Multiplicative structures on minimal free resolutions of monomial ideals

Lukas Katthän

Goethe-Universität Frankfurt

August 5, 2016

General setting

- Notation and preliminaries
- Multiplications on free resolutions
- Existence of multiplications
- Existence of associative multiplications

The monomial case

- Supportive multiplications
- Properties of supportive multiplications
- Supportive DGA structures and the Taylor resolution

Applications

- Betti Vectors of monomial ideals
- Subadditivity of syzygies

Section 1

General setting

Notation and conventions

- k: some field.
- S = k[x₁,...,x_n]: polynomial ring over k, either with the standard grading or with the fine Zⁿ-grading.
- $I \subset S$: homogeneous ideal

A minimal free resolution of S/I is an exact sequence of free S-modules

$$F_{\bullet}: \qquad 0 \to F_{\rho} \xrightarrow{\partial} F_{\rho-1} \xrightarrow{\partial} \cdots \xrightarrow{\partial} F_{1} \xrightarrow{\partial} F_{0}$$

such that $F_0/\partial(F_1) \cong S/I$ and $\partial(F_i) \subset \mathfrak{m}F_{i-1}$ where $\mathfrak{m} = (x_1, \ldots, x_n)$.

- A minimal free resolution always exists and it is unique up to isomorphism. So we may speak about "the" minimal free resolution of *S*/*I*.
- All maps in F_{\bullet} can be chosen homogeneous with respect to the grading from S.
- We consider F_{\bullet} as the free S-module $\bigoplus_{i} F_{i}$. Note that we have two gradings: The homological one, and the one coming from S.

1

A minimal free resolution of S/I is an exact sequence of free S-modules

$$F_{\bullet}: \qquad 0 \to F_{p} \stackrel{\partial}{\to} F_{p-1} \stackrel{\partial}{\to} \cdots \stackrel{\partial}{\to} F_{1} \stackrel{\partial}{\to} F_{0}$$

such that $F_0/\partial(F_1) \cong S/I$ and $\partial(F_i) \subset \mathfrak{m}F_{i-1}$ where $\mathfrak{m} = (x_1, \ldots, x_n)$.

- A minimal free resolution always exists and it is unique up to isomorphism. So we may speak about "the" minimal free resolution of *S*/*I*.
- All maps in *F*_• can be chosen homogeneous with respect to the grading from *S*.
- We consider F_{\bullet} as the free S-module $\bigoplus_{i} F_{i}$. Note that we have two gradings: The homological one, and the one coming from S.

A minimal free resolution of S/I is an exact sequence of free S-modules

$$F_{\bullet}: \qquad 0 \to F_{p} \xrightarrow{\partial} F_{p-1} \xrightarrow{\partial} \cdots \xrightarrow{\partial} F_{1} \xrightarrow{\partial} F_{0}$$

such that $F_0/\partial(F_1) \cong S/I$ and $\partial(F_i) \subset \mathfrak{m}F_{i-1}$ where $\mathfrak{m} = (x_1, \ldots, x_n)$.

- A minimal free resolution always exists and it is unique up to isomorphism. So we may speak about "the" minimal free resolution of *S*/*I*.
- All maps in F_{\bullet} can be chosen homogeneous with respect to the grading from S.
- We consider F_{\bullet} as the free S-module $\bigoplus_{i} F_{i}$. Note that we have two gradings: The homological one, and the one coming from S.

A minimal free resolution of S/I is an exact sequence of free S-modules

$$F_{\bullet}: \qquad 0 \to F_{p} \stackrel{\partial}{\to} F_{p-1} \stackrel{\partial}{\to} \cdots \stackrel{\partial}{\to} F_{1} \stackrel{\partial}{\to} F_{0}$$

such that $F_0/\partial(F_1) \cong S/I$ and $\partial(F_i) \subset \mathfrak{m}F_{i-1}$ where $\mathfrak{m} = (x_1, \ldots, x_n)$.

- A minimal free resolution always exists and it is unique up to isomorphism. So we may speak about "the" minimal free resolution of S/I.
- All maps in F_{\bullet} can be chosen homogeneous with respect to the grading from S.
- We consider F_{\bullet} as the free S-module $\bigoplus_i F_i$. Note that we have two gradings: The homological one, and the one coming from S.

• F_{\bullet} : minimal free resolution of S/I.

- For $g \in F_{\bullet}$:
 - ► |g|: homological degree,
 - deg g: degree with respect to the grading on S.
- $\beta_i(S/I) := \operatorname{rank} F_i$: *i*th Betti number of S/I.

- F_{\bullet} : minimal free resolution of S/I.
- For $g \in F_{\bullet}$:
 - ► |g|: homological degree,
 - deg g: degree with respect to the grading on S.
- $\beta_i(S/I) := \operatorname{rank} F_i$: *i*th Betti number of S/I.

- F_{\bullet} : minimal free resolution of S/I.
- For $g \in F_{\bullet}$:
 - ► |g|: homological degree,
 - ▶ deg g: degree with respect to the grading on S.
- $\beta_i(S/I) := \operatorname{rank} F_i$: *i*th Betti number of S/I.

- F_{\bullet} : minimal free resolution of S/I.
- For $g \in F_{\bullet}$:
 - ► |g|: homological degree,
 - deg g: degree with respect to the grading on S.
- $\beta_i(S/I) := \operatorname{rank} F_i$: *i*th Betti number of S/I.

General idea: Turn the whole resolution into an algebra over S.

Definition

A multiplication on F_{\bullet} is a map $\cdot : F_{\bullet} \otimes_{S} F_{\bullet} \to F_{\bullet}$ which is

- S-linear and respects both the homological and the internal grading,
- satisfies a Leibniz rule: $\partial(a \cdot b) = (\partial a) \cdot b + (-1)^{|a|} a \cdot \partial b$.
- and extends the multiplication on $F_0 = S$.

