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Permutation Patterns Permutohedron Birkhoff Polytope Open Questions

Pattern Avoidance

Let Sn denote the symmetric group on 1, 2, . . . , n, π ∈ Sk and
σ ∈ Sn, written as words.

Definition

Say σ contains the pattern π if there is some substring of σ
whose elements have the same relative order as those in π. If no
such substring exists, then σ avoids the pattern π. If Π ⊆ S,
then σ avoids Π if σ avoids every element of Π.

So 526413 does not avoid 132 while 453621 does.

Denote by
Avn(Π) := {σ ∈ Sn | σ avoids Π}

the avoidance class of Π.
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Pattern Avoidance

A simple yet difficult question: given Π, determine |Avn(Π)|.

If π = a1a2 . . . ak, call

πr := akan−1 . . . a1

the reversal of π and

πc := (k − a1 + 1)(k − a2 + 1) . . . (k − ak + 1)

the complement of π. Then |Avn(π)| = |Avn(πr)| = |Avn(πc)|.

Definition

Say π1 and π2 are Wilf equivalent, written π1 ≡ π2, if
|Avn(π1)| = |Avn(π2)| for all n.

Wilf equivalence is an equivalence relation on S.
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Pattern Avoidance

So π ≡ πr ≡ πc. In fact, π is Wilf equivalent to any permutation
obtained by acting on its diagram by the dihedral group of the
square. These are called the trivial Wilf equivalences.

Example

4261573 ≡ 4271536 ≡ 4627315 ≡ 2537164
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Pattern Avoidance

Theorem (MacMahon (1915) and Knuth (1968))

If π ∈ S3, then for all n, |Avn(π)| = Cn, the nth Catalan
number.

Theorem (Erdős-Szekeres (1935))

For any positive integers a, b, every permutation of length at
least (a− 1)(b− 1) + 1 contains the patterns 123 . . . a or
b(b− 1)(b− 2) . . . 1.

Theorem (Billey, Burdzy, and Sagan (2012))

For all n, |Avn(132, 312)| = 2n−1.
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Why study pattern avoidance?

Stack-sortable permutations

A permutation is stack-sortable if and only if it avoids 231
(Knuth, 1968)

Permutation statistics

Almost all known Mahonian permutation statistics really
belong to a class of 14 statistics, if the use of vincular
patterns is allowed (Babson and Steingŕımsson, 2000)

Classifying smooth / factorial / Gorenstein Schubert
varieties using bivincular patterns (Úlfarsson, 2010)
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Ehrhart Theory

Definition

For a lattice polytope P ⊆ Rn, its Ehrhart polynomial is

LP (m) := |mP ∩ Rn|,

and its Ehrhart series is

EP (t) :=
∑
m≥0
LP (m)tm

=
h∗P (t)

(1− t)dimP+1
.

The numerator h∗P (t) is the h∗-polynomial of P and its list of
coefficients h∗(P ) := (h∗0, . . . , h

∗
d) is the h∗-vector of P .
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Two Big Questions

1 When is h∗(P ) palindromic?

This happens exactly when P is Gorenstein, a property that
that is often reasonably detectable if a hyperplane
description of P is known.

2 When is h∗(P ) unimodal? Various sufficient conditions are
known, but necessary conditions are not as clear.
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Π-avoiding Permutohedra

Definition

The permutohedron is defined as

Pn := conv{(a1, . . . , an) ∈ Rn | a1 . . . an ∈ Sn}.

Some quick facts about Pn:

1 invariant under the action of Sn

2 simple zonotope

3 its Ehrhart polynomial is

LPn(m) =

n−1∑
i=0

fni m
i,

where fni is the number of labeled forests on n vertices
with i edges.
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Π-avoiding Permutohedra

Definition

For Π ⊆ S, define

Pn(Π) := conv{(a1, . . . , an) | a1 . . . an ∈ Avn(Π)}

to be the Π-avoiding permutohedron.

So if Π = ∅, then Pn(Π) = Pn.

Important note: this is not a subclass of generalized
permutohedra introduced by Postnikov. This fact can be
verified by comparing normal fans and using a theorem of
Postnikov, Reiner, and Williams.
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Π-avoiding Permutohedra

Pn(π) is unimodularly equivalent to both Pn(πr) and Pn(πc).
But that’s about where it stops.

