = zv , m5 = v2

This ideal is generic, so its minimal free resolution is supported on its Scarf
complex:

1

2

3 4
5

It does not admit a DGA structure. More precisely, it does not admit a
DGA-structure which respects the multigrading.
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Existence of multiplications

There are several cases where the minimal free resolution is known to carry
a DGA structure:

complete intersections (Koszul complex),
pdimS/I ≤ 3 (Buchsbaum-Eisenbud ’77)
pdimS/I ≤ 4 and Gorenstein (Kustin-Miller ’80)
stable monomial ideals (Eliahou-Kervaire resolution, Peeva ’96)
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Existence of multiplications

A little surprisingly, it is enough to modify the last map in F• to ensure
that there is a DGA structure:

Theorem (K. 2016)
Let I ⊂ S be a homogeneous ideal. Then there exists a homogeneous
element s ∈ S, such that the minimal free resolution of sI has a DGA
structure.

This holds for regular local rings as well.
Also, if I is multigraded, then s can be chosen homogeneous with respect
to the multigrading.
Note that grade sI = 1, so unfortunately this result does not provide lower
bounds for Betti numbers.
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Section 2

The monomial case
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Monomial ideals

From now on:
I is a monomial ideal, and
F• is multigraded minimal free resolution of S/I.
Moreover, we only consider multiplications on F• which respect the
multigrading.
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Supportive Multiplications

The lcm-lattice LI of I is the lattice of all least common multiples of
subsets of the generators of I.

(Gasharov-Peeva-Welker ’99) The structure of F• is determined by
the isomorphism type of LI .

The possible multiplications on F• are not determined by LI , because the
lcm-lattices of I and sI are isomorphic for every monomial s ∈ S.

Therefore we restrict the class of multiplications we consider:

Definition
We call a multiplication on F• supportive if for all a, b ∈ F•, it holds that
a · b = mc for a monomial m ∈ S and a c ∈ F• with
deg c ≤ (deg a) ∨ (deg b).

Here, “∨” denotes the componentwise maximum.
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Supportive Multiplications: Example

Consider the ideal I generated by m1 = x2,m2 = xy and m3 = xz .
Its minimal free resolution looks like this:

1 2

3

Possible choices for g2 · g3:

g2 · g3 =
{
xg23 supportive,
−zg12 + yg13 not supportive.

Remark: Note that the multiplication in not unique in this case.
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Supportive Multiplications
Supportive multiplications have desirable properties:

Proposition
1 If two ideals have isomorphic lcm-lattices, then every supportive

multiplication for one ideal induces a supportive multiplication for the
other one. Thus, the minimal free resolution of on the ideals admits a
DGA structure if and only if the other one does.

2 If I is squarefree (i.e. generated by squarefree monomials), then every
multiplication on F• is supportive.

Corollary
1 Every monomial ideal admits a supportive multiplication on its

minimal free resolution.
2 If the polarization Ipol of an ideal has a DGA minimal free resolution,

then the same holds for I and it is automatically supportive.
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Supportive Multiplications

Proposition (K. 2016)
If · is a supportive multiplication on F•, then for every homogeneous
element a ∈ F•, there exists a monomial m ∈ S such that

ma =
∑

i
ci ,1 · (ci ,2 · (· · · (ci ,r−1 · ci ,r ) · · · ))

for elements ci ,j ∈ F1. In other words, F• is generated in degree 1, up to
multiplication with monomials.

As a consequence, the differential ∂ on F• is determined by its part in
degree 1 and by the multiplication (Leibniz rule).
The proposition does not hold for non-suportive multiplications.
If I is a non-monomial ideal, then F• might not admit a multiplication
which is generated in degree 1.
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Supportive DGA resolutions and the Taylor resolution
The Taylor resolution is a particular non-minimal DGA resolution. Let us
recall the details. For I = 〈m1, . . . ,mk〉 ⊂ S and N ⊆ [k] let
mN := lcm(mi i ∈ N).
The Taylor resolution of S/I is the complex