Definition

A DGA structure on F_{ullet} is a multiplication, which in addition is

• graded-commutative: $a \cdot b = (-1)^{|a| \cdot |b|} b \cdot a$ and

associative.

General idea: Turn the whole resolution into an algebra over S.

Definition

A multiplication on F_{\bullet} is a map $\cdot : F_{\bullet} \otimes_{S} F_{\bullet} \to F_{\bullet}$ which is

- S-linear and respects both the homological and the internal grading,
- 2 satisfies a Leibniz rule: $\partial(a \cdot b) = (\partial a) \cdot b + (-1)^{|a|} a \cdot \partial b$.
- **③** and extends the multiplication on $F_0 = S$.

Definition

A DGA structure on F. is a multiplication, which in addition is

• graded-commutative: $a \cdot b = (-1)^{|a| \cdot |b|} b \cdot a$ and

associative.

General idea: Turn the whole resolution into an algebra over S.

Definition

A multiplication on F_{\bullet} is a map $\cdot : F_{\bullet} \otimes_{S} F_{\bullet} \to F_{\bullet}$ which is

- S-linear and respects both the homological and the internal grading,
- 2 satisfies a Leibniz rule: $\partial(a \cdot b) = (\partial a) \cdot b + (-1)^{|a|} a \cdot \partial b$.
- **③** and extends the multiplication on $F_0 = S$.

Definition

A DGA structure on F_{\bullet} is a multiplication, which in addition is

• graded-commutative: $a \cdot b = (-1)^{|a| \cdot |b|} b \cdot a$ and

associative.

General idea: Turn the whole resolution into an algebra over S.

Definition

A multiplication on F_{\bullet} is a map $\cdot : F_{\bullet} \otimes_{S} F_{\bullet} \to F_{\bullet}$ which is

- S-linear and respects both the homological and the internal grading,
- 2 satisfies a Leibniz rule: $\partial(a \cdot b) = (\partial a) \cdot b + (-1)^{|a|} a \cdot \partial b$.
- **③** and extends the multiplication on $F_0 = S$.

Definition

A DGA structure on F_{\bullet} is a multiplication, which in addition is

9 graded-commutative: $a \cdot b = (-1)^{|a| \cdot |b|} b \cdot a$ and

associative.

Let $I = \langle x^2, xy, y^2 \rangle \subset \Bbbk[x, y].$

$$F_{\bullet}: 0 \Leftrightarrow S^{2} \Leftrightarrow S^{3} \longrightarrow S \to S/I$$

$$g_{1} \mapsto x^{2}$$

$$g_{2} \mapsto xy$$

$$g_{3} \mapsto y^{2}$$

$$g_{1} \mapsto x^{2}$$

Let $I = \langle x^2, xy, y^2 \rangle \subset \Bbbk[x, y].$

$$F_{\bullet}: 0 \rightarrow S^{2} \longrightarrow S^{3} \longrightarrow S \rightarrow S/I$$

$$g_{1} \mapsto x^{2}$$

$$g_{2} \mapsto xy$$

$$g_{3} \mapsto y^{2}$$

$$g_{12} \mapsto xg_{2} - yg_{1}$$

$$g_{23} \mapsto xg_{3} - yg_{2}$$

Multiplication on *F*•?

Let
$$I = \langle x^2, xy, y^2 \rangle \subset \Bbbk[x, y]$$
.

$$F_{\bullet}: 0 \rightarrow S^{2} \longrightarrow S^{3} \longrightarrow S \rightarrow S/I$$

$$g_{1} \mapsto x^{2}$$

$$g_{2} \mapsto xy$$

$$g_{3} \mapsto y^{2}$$

$$g_{12} \mapsto xg_{2} - yg_{1}$$

$$g_{23} \mapsto xg_{3} - yg_{2}$$

Let
$$I = \langle x^2, xy, y^2 \rangle \subset \Bbbk[x, y].$$

Let
$$I = \langle x^2, xy, y^2 \rangle \subset \Bbbk[x, y].$$

$$F_{\bullet}: 0 \rightarrow S^{2} \rightarrow S^{3} \rightarrow S \rightarrow S/I$$

$$g_{1} \qquad \mapsto \qquad x^{2}$$

$$g_{2} \qquad \mapsto \qquad xy$$

$$g_{3} \qquad \mapsto \qquad y^{2}$$

$$g_{12} \qquad \mapsto \qquad xg_{2} - yg_{1}$$

$$g_{23} \qquad \mapsto \qquad xg_{3} - yg_{2}$$

$$2$$

Existence of multiplications: Motivation

Why do we care about multiplications?

DGA Structures on F_{\bullet} allow us to infer statements about F_{\bullet} . For example:

Proposition (Eisenbud-Buchsbaum '77)

If F. admits a DGA structure, then

$$\beta_i(S/I) \ge \begin{pmatrix} g \\ i \end{pmatrix}$$

for $0 \leq i \leq g$, where g = grade I.

Recall: grade I is the maximal length of a regular sequence in I.

Existence of multiplications: Motivation

Why do we care about multiplications? DGA Structures on F_{\bullet} allow us to infer statements about F_{\bullet} . For example:

Proposition (Eisenbud-Buchsbaum '77)

If F. admits a DGA structure, then

$$\beta_i(S/I) \ge \begin{pmatrix} g \\ i \end{pmatrix}$$

for $0 \le i \le g$, where $g = \operatorname{grade} I$.

Recall: grade I is the maximal length of a regular sequence in I.

Proposition

Every resolution of S/I admits a multiplication, and it is unique up to homotopy.