Example (Trivial Wilf equivalence 6⇒ unimodular equivalence)

Choose π = 1423 and π′ = 2431. These are related by a
90-degree rotation, but P5(π) has 48 facets while P5(π

′) only
has 46.
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Π-avoiding Permutohedra

Theorem (D. and Sagan)

If Π = {132, 312}, then Pn(Π) is a rectangular parallelepiped
with Ehrhart polynomial

n−1∑
i=0

(n− 1)!

(n− i− 1)!
mi

This extends the previous result |Avn(132, 312)| = 2n−1.

Corollary

The number of interior lattice points of Pn(132, 312) is the
number of derangements of Sn−1.

(Follows from Ehrhart-Macdonald reciprocity)
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Π-avoiding Permutohedra

Theorem (Beck, Jochemko, McCullough, in preparation)

Every lattice zonotope has a unimodal h∗-vector.

Corollary

For all n, h∗(Pn(132, 312)) is unimodal.
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Π-avoiding Permutohedra

Theorem (D. and Sagan)

If Π = {123, 132}, then Pn(Π) is a combinatorial (but not
geometric!) cube with Ehrhart polynomial

m+ 1

(n− 1)!

n−1∏
j=2

(nm+ j)

(Pn(Π) is a Pitman-Stanley polytope)
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Π-avoiding Permutohedra

Proposition (D. and Sagan)

If Π = {123, 132, 312}, then Pn(Π) is a simplex with Ehrhart
polynomial (1 +m)n−1. Hence h∗P (t) is the Eulerian polynomial
An−1(t).

Pn(123, 132, 312) is (unimodularly equivalent to) the simplex
containing certain lecture hall partitions. Work of Corteel, Lee,
and Savage imply the Ehrhart-theoretic results (an observation
made by Ben Braun).
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Π-avoiding Permutohedra

The results for the different avoidance classes were proven in
very different ways.

This is common in the world of pattern avoidance.
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Π-avoiding Birkhoff Polytopes

Definition

The n× n Birkhoff polytope is

Bn := conv{M ∈ Rn×n | M a matrix for some σ ∈ Sn}

Some variations:

1 transportation polytopes

2 permutation polytopes (Burggraf, De Loera, Omar)

3 the “symmetric slice” of Bn (Stanley, Jia)
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Π-avoiding Birkhoff Polytopes

Definition

For Π ⊆ S, define

Bn(Π) := conv{M ∈ Rn×n | M a matrix for some σ ∈ Avn(Π)}

to be the Π-avoiding Birkhoff polytope.

This time, if π ∈ Sk and π′ are trivially Wilf equivalent, then
Bn(π) and Bn(π′) are unimodularly equivalent.
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Alternating permutations

Definition

A permutation a1a2 . . . an ∈ Sn is alternating if
a1 < a2 > a3 < a4 > a5 < · · · .

Let Ãvn(Π) denote the alternating permutations in Sn that
avoid Π. Analogously define B̃n(Π).

These could also be described as Bn(Π) for an appropriate Π if
we allow vincular patterns.

Our focus will be on the specific polytopes Bn(132, 312) and
B̃n(123).
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Π-avoiding Birkhoff Polytopes

Proposition (D. and Sagan)

For all n,

dimBn(132, 312) =

(
n

2

)
and

dim B̃n(123) =

(
dn/2e

2

)
Beyond knowing the number of vertices of each, the
combinatorial structures of these are completely unknown.
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Π-avoiding Birkhoff Polytopes

Theorem (Stanley (1970s), Athanasiadis (2005))

For all n, h∗(Bn) is palindromic and unimodal.

What can we say about h∗(Bn(Π))?
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Main Conjecture

Conjecture (D. and Sagan)

The h∗-vectors of Bn(132, 312) and B̃n(123) are palindromic
and unimodal.

Broad strategy:

1 Show that these polytopes have regular, unimodular
triangulations

2 Show that these polytopes are Gorenstein
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The posets Qn(Π) and Q̃n(Π)

Definition

The right weak (Bruhat) order on Sn is defined as σ l σ′ if
σ′ = σsi for some simple transposition si and σ′ has more
inversions than σ. The left weak (Bruhat) order is defined
analogously.

