Pattern-Avoiding Polytopes

Robert Davis joint with Bruce Sagan

Michigan State University

 $1 \ {\rm August} \ 2016$

Let \mathfrak{S}_n denote the symmetric group on $1, 2, \ldots, n, \pi \in \mathfrak{S}_k$ and $\sigma \in \mathfrak{S}_n$, written as words.

Definition

Say σ contains the pattern π if there is some substring of σ whose elements have the same relative order as those in π . If no such substring exists, then σ avoids the pattern π . If $\Pi \subseteq \mathfrak{S}$, then σ avoids Π if σ avoids every element of Π .

So 526413 does not avoid 132 while 453621 does.

Denote by

$$\operatorname{Av}_n(\Pi) := \{ \sigma \in \mathfrak{S}_n \mid \sigma \text{ avoids } \Pi \}$$

the avoidance class of Π .

A simple yet difficult question: given Π , determine $|\operatorname{Av}_n(\Pi)|$. If $\pi = a_1 a_2 \dots a_k$, call

$$\pi^r := a_k a_{n-1} \dots a_1$$

the reversal of π and

$$\pi^c := (k - a_1 + 1)(k - a_2 + 1)\dots(k - a_k + 1)$$

the complement of π . Then $|\operatorname{Av}_n(\pi)| = |\operatorname{Av}_n(\pi^r)| = |\operatorname{Av}_n(\pi^c)|$.

Definition

Say π_1 and π_2 are Wilf equivalent, written $\pi_1 \equiv \pi_2$, if $|\operatorname{Av}_n(\pi_1)| = |\operatorname{Av}_n(\pi_2)|$ for all n.

Wilf equivalence is an equivalence relation on \mathfrak{S} .

So $\pi \equiv \pi^r \equiv \pi^c$. In fact, π is Wilf equivalent to any permutation obtained by acting on its diagram by the dihedral group of the square. These are called the trivial Wilf equivalences.

Theorem (MacMahon (1915) and Knuth (1968))

If $\pi \in \mathfrak{S}_3$, then for all n, $|\operatorname{Av}_n(\pi)| = C_n$, the n^{th} Catalan number.

Theorem (Erdős-Szekeres (1935))

For any positive integers a, b, every permutation of length at least (a-1)(b-1) + 1 contains the patterns 123...a or b(b-1)(b-2)...1.

Theorem (Billey, Burdzy, and Sagan (2012))

For all n, $|\operatorname{Av}_n(132, 312)| = 2^{n-1}$.

Why study pattern avoidance?

- Stack-sortable permutations
 - A permutation is stack-sortable if and only if it avoids 231 (Knuth, 1968)
- Permutation statistics
 - Almost all known Mahonian permutation statistics really belong to a class of 14 statistics, if the use of vincular patterns is allowed (Babson and Steingrímsson, 2000)
- Classifying smooth / factorial / Gorenstein Schubert varieties using bivincular patterns (Úlfarsson, 2010)

Ehrhart Theory

Definition

For a lattice polytope $P \subseteq \mathbb{R}^n$, its Ehrhart polynomial is

$$\mathcal{L}_P(m) := |mP \cap \mathbb{R}^n|,$$

and its Ehrhart series is

$$E_P(t) := \sum_{m \ge 0} \mathcal{L}_P(m) t^m$$
$$= \frac{h_P^*(t)}{(1-t)^{\dim P+1}}.$$

The numerator $h_P^*(t)$ is the h^* -polynomial of P and its list of coefficients $h^*(P) := (h_0^*, \ldots, h_d^*)$ is the h^* -vector of P.

Two Big Questions

- When is $h^*(P)$ palindromic?
 - This happens exactly when P is Gorenstein, a property that that is often reasonably detectable if a hyperplane description of P is known.
- When is h*(P) unimodal? Various sufficient conditions are known, but necessary conditions are not as clear.