Proof: Comparison Theorem (or Homotopy Transfer Theorem).

- "up to homotopy": If μ, μ' are two multiplications, then there exists a map $\sigma : F_{\bullet} \otimes F_{\bullet} \to F_{\bullet}$ of homological degree +1, such that $\mu \mu' = \sigma \circ \partial + \partial \circ \sigma$.
- (Eisenbud-Buchsbaum '77) There always exists a multiplication which is graded-commutative.

Proposition

Every resolution of S/I admits a multiplication, and it is unique up to homotopy.

Proof: Comparison Theorem (or Homotopy Transfer Theorem).

- "up to homotopy": If μ, μ' are two multiplications, then there exists a map $\sigma : F_{\bullet} \otimes F_{\bullet} \to F_{\bullet}$ of homological degree +1, such that $\mu \mu' = \sigma \circ \partial + \partial \circ \sigma$.
- (Eisenbud-Buchsbaum '77) There always exists a multiplication which is graded-commutative.

Proposition

Every resolution of S/I admits a multiplication, and it is unique up to homotopy.

Proof: Comparison Theorem (or Homotopy Transfer Theorem).

- "up to homotopy": If μ, μ' are two multiplications, then there exists a map $\sigma: F_{\bullet} \otimes F_{\bullet} \to F_{\bullet}$ of homological degree +1, such that $\mu \mu' = \sigma \circ \partial + \partial \circ \sigma$.
- (Eisenbud-Buchsbaum '77) There always exists a multiplication which is graded-commutative.

Proposition

Every resolution of S/I admits a multiplication, and it is unique up to homotopy.

Proof: Comparison Theorem (or Homotopy Transfer Theorem).

- "up to homotopy": If μ, μ' are two multiplications, then there exists a map $\sigma: F_{\bullet} \otimes F_{\bullet} \to F_{\bullet}$ of homological degree +1, such that $\mu \mu' = \sigma \circ \partial + \partial \circ \sigma$.
- (Eisenbud-Buchsbaum '77) There always exists a multiplication which is graded-commutative.

What about associative multiplications, i.e. DGA structures?

- (Buchsbaum-Eisenbud '77) Conjecture: One can always find a DGA structure on F₀.
- This is not true (Avramov-Khimich '74)

Remark: For a given ideal $I \subset S$, one can always find a non-minimal free resolution which does admit a DGA structure.

What about associative multiplications, i.e. DGA structures?

- (Buchsbaum-Eisenbud '77) Conjecture: One can always find a DGA structure on F_{\bullet} .
- This is not true (Avramov-Khimich '74)

Remark: For a given ideal $I \subset S$, one can always find a non-minimal free resolution which does admit a DGA structure.

What about associative multiplications, i.e. DGA structures?

- (Buchsbaum-Eisenbud '77) Conjecture: One can always find a DGA structure on F_{\bullet} .
- This is not true (Avramov-Khimich '74)

Remark: For a given ideal $I \subset S$, one can always find a non-minimal free resolution which does admit a DGA structure.

An ideal without a DGA resolution

Consider the ideal $I \subset \Bbbk[x, y, z, v]$ with generators

$$m_1 = x^2$$
, $m_2 = xy$, $m_3 = y^2 z^2$, $m_4 = zv$, $m_5 = v^2$

This ideal is generic, so its minimal free resolution is supported on its Scarf complex:

It does not admit a DGA structure. More precisely, it does not admit a DGA-structure which respects the multigrading.

An ideal without a DGA resolution

Consider the ideal $I \subset \Bbbk[x, y, z, v]$ with generators

$$m_1 = x^2, m_2 = xy, m_3 = y^2 z^2, m_4 = zv, m_5 = v^2$$

This ideal is generic, so its minimal free resolution is supported on its Scarf complex:

It does not admit a DGA structure. More precisely, it does not admit a DGA-structure which respects the multigrading.

An ideal without a DGA resolution

Consider the ideal $I \subset \Bbbk[x, y, z, v]$ with generators

$$m_1 = x^2, m_2 = xy, m_3 = y^2 z^2, m_4 = zv, m_5 = v^2$$

This ideal is generic, so its minimal free resolution is supported on its Scarf complex:

It does not admit a DGA structure. More precisely, it does not admit a DGA-structure which respects the multigrading.

There are several cases where the minimal free resolution is known to carry a DGA structure:

- complete intersections (Koszul complex),
- pdim S/I ≤ 3 (Buchsbaum-Eisenbud '77)
- pdim S/I ≤ 4 and Gorenstein (Kustin-Miller '80)
- stable monomial ideals (Eliahou-Kervaire resolution, Peeva '96)

There are several cases where the minimal free resolution is known to carry a DGA structure:

- complete intersections (Koszul complex),
- pdim $S/I \leq 3$ (Buchsbaum-Eisenbud '77)
- pdim $S/I \leq 4$ and Gorenstein (Kustin-Miller '80)

stable monomial ideals (Eliahou-Kervaire resolution, Peeva '96)

There are several cases where the minimal free resolution is known to carry a DGA structure:

- complete intersections (Koszul complex),
- pdim $S/I \leq 3$ (Buchsbaum-Eisenbud '77)
- pdim $S/I \leq 4$ and Gorenstein (Kustin-Miller '80)
- stable monomial ideals (Eliahou-Kervaire resolution, Peeva '96)
A little surprisingly, it is enough to modify the last map in F_{\bullet} to ensure that there is a DGA structure:

Theorem (K. 2016)

Let $I \subset S$ be a homogeneous ideal. Then there exists a homogeneous element $s \in S$, such that the minimal free resolution of sI has a DGA structure.

