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Notation and Definition

X ⊂ P(V ) = Pn+e: a nondegenerate, irreducible and reduced
variety (not necessarily smooth) defined over K = K of char
(K ) ≥ 0, dim(X ) = n, deg(X ) = d and codim(X ,P(V )) = e .
R/IX : the projective coordinate ring of X where
R = K [x0, x1, . . . , xn+e] is a coordinate ring of P(V ) = Pn+e,
IX =

⊕
m≥0 H0(IX (m)) is the saturated ideal.

depth(X ) = depth(R/IX ) = min{i | H i(IX (m)) 6= 0} for some
m ∈ Z, i ≥ 1 and 1 ≤ depth(R/IX ) ≤ dim(R/IX ) = n + 1.
X is called ACM if depth(R/IX ) = n + 1, i.e
H i(Pn+e, IX (m)) = 0 for all m ∈ Z,1 ≤ i ≤ n.
X has a d-linear resolution if R/IX has a d-linear minimal free
resolution.
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Minimal free resolutions

There are unique minimal free resolutions of R/IX and
R(X ) =

⊕
m≥0 H0(OX (m)) and associated Betti tables.

It is still interesting to consider the minimal free resolution:
· · · → Li → Li−1 → · · · → L1 → R → R/IX → 0 where
Li =

⊕
j R(−i − j)βi,j (X).

βi,j(X ) is the rank of the degree i + j part in Li and
βi,j(X ) := dimK TorR

i (R/IX ,K )i+j .

β1,1(X ): the number of quadrics Qi ∈ IX ;
β2,1(X ) is the number of linear relations of the form ΣLiQi = 0;
β1,2(X ) is the number of cubic generators of IX .

Sijong Kwak (KAIST, Korea) Characterization of ACM varieties with d-linear resolutions August 03, 2016 3 / 31



Minimal free resolutions

There are unique minimal free resolutions of R/IX and
R(X ) =

⊕
m≥0 H0(OX (m)) and associated Betti tables.

It is still interesting to consider the minimal free resolution:
· · · → Li → Li−1 → · · · → L1 → R → R/IX → 0 where
Li =

⊕
j R(−i − j)βi,j (X).

βi,j(X ) is the rank of the degree i + j part in Li and
βi,j(X ) := dimK TorR

i (R/IX ,K )i+j .

β1,1(X ): the number of quadrics Qi ∈ IX ;
β2,1(X ) is the number of linear relations of the form ΣLiQi = 0;
β1,2(X ) is the number of cubic generators of IX .

Sijong Kwak (KAIST, Korea) Characterization of ACM varieties with d-linear resolutions August 03, 2016 3 / 31



Minimal free resolutions

There are unique minimal free resolutions of R/IX and
R(X ) =

⊕
m≥0 H0(OX (m)) and associated Betti tables.

It is still interesting to consider the minimal free resolution:
· · · → Li → Li−1 → · · · → L1 → R → R/IX → 0 where
Li =

⊕
j R(−i − j)βi,j (X).

βi,j(X ) is the rank of the degree i + j part in Li and
βi,j(X ) := dimK TorR

i (R/IX ,K )i+j .

β1,1(X ): the number of quadrics Qi ∈ IX ;
β2,1(X ) is the number of linear relations of the form ΣLiQi = 0;
β1,2(X ) is the number of cubic generators of IX .

Sijong Kwak (KAIST, Korea) Characterization of ACM varieties with d-linear resolutions August 03, 2016 3 / 31



Minimal free resolutions

There are unique minimal free resolutions of R/IX and
R(X ) =

⊕
m≥0 H0(OX (m)) and associated Betti tables.

It is still interesting to consider the minimal free resolution:
· · · → Li → Li−1 → · · · → L1 → R → R/IX → 0 where
Li =

⊕
j R(−i − j)βi,j (X).

βi,j(X ) is the rank of the degree i + j part in Li and
βi,j(X ) := dimK TorR

i (R/IX ,K )i+j .

β1,1(X ): the number of quadrics Qi ∈ IX ;
β2,1(X ) is the number of linear relations of the form ΣLiQi = 0;
β1,2(X ) is the number of cubic generators of IX .

Sijong Kwak (KAIST, Korea) Characterization of ACM varieties with d-linear resolutions August 03, 2016 3 / 31



Minimal free resolutions

There are unique minimal free resolutions of R/IX and
R(X ) =

⊕
m≥0 H0(OX (m)) and associated Betti tables.

It is still interesting to consider the minimal free resolution:
· · · → Li → Li−1 → · · · → L1 → R → R/IX → 0 where
Li =

⊕
j R(−i − j)βi,j (X).

βi,j(X ) is the rank of the degree i + j part in Li and
βi,j(X ) := dimK TorR

i (R/IX ,K )i+j .

β1,1(X ): the number of quadrics Qi ∈ IX ;
β2,1(X ) is the number of linear relations of the form ΣLiQi = 0;
β1,2(X ) is the number of cubic generators of IX .