$\Pi\text{-}\mathrm{avoiding}$ Permutohedra

Definition

The permutohedron is defined as

$$P_n := \operatorname{conv}\{(a_1, \dots, a_n) \in \mathbb{R}^n \mid a_1 \dots a_n \in \mathfrak{S}_n\}.$$

Some quick facts about P_n :

- **(**) invariant under the action of \mathfrak{S}_n
- Isimple zonotope
- its Ehrhart polynomial is

$$\mathcal{L}_{P_n}(m) = \sum_{i=0}^{n-1} f_i^n m^i,$$

where f_i^n is the number of labeled forests on n vertices with i edges.

Π -avoiding Permutohedra

Definition

For $\Pi \subseteq \mathfrak{S}$, define

$$P_n(\Pi) := \operatorname{conv}\{(a_1, \dots, a_n) \mid a_1 \dots a_n \in \operatorname{Av}_n(\Pi)\}$$

to be the Π -avoiding permutohedron.

So if $\Pi = \emptyset$, then $P_n(\Pi) = P_n$.

Important note: this is not a subclass of generalized permutohedra introduced by Postnikov. This fact can be verified by comparing normal fans and using a theorem of Postnikov, Reiner, and Williams.

Π -avoiding Permutohedra

 $P_n(\pi)$ is unimodularly equivalent to both $P_n(\pi^r)$ and $P_n(\pi^c)$. But that's about where it stops.

Example (Trivial Wilf equivalence \Rightarrow unimodular equivalence)

Choose $\pi = 1423$ and $\pi' = 2431$. These are related by a 90-degree rotation, but $P_5(\pi)$ has 48 facets while $P_5(\pi')$ only has 46.

Π -avoiding Permutohedra

Theorem (D. and Sagan)

If $\Pi = \{132, 312\}$, then $P_n(\Pi)$ is a rectangular parallelepiped with Ehrhart polynomial

$$\sum_{i=0}^{n-1} \frac{(n-1)!}{(n-i-1)!} m^i$$

This extends the previous result $|\operatorname{Av}_n(132, 312)| = 2^{n-1}$.

Corollary

The number of interior lattice points of $P_n(132, 312)$ is the number of derangements of \mathfrak{S}_{n-1} .

(Follows from Ehrhart-Macdonald reciprocity)

Π -avoiding Permutohedra

Theorem (Beck, Jochemko, McCullough, in preparation)

Every lattice zonotope has a unimodal h^* -vector.

Corollary

For all n, $h^*(P_n(132, 312))$ is unimodal.

Π -avoiding Permutohedra

Theorem (D. and Sagan)

If $\Pi = \{123, 132\}$, then $P_n(\Pi)$ is a combinatorial (but not geometric!) cube with Ehrhart polynomial

$$\frac{m+1}{(n-1)!} \prod_{j=2}^{n-1} (nm+j)$$

 $(P_n(\Pi)$ is a Pitman-Stanley polytope)

Π -avoiding Permutohedra

Proposition (D. and Sagan)

If $\Pi = \{123, 132, 312\}$, then $P_n(\Pi)$ is a simplex with Ehrhart polynomial $(1+m)^{n-1}$. Hence $h_P^*(t)$ is the Eulerian polynomial $A_{n-1}(t)$.

 $P_n(123, 132, 312)$ is (unimodularly equivalent to) the simplex containing certain lecture hall partitions. Work of Corteel, Lee, and Savage imply the Ehrhart-theoretic results (an observation made by Ben Braun).

Π -avoiding Permutohedra

The results for the different avoidance classes were proven in very different ways.

This is common in the world of pattern avoidance.