This holds for regular local rings as well. Also, if l is multigraded, then s can be chosen homogeneous with respect to the multigrading. Note that grade sl = 1, so unfortunately this result does not provide lower bounds for Betti numbers.

A little surprisingly, it is enough to modify the last map in F_{\bullet} to ensure that there is a DGA structure:

Theorem (K. 2016)

Let $I \subset S$ be a homogeneous ideal. Then there exists a homogeneous element $s \in S$, such that the minimal free resolution of sI has a DGA structure.

This holds for regular local rings as well.

Also, if *I* is multigraded, then *s* can be chosen homogeneous with respect to the multigrading.

Note that $\operatorname{grade} sl = 1$, so unfortunately this result does not provide lower bounds for Betti numbers.

A little surprisingly, it is enough to modify the last map in F_{\bullet} to ensure that there is a DGA structure:

Theorem (K. 2016)

Let $I \subset S$ be a homogeneous ideal. Then there exists a homogeneous element $s \in S$, such that the minimal free resolution of sI has a DGA structure.

This holds for regular local rings as well.

Also, if I is multigraded, then s can be chosen homogeneous with respect to the multigrading.

Note that grade *sl* = 1, so unfortunately this result does not provide lower bounds for Betti numbers.

A little surprisingly, it is enough to modify the last map in F_{\bullet} to ensure that there is a DGA structure:

Theorem (K. 2016)

Let $I \subset S$ be a homogeneous ideal. Then there exists a homogeneous element $s \in S$, such that the minimal free resolution of sI has a DGA structure.

This holds for regular local rings as well. Also, if *I* is multigraded, then *s* can be chosen homogeneous with respect to the multigrading. Note that grade sI = 1, so unfortunately this result does not provide lower

bounds for Betti numbers.

Section 2

The monomial case

Monomial ideals

From now on:

- I is a monomial ideal, and
- F_{\bullet} is multigraded minimal free resolution of S/I.
- Moreover, we only consider multiplications on F_• which respect the multigrading.

Monomial ideals

From now on:

- I is a monomial ideal, and
- F_{\bullet} is multigraded minimal free resolution of S/I.
- Moreover, we only consider multiplications on *F*_• which respect the multigrading.

From now on:

- I is a monomial ideal, and
- F_{\bullet} is multigraded minimal free resolution of S/I.
- Moreover, we only consider multiplications on *F* which respect the multigrading.

The lcm-lattice L_I of I is the lattice of all least common multiples of subsets of the generators of I.

• (Gasharov-Peeva-Welker '99) The structure of F_{\bullet} is determined by the isomorphism type of L_{I} .

The possible multiplications on F_{\bullet} are not determined by L_{I} , because the lcm-lattices of I and sI are isomorphic for every monomial $s \in S$.

Therefore we restrict the class of multiplications we consider:

Definition

We call a multiplication on F_{\bullet} supportive if for all $a, b \in F_{\bullet}$, it holds that $a \cdot b = mc$ for a monomial $m \in S$ and a $c \in F_{\bullet}$ with deg $c \leq (\deg a) \lor (\deg b)$.

Here, " \vee " denotes the componentwise maximum.

The lcm-lattice L_I of I is the lattice of all least common multiples of subsets of the generators of I.

• (Gasharov-Peeva-Welker '99) The structure of F_{\bullet} is determined by the isomorphism type of L_I .

The possible multiplications on F_{\bullet} are not determined by L_I , because the lcm-lattices of I and sI are isomorphic for every monomial $s \in S$.

Therefore we restrict the class of multiplications we consider:

Definition

We call a multiplication on F_{\bullet} supportive if for all $a, b \in F_{\bullet}$, it holds that $a \cdot b = mc$ for a monomial $m \in S$ and a $c \in F_{\bullet}$ with deg $c \leq (\deg a) \lor (\deg b)$.

Here, " \vee " denotes the componentwise maximum.

The lcm-lattice L_I of I is the lattice of all least common multiples of subsets of the generators of I.

• (Gasharov-Peeva-Welker '99) The structure of F_{\bullet} is determined by the isomorphism type of L_I .

The possible multiplications on F_{\bullet} are not determined by L_I , because the lcm-lattices of I and sI are isomorphic for every monomial $s \in S$.

Therefore we restrict the class of multiplications we consider:

Definition

We call a multiplication on F_{\bullet} supportive if for all $a, b \in F_{\bullet}$, it holds that $a \cdot b = mc$ for a monomial $m \in S$ and a $c \in F_{\bullet}$ with deg $c \leq (\deg a) \lor (\deg b)$.

Here, " \vee " denotes the componentwise maximum.

Supportive Multiplications: Example

Consider the ideal I generated by $m_1 = x^2$, $m_2 = xy$ and $m_3 = xz$. Its minimal free resolution looks like this:

Possible choices for $g_2 \cdot g_3$:

$$g_2 \cdot g_3 = \begin{cases} xg_{23} & \text{supportive,} \\ -zg_{12} + yg_{13} & \text{not supportive.} \end{cases}$$

Remark: Note that the multiplication in not unique in this case.

Supportive Multiplications: Example

Consider the ideal I generated by $m_1 = x^2$, $m_2 = xy$ and $m_3 = xz$. Its minimal free resolution looks like this:

Possible choices for $g_2 \cdot g_3$:

$$g_2 \cdot g_3 = \begin{cases} xg_{23} & \text{supportive,} \\ -zg_{12} + yg_{13} & \text{not supportive.} \end{cases}$$

Remark: Note that the multiplication in not unique in this case.