Let Qn(132, 312) be the poset on Avn(132, 312) induced from
the right weak order on Sn, and Q̃n(123) to be the poset on

Ãvn(123) induced from the left weak order on Sn.
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Examples: Q5(132, 312) and Q̃8(123)

12345

21345

23145

32145 23415

32415 23451

34215 32451

43215 34251

43251 34521

43521

45321

54321

48372615

58372614

68372514 58472613

78362514 68472513 58473612

78462513 68572413 68473512

78562413 78463512 68573412

78563412
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The posets Qn(Π) and Q̃n(Π)

Theorem (D. and Sagan)

The following isomorphisms hold:

Qn(132, 312) ∼= M(n− 1),

where M(k) is the lattice of shifted Young diagrams with largest
part at most k, and

Q̃n(123) ∼= D∗dn/2e,

where Dk is the lattice of Dyck paths of length 2k such that if
d1, d2 ∈ Dk, then d1 < d2 if d1 lies entirely underneath d2.
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The posets Qn(Π) and Q̃n(Π)

From here, we want to use the following facts:

distributive lattices have EL-labelings

posets with EL-labelings have shellable order complexes

given a lattice polytope with a shellable unimodular
triangulation, its h∗-vector can be computed based on
information about the shelling order

Goal: show that the order complexes of Qn(132, 312) and
Q̃n(123) induce shellable unimodular triangulations of
Bn(132, 312) and B̃n(123).
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The Commutative Algebra

Conjecture (D. and Sagan)

Bn(132, 312) and B̃n(123) have flag, regular unimodular
triangulations.

Theorem (Sturmfels)

For a lattice polytope P , the initial ideals of the toric ideal IP
are in bijection with the regular triangulations of P . The initial
ideal of IP is squarefree if and only if the corresponding
triangulation of P is unimodular.
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Watermelons, Stars, and Fermi Configurations

Definition

A watermelon W l,k is the digraph with vertices

{(−i,−j) ∈ Z2 | 0 ≤ i ≤ l, 0 ≤ j ≤ k, j ≤ i}

with an arc from a to b if b− a ∈ {−e1,−e2}. A star graph Sn
is the graph whose vertex set is

{(−i,−j) ∈ Z2 | i, j ≥ 0, i+ j ≤ n}

with arcs formed the same way as with watermelons.

To make later definitions simpler, we introduce a unique sink v
for Sn by including an arc from the points (−i,−n+ i) to v.
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Examples: W 4,3 and S3
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Watermelons, Stars, and Fermi Configurations

Definition

A Fermi configuration in a digraph H with source u and sink v
is a collection of distinct, noncrossing paths from u to v. A
Fermi configuration is maximal if no additional distinct
noncrossing paths from u to v can be included in the
configuration.

Example (A maximal Fermi configuration in W 3,2)

p1

p2

p3

p4
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Watermelons, Stars, and Fermi Configurations

Definition

A triple of adjacent paths in a maximal Fermi configuration is
called a flipflop if the two 2-dimensional faces it bounds share
no edges of the central path. If the central path goes to the
right of the first 2-dimensional face it encounters, then the path
is called flopped. Otherwise, it is flipped.

Example

The configuration on the previous slide contains the flopped
walk (p2, p3, p4) but no flipped walks.

p1

p2

p3

p2

p3

p4
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Watermelons, Stars, and Fermi Configurations

Theorem (Arrowsmith, Bhatti, and Essam (2012))

Suppose H is a digraph with unique source and sink, and that H
has a unique minimal-cardinality Fermi configuration covering
all of its arcs. Let ϕk(H) denote the number of maximal Fermi
configurations in H that contain k flopped walks. Then the
polynomial

Φ(H; t) =
∑
i≥0

ϕk(H)tk

has palindromic coefficients.
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Watermelons, Stars, and Fermi Configurations

Sagan and I have shown that if the previously-mentioned
conjecture holds, then Φ(Sn; t) is the h∗-polynomial for
Bn(132, 312) and Φ(W bn/2c,bn/2c; t) is the h∗-polynomial for

B̃n(123).

It appears that the coefficients of Φ(W k,m; t) are unimodal for
all k and m, but it is not immediately obvious how to choose Π
so that Φ(W k,m; t) = Bn(Π) (or if any such Π exists)
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Open Questions

1 Is there a nice combinatorial proof for the number of
interior lattice points of Pn(132, 312)?

2 For “nice” special classes of Π,
1 what is the combinatorial structure of Pn(Π) or Bn(Π)?
2 what is Vol(Pn(Π)), Vol(Bn(Π))?
3 what is the Ehrhart polynomial for Pn(Π)?
4 what is the h∗-vector of Bn(Π)?

3 What happens if we consider classes of vincular or
bivincular patterns?

4 For which choices of Π is Bn(Π) IDP? Gorenstein?

5 What are the homotopy types of Qn(Π)? (in general their
order complexes aren’t necessarily spheres, or even
Cohen-Macaulay)
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