Π -avoiding Birkhoff Polytopes

Definition

The $n \times n$ Birkhoff polytope is

 $B_n := \operatorname{conv} \{ M \in \mathbb{R}^{n \times n} \mid M \text{ a matrix for some } \sigma \in \mathfrak{S}_n \}$

Some variations:

- transportation polytopes
- 2 permutation polytopes (Burggraf, De Loera, Omar)
- \bullet the "symmetric slice" of B_n (Stanley, Jia)

Π -avoiding Birkhoff Polytopes

Definition

For $\Pi \subseteq \mathfrak{S}$, define

 $B_n(\Pi) := \operatorname{conv} \{ M \in \mathbb{R}^{n \times n} \mid M \text{ a matrix for some } \sigma \in \operatorname{Av}_n(\Pi) \}$

to be the Π -avoiding Birkhoff polytope.

This time, if $\pi \in \mathfrak{S}_k$ and π' are trivially Wilf equivalent, then $B_n(\pi)$ and $B_n(\pi')$ are unimodularly equivalent.

Alternating permutations

Definition

A permutation $a_1 a_2 \dots a_n \in \mathfrak{S}_n$ is alternating if

 $a_1 < a_2 > a_3 < a_4 > a_5 < \cdots$.

Let $\widetilde{\operatorname{Av}}_n(\Pi)$ denote the alternating permutations in \mathfrak{S}_n that avoid Π . Analogously define $\widetilde{B}_n(\Pi)$.

These could also be described as $B_n(\Pi)$ for an appropriate Π if we allow vincular patterns.

Our focus will be on the specific polytopes $B_n(132, 312)$ and $\widetilde{B}_n(123)$.

Π -avoiding Birkhoff Polytopes

Proposition (D. and Sagan)

For all n,

$$\dim B_n(132,312) = \binom{n}{2}$$

and

$$\dim \widetilde{B}_n(123) = \binom{\lceil n/2 \rceil}{2}$$

Beyond knowing the number of vertices of each, the combinatorial structures of these are completely unknown.

Birkhoff Polytope

Π -avoiding Birkhoff Polytopes

Theorem (Stanley (1970s), Athanasiadis (2005))

For all n, $h^*(B_n)$ is palindromic and unimodal.

What can we say about $h^*(B_n(\Pi))$?

Main Conjecture

Conjecture (D. and Sagan)

The h^* -vectors of $B_n(132, 312)$ and $\widetilde{B}_n(123)$ are palindromic and unimodal.

Broad strategy:

- Show that these polytopes have regular, unimodular triangulations
- Show that these polytopes are Gorenstein

The posets $Q_n(\Pi)$ and $Q_n(\Pi)$

Definition

The right weak (Bruhat) order on \mathfrak{S}_n is defined as $\sigma < \sigma'$ if $\sigma' = \sigma s_i$ for some simple transposition s_i and σ' has more inversions than σ . The left weak (Bruhat) order is defined analogously.

Let $Q_n(132, 312)$ be the poset on $\operatorname{Av}_n(132, 312)$ induced from the right weak order on \mathfrak{S}_n , and $\widetilde{Q}_n(123)$ to be the poset on $\widetilde{\operatorname{Av}}_n(123)$ induced from the left weak order on \mathfrak{S}_n .

Examples: $\overline{Q}_5(132, 312)$ and $\widetilde{Q}_8(123)$

The posets $Q_n(\Pi)$ and $Q_n(\Pi)$

Theorem (D. and Sagan)

The following isomorphisms hold:

 $Q_n(132, 312) \cong M(n-1),$

where M(k) is the lattice of shifted Young diagrams with largest part at most k, and

$$\widetilde{Q}_n(123) \cong D^*_{\lceil n/2 \rceil},$$

where D_k is the lattice of Dyck paths of length 2k such that if $d_1, d_2 \in D_k$, then $d_1 < d_2$ if d_1 lies entirely underneath d_2 .

The posets $Q_n(\Pi)$ and $Q_n(\Pi)$

From here, we want to use the following facts:

- distributive lattices have EL-labelings
- posets with EL-labelings have shellable order complexes
- given a lattice polytope with a shellable unimodular triangulation, its h^* -vector can be computed based on information about the shelling order

Goal: show that the order complexes of $Q_n(132, 312)$ and $\widetilde{Q}_n(123)$ induce shellable unimodular triangulations of $B_n(132, 312)$ and $\widetilde{B}_n(123)$.