Supportive Multiplications: Example

Consider the ideal I generated by $m_1 = x^2$, $m_2 = xy$ and $m_3 = xz$. Its minimal free resolution looks like this:

Possible choices for $g_2 \cdot g_3$:

$$g_2 \cdot g_3 = \begin{cases} xg_{23} & \text{supportive,} \\ -zg_{12} + yg_{13} & \text{not supportive.} \end{cases}$$

Remark: Note that the multiplication in not unique in this case.

Supportive multiplications have desirable properties:

Proposition

- If two ideals have isomorphic lcm-lattices, then every supportive multiplication for one ideal induces a supportive multiplication for the other one. Thus, the minimal free resolution of on the ideals admits a DGA structure if and only if the other one does.
- Yes and Chainson and the second se second sec

- Every monomial ideal admits a supportive multiplication on its minimal free resolution.
- Q. If the polarization P^{PP} of an ideal has a DGA minimal free resolution, then the same holds for L and it is automatically supportive.

Supportive multiplications have desirable properties:

Proposition

- If two ideals have isomorphic lcm-lattices, then every supportive multiplication for one ideal induces a supportive multiplication for the other one. Thus, the minimal free resolution of on the ideals admits a DGA structure if and only if the other one does.
- If I is squarefree (i.e. generated by squarefree monomials), then every multiplication on F_• is supportive.

- Every monomial ideal admits a supportive multiplication on its minimal free resolution.
- Q. If the polarization P^{PP} of an ideal has a DGA minimal free resolution, then the same holds for L and it is automatically supportive.

Supportive multiplications have desirable properties:

Proposition

- If two ideals have isomorphic lcm-lattices, then every supportive multiplication for one ideal induces a supportive multiplication for the other one. Thus, the minimal free resolution of on the ideals admits a DGA structure if and only if the other one does.
- If I is squarefree (i.e. generated by squarefree monomials), then every multiplication on F_• is supportive.

- Every monomial ideal admits a supportive multiplication on its minimal free resolution.
- O If the polarization I^{PP} of an ideal has a DGA minimal free resolution, then the same holds for L and it is automatically supportive.

Supportive multiplications have desirable properties:

Proposition

- If two ideals have isomorphic lcm-lattices, then every supportive multiplication for one ideal induces a supportive multiplication for the other one. Thus, the minimal free resolution of on the ideals admits a DGA structure if and only if the other one does.
- If I is squarefree (i.e. generated by squarefree monomials), then every multiplication on F_• is supportive.

Corollary

Every monomial ideal admits a supportive multiplication on its minimal free resolution.

If the polarization I^{pol} of an ideal has a DGA minimal free resolution, then the same holds for I and it is automatically supportive.

Supportive multiplications have desirable properties:

Proposition

- If two ideals have isomorphic lcm-lattices, then every supportive multiplication for one ideal induces a supportive multiplication for the other one. Thus, the minimal free resolution of on the ideals admits a DGA structure if and only if the other one does.
- If I is squarefree (i.e. generated by squarefree monomials), then every multiplication on F_• is supportive.

- Every monomial ideal admits a supportive multiplication on its minimal free resolution.
- If the polarization I^{pol} of an ideal has a DGA minimal free resolution, then the same holds for I and it is automatically supportive.

Proposition (K. 2016)

If \cdot is a supportive multiplication on F_{\bullet} , then for every homogeneous element $a \in F_{\bullet}$, there exists a monomial $m \in S$ such that

$$ma = \sum_{i} c_{i,1} \cdot (c_{i,2} \cdot (\cdots (c_{i,r-1} \cdot c_{i,r}) \cdots))$$

- As a consequence, the differential ∂ on F_{\bullet} is determined by its part in degree 1 and by the multiplication (Leibniz rule).
- The proposition does not hold for non-suportive multiplications.
- If *I* is a non-monomial ideal, then *F*_• might not admit a multiplication which is generated in degree 1.

Proposition (K. 2016)

If \cdot is a supportive multiplication on F_{\bullet} , then for every homogeneous element $a \in F_{\bullet}$, there exists a monomial $m \in S$ such that

$$ma = \sum_{i} c_{i,1} \cdot (c_{i,2} \cdot (\cdots (c_{i,r-1} \cdot c_{i,r}) \cdots))$$

- As a consequence, the differential ∂ on F_• is determined by its part in degree 1 and by the multiplication (Leibniz rule).
- The proposition does not hold for non-suportive multiplications.
- If *I* is a non-monomial ideal, then *F*_• might not admit a multiplication which is generated in degree 1.

Proposition (K. 2016)

If \cdot is a supportive multiplication on F_{\bullet} , then for every homogeneous element $a \in F_{\bullet}$, there exists a monomial $m \in S$ such that

$$ma = \sum_{i} c_{i,1} \cdot (c_{i,2} \cdot (\cdots (c_{i,r-1} \cdot c_{i,r}) \cdots))$$

- As a consequence, the differential ∂ on F_• is determined by its part in degree 1 and by the multiplication (Leibniz rule).
- The proposition does not hold for non-suportive multiplications.
- If *I* is a non-monomial ideal, then *F*_• might not admit a multiplication which is generated in degree 1.

Proposition (K. 2016)

If \cdot is a supportive multiplication on F_{\bullet} , then for every homogeneous element $a \in F_{\bullet}$, there exists a monomial $m \in S$ such that

$$ma = \sum_{i} c_{i,1} \cdot (c_{i,2} \cdot (\cdots (c_{i,r-1} \cdot c_{i,r}) \cdots))$$

- As a consequence, the differential ∂ on F_• is determined by its part in degree 1 and by the multiplication (Leibniz rule).
- The proposition does not hold for non-suportive multiplications.
- If I is a non-monomial ideal, then F_{\bullet} might not admit a multiplication which is generated in degree 1.