T• : 0→ Tk → Tk−1 → · · · → T1 → S → S/I → 0

where
Ti :=

⊕
N⊆[k]
#N=i

SeN and ∂eN :=
∑
i∈N
± mN
mN\i

eN\i

and deg eN := degmN .
This is a free DGA resolution of S/I (typically far from being minimal)
with the following multiplication:

eN · eM = ±mNmM
mN∪M

eN∪M , if N ∩M = ∅
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Supportive DGA resolutions and the Taylor resolution

The Taylor resolution is a non-minimal supportive DGA resolution of S/I.
In fact it is “free” with this properties in the following sense:

Theorem (K. 2016)
Let I ⊂ S be a monomial ideal with minimal free resolution F• and Taylor
resolution T•. If F• admits a supportive DGA structure, then F• ∼= T•/J
as DGAs for some DG-ideal J ⊂ T•.

This can be used to determine whether F• admits a supportive DGA
structure by considering DG-ideals in T•.
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Section 3

Applications
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Betti vectors

The fact that supportive DGA resolutions are generated in degree 1 allows
us to characterize the possible Betti numbers of monomial ideals with such
resolutions.

Theorem (K., Welker 2016)
For a vector b = (b0, b1 . . . , bn) ∈ Nn, the following are equivalent:

1 There exists a monomial ideal I ⊂ S, whose minimal free resolution is
a supportive DGA and bi = βi (S/I) for all i .

2 b is the f -vector of some simplicial complex ∆ which is a cone.
3 Let b(t) :=

∑
i bi t i . Then (1 + t) divides b(t) and

the coefficients of
1

1+t b(t) satisfy the Kruskal-Katona inequalities.

(Kalai ’85) These vectors are also exactly the f -vectors of acyclic simplicial
complexes.

L. Katthän (Goethe-Universität Frankfurt) DGA Resolutions August 5, 2016 24 / 29



Betti vectors

The fact that supportive DGA resolutions are generated in degree 1 allows
us to characterize the possible Betti numbers of monomial ideals with such
resolutions.

Theorem (K., Welker 2016)
For a vector b = (b0, b1 . . . , bn) ∈ Nn, the following are equivalent:

1 There exists a monomial ideal I ⊂ S, whose minimal free resolution is
a supportive DGA and bi = βi (S/I) for all i .

2 b is the f -vector of some simplicial complex ∆ which is a cone.
3 Let b(t) :=

∑
i bi t i . Then (1 + t) divides b(t) and

the coefficients of
1

1+t b(t) satisfy the Kruskal-Katona inequalities.

(Kalai ’85) These vectors are also exactly the f -vectors of acyclic simplicial
complexes.

L. Katthän (Goethe-Universität Frankfurt) DGA Resolutions August 5, 2016 24 / 29



Betti vectors

The fact that supportive DGA resolutions are generated in degree 1 allows
us to characterize the possible Betti numbers of monomial ideals with such
resolutions.

Theorem (K., Welker 2016)
For a vector b = (b0, b1 . . . , bn) ∈ Nn, the following are equivalent:

1 There exists a monomial ideal I ⊂ S, whose minimal free resolution is
a supportive DGA and bi = βi (S/I) for all i .

2 b is the f -vector of some simplicial complex ∆ which is a cone.
3 Let b(t) :=

∑
i bi t i . Then (1 + t) divides b(t) and

the coefficients of
1

1+t b(t) satisfy the Kruskal-Katona inequalities.

(Kalai ’85) These vectors are also exactly the f -vectors of acyclic simplicial
complexes.

L. Katthän (Goethe-Universität Frankfurt) DGA Resolutions August 5, 2016 24 / 29



Betti vectors

The fact that supportive DGA resolutions are generated in degree 1 allows
us to characterize the possible Betti numbers of monomial ideals with such
resolutions.

Theorem (K., Welker 2016)
For a vector b = (b0, b1 . . . , bn) ∈ Nn, the following are equivalent:

1 There exists a monomial ideal I ⊂ S, whose minimal free resolution is
a supportive DGA and bi = βi (S/I) for all i .

2 b is the f -vector of some simplicial complex ∆ which is a cone.
3 Let b(t) :=

∑
i bi t i . Then (1 + t) divides b(t) and

the coefficients of
1

1+t b(t) satisfy the Kruskal-Katona inequalities.