Sijong Kwak (KAIST, Korea) Characterization of ACM varieties with d-linear resolutions August 03, 2016 3 / 31



Minimal free resolutions

There are unique minimal free resolutions of R/IX and
R(X ) =

⊕
m≥0 H0(OX (m)) and associated Betti tables.

It is still interesting to consider the minimal free resolution:
· · · → Li → Li−1 → · · · → L1 → R → R/IX → 0 where
Li =

⊕
j R(−i − j)βi,j (X).

βi,j(X ) is the rank of the degree i + j part in Li and
βi,j(X ) := dimK TorR

i (R/IX ,K )i+j .

β1,1(X ): the number of quadrics Qi ∈ IX ;
β2,1(X ) is the number of linear relations of the form ΣLiQi = 0;
β1,2(X ) is the number of cubic generators of IX .

Sijong Kwak (KAIST, Korea) Characterization of ACM varieties with d-linear resolutions August 03, 2016 3 / 31



Minimal free resolutions

There are unique minimal free resolutions of R/IX and
R(X ) =

⊕
m≥0 H0(OX (m)) and associated Betti tables.

It is still interesting to consider the minimal free resolution:
· · · → Li → Li−1 → · · · → L1 → R → R/IX → 0 where
Li =

⊕
j R(−i − j)βi,j (X).

βi,j(X ) is the rank of the degree i + j part in Li and
βi,j(X ) := dimK TorR

i (R/IX ,K )i+j .

β1,1(X ): the number of quadrics Qi ∈ IX ;
β2,1(X ) is the number of linear relations of the form ΣLiQi = 0;
β1,2(X ) is the number of cubic generators of IX .

Sijong Kwak (KAIST, Korea) Characterization of ACM varieties with d-linear resolutions August 03, 2016 3 / 31



Minimal free resolutions

There are unique minimal free resolutions of R/IX and
R(X ) =

⊕
m≥0 H0(OX (m)) and associated Betti tables.

It is still interesting to consider the minimal free resolution:
· · · → Li → Li−1 → · · · → L1 → R → R/IX → 0 where
Li =

⊕
j R(−i − j)βi,j (X).

βi,j(X ) is the rank of the degree i + j part in Li and
βi,j(X ) := dimK TorR

i (R/IX ,K )i+j .

β1,1(X ): the number of quadrics Qi ∈ IX ;
β2,1(X ) is the number of linear relations of the form ΣLiQi = 0;
β1,2(X ) is the number of cubic generators of IX .

Sijong Kwak (KAIST, Korea) Characterization of ACM varieties with d-linear resolutions August 03, 2016 3 / 31



Koszul complex and the Betti table

By the symmetry of Tor, the graded Betti numbers are also defined
via the Koszul exact sequence of the base field K :
V = K 〈x0, · · · , xn+e〉 be the K -vector space in K [x0, . . . , xn+e].
Then, TorR

i (R/IX ,K )i+j is the homology of the Koszul complex:

∧i+1V ⊗ (R/IX )j−1
∂i+1,j−1−→ ∧iV ⊗ (R/IX )j

∂i,j−→ ∧i−1V ⊗ (R/IX )j+1,

where the map is given by ∂i,j(xα1 ∧ xα2 ∧ · · · ∧ xαi ⊗m) =∑
1≤µ≤i (−1)µ−1xα1 · · · ∧ ˆxαµ ∧ . . . ∧ xαi ⊗ (xαµ ·m).

the Koszul complex is exact if i > n + e + 1 or j >> 0
(Hilbert syzygy theorem and Hilbert basis theorem).
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The Betti table of R/IX

0 1 2 3 · · · i − 1 i i + 1 · · · 4
0 1 − − − · · · − − − · · · −
1 − β1,1 β2,1 β3,1 · · · βi−1,1 βi,1 βi+1,1 · · · β4,1

2 − β1,2 β2,2 β3,2 · · · βi−1,2 βi,2 βi+1,2 · · · β4,2
... − − · · · −

. . . · · ·
...

... · · ·
. . .

j − β1,j β2,j β3,j · · · βi−1,j βi,j βi+1,j · · · β4,j
... · · · −

. . . · · ·
...

... · · ·
. . .