The Taylor resolution is a particular non-minimal DGA resolution. Let us recall the details. For $l = (m_1, ..., m_k) \subset S$ and $N \subseteq [k]$ let $m_N := lcm(m_1 \mid i \in N)$. The Taylor resolution of S/l is the complex

$$T_{\bullet}: \qquad 0 \rightarrow T_k \rightarrow T_{k-1} \rightarrow \cdots \rightarrow T_1 \rightarrow S \rightarrow S/I \rightarrow 0$$

where

$$T_i := \bigoplus_{\substack{N \subseteq [k] \\ \#N = i}} Se_N \quad \text{and} \quad \partial e_N := \sum_{i \in N} \pm \frac{m_N}{m_{N \setminus i}} e_{N \setminus i}$$

and deg $e_N := \deg m_N$.

$$e_N \cdot e_M = \pm \frac{m_N m_M}{m_{N \cup M}} e_{N \cup M}, \text{ if } N \cap M = \emptyset$$

The Taylor resolution is a particular non-minimal DGA resolution. Let us recall the details. For $I = \langle m_1, \ldots, m_k \rangle \subset S$ and $N \subseteq [k]$ let $m_N := lcm(m_i \mid i \in N)$.

The Taylor resolution of S/I is the complex

$$T_ullet: 0 o T_k o T_{k-1} o \cdots o T_1 o S o S/I o 0$$

where

$$T_i := \bigoplus_{\substack{N \subseteq [k] \\ \#N = i}} Se_N \quad \text{and} \quad \partial e_N := \sum_{i \in N} \pm \frac{m_N}{m_{N \setminus i}} e_{N \setminus i}$$

and deg $e_N := \deg m_N$.

$$e_N \cdot e_M = \pm \frac{m_N m_M}{m_{N \cup M}} e_{N \cup M}, \text{ if } N \cap M = \emptyset$$

The Taylor resolution is a particular non-minimal DGA resolution. Let us recall the details. For $I = \langle m_1, \ldots, m_k \rangle \subset S$ and $N \subseteq [k]$ let $m_N := lcm(m_i \mid i \in N)$. The Taylor resolution of S/I is the complex

$$T_{\bullet}: \qquad 0 \rightarrow T_k \rightarrow T_{k-1} \rightarrow \cdots \rightarrow T_1 \rightarrow S \rightarrow S/I \rightarrow 0$$

where

$$T_i := igoplus_{N \subseteq [k]} \mathcal{S}e_N$$
 and $\partial e_N := \sum_{i \in N} \pm rac{m_N}{m_{N \setminus i}} e_{N \setminus i}$

and deg $e_N := \deg m_N$.

$$e_N \cdot e_M = \pm \frac{m_N m_M}{m_{N \cup M}} e_{N \cup M}, \text{ if } N \cap M = \emptyset$$

The Taylor resolution is a particular non-minimal DGA resolution. Let us recall the details. For $I = \langle m_1, \ldots, m_k \rangle \subset S$ and $N \subseteq [k]$ let $m_N := lcm(m_i \mid i \in N)$. The Taylor resolution of S/I is the complex

$$T_{\bullet}: \qquad 0 \rightarrow T_k \rightarrow T_{k-1} \rightarrow \cdots \rightarrow T_1 \rightarrow S \rightarrow S/I \rightarrow 0$$

where

$$T_i := igoplus_{N\subseteq [k]} {Se_N} \qquad ext{and} \qquad \partial e_N := \sum_{i\in N} \pm rac{m_N}{m_{N\setminus i}} e_{N\setminus i}$$

and deg $e_N := \deg m_N$.

$$e_N \cdot e_M = \pm \frac{m_N m_M}{m_{N \cup M}} e_{N \cup M}, \text{ if } N \cap M = \emptyset$$

The Taylor resolution is a non-minimal supportive DGA resolution of S/I. In fact it is "free" with this properties in the following sense:

Theorem (K. 2016)

Let $I \subseteq S$ be a monomial ideal with minimal free resolution F_{\bullet} and Taylor resolution T_{\bullet} . If F_{\bullet} admits a supportive DGA structure, then $F_{\bullet} \cong T_{\bullet}/J$ as DGAs for some DG-ideal $J \subseteq T_{\bullet}$.

This can be used to determine whether F_{\bullet} admits a supportive DGA structure by considering DG-ideals in T_{\bullet} .

The Taylor resolution is a non-minimal supportive DGA resolution of S/I. In fact it is "free" with this properties in the following sense:

Theorem (K. 2016)

Let $I \subset S$ be a monomial ideal with minimal free resolution F_{\bullet} and Taylor resolution T_{\bullet} . If F_{\bullet} admits a supportive DGA structure, then $F_{\bullet} \cong T_{\bullet}/J$ as DGAs for some DG-ideal $J \subset T_{\bullet}$.

This can be used to determine whether F_{\bullet} admits a supportive DGA structure by considering DG-ideals in T_{\bullet} .

The Taylor resolution is a non-minimal supportive DGA resolution of S/I. In fact it is "free" with this properties in the following sense:

Theorem (K. 2016)

Let $I \subset S$ be a monomial ideal with minimal free resolution F_{\bullet} and Taylor resolution T_{\bullet} . If F_{\bullet} admits a supportive DGA structure, then $F_{\bullet} \cong T_{\bullet}/J$ as DGAs for some DG-ideal $J \subset T_{\bullet}$.

This can be used to determine whether F_{\bullet} admits a supportive DGA structure by considering DG-ideals in T_{\bullet} .

Section 3

Applications

The fact that supportive DGA resolutions are generated in degree 1 allows us to characterize the possible Betti numbers of monomial ideals with such resolutions.