The Commutative Algebra

Conjecture (D. and Sagan)

 $B_n(132, 312)$ and $\widetilde{B}_n(123)$ have flag, regular unimodular triangulations.

Theorem (Sturmfels)

For a lattice polytope P, the initial ideals of the toric ideal I_P are in bijection with the regular triangulations of P. The initial ideal of I_P is squarefree if and only if the corresponding triangulation of P is unimodular.

Definition

A watermelon $\overline{W}_{l,k}$ is the digraph with vertices

$$\{(-i,-j)\in\mathbb{Z}^2\mid 0\leq i\leq l,\ 0\leq j\leq k,\ j\leq i\}$$

with an arc from a to b if $b - a \in \{-e_1, -e_2\}$. A star graph S_n is the graph whose vertex set is

$$\{(-i, -j) \in \mathbb{Z}^2 \mid i, j \ge 0, \ i+j \le n\}$$

with arcs formed the same way as with watermelons.

To make later definitions simpler, we introduce a unique sink v for S_n by including an arc from the points (-i, -n + i) to v.

Birkhoff Polytope

Examples: $\overline{W}_{4,3}$ and S_3

Definition

A Fermi configuration in a digraph H with source u and sink v is a collection of distinct, noncrossing paths from u to v. A Fermi configuration is maximal if no additional distinct noncrossing paths from u to v can be included in the configuration.

Example (A maximal Fermi configuration in $\overline{W}_{3,2}$)

Definition

A triple of adjacent paths in a maximal Fermi configuration is called a flipflop if the two 2-dimensional faces it bounds share no edges of the central path. If the central path goes to the right of the first 2-dimensional face it encounters, then the path is called flopped. Otherwise, it is flipped.

Example

The configuration on the previous slide contains the flopped walk (p_2, p_3, p_4) but no flipped walks.

Theorem (Arrowsmith, Bhatti, and Essam (2012))

Suppose H is a digraph with unique source and sink, and that H has a unique minimal-cardinality Fermi configuration covering all of its arcs. Let $\varphi_k(H)$ denote the number of maximal Fermi configurations in H that contain k flopped walks. Then the polynomial

$$\Phi(H;t) = \sum_{i \ge 0} \varphi_k(H) t^k$$

has palindromic coefficients.

Sagan and I have shown that if the previously-mentioned conjecture holds, then $\Phi(S_n;t)$ is the h^* -polynomial for $B_n(132,312)$ and $\Phi(\overline{W}_{\lfloor n/2 \rfloor,\lfloor n/2 \rfloor};t)$ is the h^* -polynomial for $\widetilde{B}_n(123)$.

It appears that the coefficients of $\Phi(\overline{W}_{k,m};t)$ are unimodal for all k and m, but it is not immediately obvious how to choose Π so that $\Phi(\overline{W}_{k,m};t) = B_n(\Pi)$ (or if any such Π exists)

Open Questions

- Is there a nice combinatorial proof for the number of interior lattice points of $P_n(132, 312)$?
- **2** For "nice" special classes of Π ,
 - what is the combinatorial structure of $P_n(\Pi)$ or $B_n(\Pi)$?
 - **2** what is $\operatorname{Vol}(P_n(\Pi))$, $\operatorname{Vol}(B_n(\Pi))$?
 - **3** what is the Ehrhart polynomial for $P_n(\Pi)$?
 - what is the h^* -vector of $B_n(\Pi)$?
- What happens if we consider classes of vincular or bivincular patterns?
- For which choices of Π is $B_n(\Pi)$ IDP? Gorenstein?
- What are the homotopy types of Q_n(Π)? (in general their order complexes aren't necessarily spheres, or even Cohen-Macaulay)