(Kalai ’85) These vectors are also exactly the f -vectors of acyclic simplicial
complexes.

L. Katthän (Goethe-Universität Frankfurt) DGA Resolutions August 5, 2016 24 / 29



Betti vectors

The fact that supportive DGA resolutions are generated in degree 1 allows
us to characterize the possible Betti numbers of monomial ideals with such
resolutions.

Theorem (K., Welker 2016)
For a vector b = (b0, b1 . . . , bn) ∈ Nn, the following are equivalent:

1 There exists a monomial ideal I ⊂ S, whose minimal free resolution is
a supportive DGA and bi = βi (S/I) for all i .

2 b is the f -vector of some simplicial complex ∆ which is a cone.
3 Let b(t) :=

∑
i bi t i . Then (1 + t) divides b(t) and the coefficients of

1
1+t b(t) satisfy the Kruskal-Katona inequalities.

(Kalai ’85) These vectors are also exactly the f -vectors of acyclic simplicial
complexes.

L. Katthän (Goethe-Universität Frankfurt) DGA Resolutions August 5, 2016 24 / 29



Betti vectors

The fact that supportive DGA resolutions are generated in degree 1 allows
us to characterize the possible Betti numbers of monomial ideals with such
resolutions.

Theorem (K., Welker 2016)
For a vector b = (b0, b1 . . . , bn) ∈ Nn, the following are equivalent:

1 There exists a monomial ideal I ⊂ S, whose minimal free resolution is
a supportive DGA and bi = βi (S/I) for all i .

2 b is the f -vector of some simplicial complex ∆ which is a cone.
3 Let b(t) :=

∑
i bi t i . Then (1 + t) divides b(t) and the coefficients of

1
1+t b(t) satisfy the Kruskal-Katona inequalities.

(Kalai ’85) These vectors are also exactly the f -vectors of acyclic simplicial
complexes.

L. Katthän (Goethe-Universität Frankfurt) DGA Resolutions August 5, 2016 24 / 29



Betti vectors

Idea of the proof:
“1 ⇒ 2”: Macaulay-type theorem for DGAs generated in degree 1:

(Aramova, Herzog and Hibi ’97) Hilbert series of
graded-commutative algebras generated in degree 1 are
characterized by the Kruskal-Katona inequalities. We modify
their proof to show that the existence of the differential
restricts the possible Hilbert series to f -vectors of cones.

“2 ⇒ 1”: For a given cone ∆, their exists a monomial ideal whose
Scarf complex equals ∆, so in particular its Betti vector
equals the f -vector of ∆.
We use algebraic discrete Morse theory to find a suitable
DG-ideal in the Taylor resolution.
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Betti vectors

Does the Betti vector of any monomial ideal satisfy these conditions?

Answer: No.
The Betti vector of I = (ab, bc, cd , de, ef , fa) is (1, 6, 9, 6, 2). This vector
is not even the f -vector of any simplicial complex.
Nevertheless, there exist a monomial ideal with the Betti vectors whose
minimal free resolution is a DGA, but not supportive.
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Subadditivity of syzygies

For a monomial ideal I ⊂ S let

ti := max { j βi ,j(S/I) 6= 0 }

the maximal shift in the i-th step of the resolution of S/I.

Definition
We say that subadditivity of syzygies holds for I if

ta+b ≤ ta + tb

for all 1 ≤ a, b ≤ pdimS/I such that a + b ≤ pdimS/I.

This does not hold in general for non-monomial ideals
(Avramov-Conca-Iyengar ’15), but it is open whether every monomial ideal
has this property.
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Subadditivity of syzygies

The fact that supportive multiplications are generated in degree one
implies (with some work):

Proposition (K. 2016)
The subadditivity of syzygies holds for all monomial ideals whose minimal
free resolution admits a supportive DGA structure.

If F• does not have a supportive DGA resolution, then one can still use
these techniques to conclude that ti+1 ≤ ti + t1 for all i . This was shown
before by Herzog and Srinivasan by other techniques.
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The end.
Thank you
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