Theorem (K., Welker 2016)

For a vector $b = (b_0, b_1, \dots, b_n) \in \mathbb{N}^n$, the following are equivalent:

- There exists a monomial ideal I ⊂ S, whose minimal free resolution is a supportive DGA and b_i = β_i(S/I) for all i.
- \bigcirc . b is the f-vector of some simplicial complex Δ , which is a cone.
- Q. Let $b(t) := \sum_i b_i t^i$. Then (1 + t) divides b(t) and

The fact that supportive DGA resolutions are generated in degree 1 allows us to characterize the possible Betti numbers of monomial ideals with such resolutions.

Theorem (K., Welker 2016)

For a vector $b = (b_0, b_1 \dots, b_n) \in \mathbb{N}^n$, the following are equivalent:

• There exists a monomial ideal $I \subset S$, whose minimal free resolution is a supportive DGA and $b_i = \beta_i(S/I)$ for all *i*.

b is the f-vector of some simplicial complex △ which is a cone.
Let b(t) := ∑_i b_itⁱ. Then (1 + t) divides b(t) and

The fact that supportive DGA resolutions are generated in degree 1 allows us to characterize the possible Betti numbers of monomial ideals with such resolutions.

Theorem (K., Welker 2016)

For a vector $b = (b_0, b_1, ..., b_n) \in \mathbb{N}^n$, the following are equivalent:

- There exists a monomial ideal $I \subset S$, whose minimal free resolution is a supportive DGA and $b_i = \beta_i(S/I)$ for all *i*.
- 2 b is the f-vector of some simplicial complex Δ which is a cone.

Let $b(t) := \sum_i b_i t^i$. Then (1 + t) divides b(t) and

The fact that supportive DGA resolutions are generated in degree 1 allows us to characterize the possible Betti numbers of monomial ideals with such resolutions.

Theorem (K., Welker 2016)

For a vector $b = (b_0, b_1, ..., b_n) \in \mathbb{N}^n$, the following are equivalent:

- There exists a monomial ideal $I \subset S$, whose minimal free resolution is a supportive DGA and $b_i = \beta_i(S/I)$ for all *i*.
- **2** b is the f-vector of some simplicial complex Δ which is a cone.
- Solution Let $b(t) := \sum_i b_i t^i$. Then (1 + t) divides b(t) and

The fact that supportive DGA resolutions are generated in degree 1 allows us to characterize the possible Betti numbers of monomial ideals with such resolutions.

Theorem (K., Welker 2016)

For a vector $b = (b_0, b_1 \dots, b_n) \in \mathbb{N}^n$, the following are equivalent:

- There exists a monomial ideal $I \subset S$, whose minimal free resolution is a supportive DGA and $b_i = \beta_i(S/I)$ for all *i*.
- **2** b is the f-vector of some simplicial complex Δ which is a cone.
- So Let $b(t) := \sum_i b_i t^i$. Then (1 + t) divides b(t) and the coefficients of $\frac{1}{1+t}b(t)$ satisfy the Kruskal-Katona inequalities.
The fact that supportive DGA resolutions are generated in degree 1 allows us to characterize the possible Betti numbers of monomial ideals with such resolutions.

Theorem (K., Welker 2016)

For a vector $b = (b_0, b_1 \dots, b_n) \in \mathbb{N}^n$, the following are equivalent:

- There exists a monomial ideal $I \subset S$, whose minimal free resolution is a supportive DGA and $b_i = \beta_i(S/I)$ for all *i*.
- **2** b is the f-vector of some simplicial complex Δ which is a cone.
- So Let $b(t) := \sum_i b_i t^i$. Then (1 + t) divides b(t) and the coefficients of $\frac{1}{1+t}b(t)$ satisfy the Kruskal-Katona inequalities.

(Kalai '85) These vectors are also exactly the f-vectors of acyclic simplicial complexes.

Idea of the proof:

"1 ⇒ 2": Macaulay-type theorem for DGAs generated in degree 1: (Aramova, Herzog and Hibi '97) Hilbert series of graded-commutative algebras generated in degree 1 are characterized by the Kruskal-Katona inequalities. We modify their proof to show that the existence of the differential restricts the possible Hilbert series to *f*-vectors of cones.

" $2 \Rightarrow 1$ ": For a given cone Δ , their exists a monomial ideal whose Scarf complex equals Δ , so in particular its Betti vector equals the *f*-vector of Δ .

We use algebraic discrete Morse theory to find a suitable DG-ideal in the Taylor resolution.

Idea of the proof:

"1 \Rightarrow 2": Macaulay-type theorem for DGAs generated in degree 1:

(Aramova, Herzog and Hibi '97) Hilbert series of graded-commutative algebras generated in degree 1 are characterized by the Kruskal-Katona inequalities. We modify their proof to show that the existence of the differential restricts the possible Hilbert series to *f*-vectors of cones.

" $2 \Rightarrow 1$ ": For a given cone Δ , their exists a monomial ideal whose Scarf complex equals Δ , so in particular its Betti vector equals the *f*-vector of Δ .

We use algebraic discrete Morse theory to find a suitable DG-ideal in the Taylor resolution.

Idea of the proof:

"1 ⇒ 2": Macaulay-type theorem for DGAs generated in degree 1: (Aramova, Herzog and Hibi '97) Hilbert series of graded-commutative algebras generated in degree 1 are characterized by the Kruskal-Katona inequalities. We modify their proof to show that the existence of the differential restricts the possible Hilbert series to function of compared

"2 ⇒ 1": For a given cone Δ, their exists a monomial ideal whose Scarf complex equals Δ, so in particular its Betti vector equals the *f*-vector of Δ. We use algebraic discrete Morse theory to find a suitable

DG-ideal in the Taylor resolution.

Idea of the proof:

- "1 \Rightarrow 2": Macaulay-type theorem for DGAs generated in degree 1: (Aramova, Herzog and Hibi '97) Hilbert series of graded-commutative algebras generated in degree 1 are characterized by the Kruskal-Katona inequalities. We modify their proof to show that the existence of the differential restricts the possible Hilbert series to *f*-vectors of cones.
- "2 ⇒ 1": For a given cone Δ, their exists a monomial ideal whose Scarf complex equals Δ, so in particular its Betti vector equals the *f*-vector of Δ. We use algebraic discrete Morse theory to find a suitable

DG-ideal in the Taylor resolution.

Idea of the proof:

- "1 \Rightarrow 2": Macaulay-type theorem for DGAs generated in degree 1: (Aramova, Herzog and Hibi '97) Hilbert series of graded-commutative algebras generated in degree 1 are characterized by the Kruskal-Katona inequalities. We modify their proof to show that the existence of the differential restricts the possible Hilbert series to *f*-vectors of cones.
- "2 \Rightarrow 1": For a given cone Δ , their exists a monomial ideal whose Scarf complex equals Δ , so in particular its Betti vector equals the *f*-vector of Δ .

We use algebraic discrete Morse theory to find a suitable DG-ideal in the Taylor resolution.

Idea of the proof:

- "1 \Rightarrow 2": Macaulay-type theorem for DGAs generated in degree 1: (Aramova, Herzog and Hibi '97) Hilbert series of graded-commutative algebras generated in degree 1 are characterized by the Kruskal-Katona inequalities. We modify their proof to show that the existence of the differential restricts the possible Hilbert series to *f*-vectors of cones.
- " $2 \Rightarrow 1$ ": For a given cone Δ , their exists a monomial ideal whose Scarf complex equals Δ , so in particular its Betti vector equals the *f*-vector of Δ .

We use algebraic discrete Morse theory to find a suitable DG-ideal in the Taylor resolution.

Does the Betti vector of any monomial ideal satisfy these conditions?

Does the Betti vector of any monomial ideal satisfy these conditions? Answer: No.

The Betti vector of I = (ab, bc, cd, de, ef, fa) is (1, 6, 9, 6, 2). This vector is not even the *f*-vector of any simplicial complex.

Does the Betti vector of any monomial ideal satisfy these conditions? Answer: No.

The Betti vector of I = (ab, bc, cd, de, ef, fa) is (1, 6, 9, 6, 2). This vector is not even the *f*-vector of any simplicial complex.

Nevertheless, there exist a monomial ideal with the Betti vectors whose minimal free resolution is a DGA, but not supportive.

For a monomial ideal $I \subset S$ let

```
t_i := \max\left\{j \mid \beta_{i,j}(S/I) \neq 0\right\}
```

the maximal shift in the *i*-th step of the resolution of S/I.

Definition

We say that subadditivity of syzygies holds for I if

 $t_{a+b} \leq t_a + t_b$

for all $1 \le a, b \le pdim S/I$ such that $a + b \le pdim S/I$.

This does not hold in general for non-monomial ideals (Avramov-Conca-Iyengar '15), but it is open whether every monomial ideal has this property.

For a monomial ideal $I \subset S$ let

$$t_i := \max \left\{ j \mid \beta_{i,j}(S/I) \neq 0 \right\}$$

the maximal shift in the *i*-th step of the resolution of S/I.

Definition

We say that subadditivity of syzygies holds for I if

 $t_{a+b} \leq t_a + t_b$

for all $1 \le a, b \le p \dim S/I$ such that $a + b \le p \dim S/I$.

This does not hold in general for non-monomial ideals (Avramov-Conca-Iyengar '15), but it is open whether every monomial ideal has this property.

For a monomial ideal $I \subset S$ let

$$t_i := \max \left\{ j \mid \beta_{i,j}(S/I) \neq 0 \right\}$$

the maximal shift in the *i*-th step of the resolution of S/I.

Definition

We say that subadditivity of syzygies holds for I if

 $t_{a+b} \leq t_a + t_b$

for all $1 \le a, b \le pdim S/I$ such that $a + b \le pdim S/I$.

This does not hold in general for non-monomial ideals (Avramov-Conca-Iyengar '15), but it is open whether every monomial ideal has this property.

For a monomial ideal $I \subset S$ let

$$t_i := \max \left\{ j \mid \beta_{i,j}(S/I) \neq 0 \right\}$$

the maximal shift in the *i*-th step of the resolution of S/I.

Definition

We say that subadditivity of syzygies holds for I if

 $t_{a+b} \leq t_a + t_b$

for all $1 \le a, b \le \operatorname{pdim} S/I$ such that $a + b \le \operatorname{pdim} S/I$.

This does not hold in general for non-monomial ideals (Avramov-Conca-Iyengar '15), but it is open whether every monomial ideal has this property.

The fact that supportive multiplications are generated in degree one implies (with some work):

Proposition (K. 2016)

The subadditivity of syzygies holds for all monomial ideals whose minimal free resolution admits a supportive DGA structure.

If F_{\bullet} does not have a supportive DGA resolution, then one can still use these techniques to conclude that $t_{i+1} \leq t_i + t_1$ for all *i*. This was shown before by Herzog and Srinivasan by other techniques.

The fact that supportive multiplications are generated in degree one implies (with some work):

Proposition (K. 2016)

The subadditivity of syzygies holds for all monomial ideals whose minimal free resolution admits a supportive DGA structure.

If F_{\bullet} does not have a supportive DGA resolution, then one can still use these techniques to conclude that $t_{i+1} \leq t_i + t_1$ for all *i*. This was shown before by Herzog and Srinivasan by other techniques.

The end. Thank you