� − β1,� β2,� β3,� · · · βi−1,� βi,� βi+1,� · · · β4,�

4 = the projective dimension of R/IX ≥ e.
� = reg(R/IX ) = reg(X )− 1 ≤ d − e if X is irreducible, reduced
(Eisenbud-Goto Conjecture).
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Counterexamples to the Eisenbud-Goto conjecture

J. Macollough and I. Peeva announced the counterexamples in
the seminar talk in the U. of Michigan in July, 2016.
They claim that the regularity of non-degenerate homogeneous
prime ideals is not bounded by any polynomial function of the
degree. So, it provides counter-examples to the longstanding
Eisenbud-Goto Regularity Conjecture.
For integral curves, EG conjecture is true!(Castelnuovo(1896),
Gruson-Lazarsfeld-Peskine (1986)).
For smooth cases, it is still open and it is good to consider some
conditions under which EG conjecture is true even in the integral
varieties.
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varieties.
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The simplest Betti table - Varieties of minimal degree

X n ⊂ Pn+e: nondegenerate, irreducible and reduced (not
necessarily smooth) of degree d ≥ e + 1. Then X is called a
"variety of minimal degree"(VMD) if d = e + 1.
The simplest Betti table of X which is 2-linear ACM with

βi,1 = i ·
(

e + 1
i + 1

)
:

0 1 2 3 · · · i − 1 i i + 1 · · · e
0 1 − − − · · · − − − · · · −
1 − β1,1 β2,1 β3,1 · · · βi−1,1 βi,1 βi+1,1 · · · βe,1

Table 1 minimal degree varieties
A VMD has a rational normal curve section and they have the
same Betti table.
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On the other hand, P. del Pezzo(1886) and E. Bertini(1907) classified
all varieties of minimal degree:
I X is of minimal degree⇔ X is 2-regular ACM (characterization)
if and only if X is (a cone of) one of the following (classification);
(a) a quadric hypersurface;
(b) a Veronese surface ν2(P2) in P5;
(c) a rational normal scroll, i.e. P(E) ↪→ PΣai +d , where
E '

⊕d
i=0OP1(ai),ai ≥ 1.

Also See the paper "On Varieties of Minimal Degree (A centennial
Account)-1987" due to D. Eisenbud and J. Harris.
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2-regular in a few steps

Many geometric information on X can be read off from the
table (e.g. gonality, genus, degree bound and multisecant to X ).
X satisfies N2,p or Np (i.e., 2-regular until p-th step) if
βi,j(X ) = 0,1 ≤ i ≤ p, j ≥ 2.

0 1 2 3 · · · p p + 1 · · · 4
0 1 − − − · · · − · · · −
1 − β1,1 β2,1 β3,1 · · · βp,1 βp+1,1 · · · β4,1

2 − − − − · · · − βp+1,2 · · · β4,2
... − − · · · −

. . . · · ·
...

... · · ·

For a variety X satisfying N2,p , if X ∩ Λ is finite for a linear space Λ
of dimension p, then they are linearly independent as a scheme.
(Eisenbud-Green-Hulek-Popescu 2005)
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The Betti table of smooth curves

Let C be a smooth curve of genus g and gonality gon(C) completely
embedded in Pr by L. Suppose deg(L) = 2g + 1 + p ≥ 4g − 3 and
r = h0(C,L)− 1 = g + p + 1. Then we have the following:

βi,1(C) 6= 0⇐⇒ 1 ≤ i ≤ r − gon(C) (Ein-Lazarsfeld);
βi,2(C) 6= 0⇐⇒ p + 1 ≤ i ≤ r − 1 = g + p (Green and Schreyer);

0 1 · · · p p + 1 · · · r − gon(C) · · · r − 1
0 1 − · · · − · · · − − − −
1 − β1,1 · · · βp,1 βp+1,1 · · · βr−gon(C),1 − −
2 − − · · · − βp+1,2 6= 0 · · · · · · βr−1,2 = g

In addition, there exists (p + 3)-secant (p + 1)-plane by the
geometric Riemann-Roch and βp+1,2 6= 0. So N2,p+1 does not
hold for X .
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� d-regular in a few steps for d ≥ 2.
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d-regular in a few steps for d ≥ 2 in general

More generally, one says that X satisfies Nd ,p for d ≥ 2 if
βi,j(X ) = 0,1 ≤ i ≤ p, j ≥ d , i.e. X is d-regular until p-th step.
Note that X is d-regular if Nd ,p holds for all p ≥ 1.

0 1 2 · · · p p + 1 · · · 4
0 1 − − · · · − − · · · −
1 − β1,1 β2,1 · · · βp,1 βp+1,1 · · · β4,1

2 − β1,2 β2,2 · · · βp,2 βp+1,2 · · · β4,2
... − − · · · · · · · · ·

... · · ·
. . .

d − 1 − β1,d−1 β2,d−1 · · · βp,d−1 βp+1,d−1 · · · β4,d−1

d − − − · · · − βp+1,d · · · β4,d
... · · · −

. . .
...

... · · ·
. . .

� − − − − − βp+1,� · · · β4,�

We have also some geometric properties for property Nd ,p.
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Degree upper bound for Nd ,e

Theorem [Ahn-Han-K, preprint]
Suppose X ⊂ Pn+e satisfies Nd ,e,d ≥ 2.

deg(X ) ≤
(d−1+e

e

)
;

deg(X ) =
(d−1+e

e

)
if and only if X is ACM with d-linear resolution.

Remark
N2,e iff deg(X ) = e + 1 iff X is 2-regular ACM iff X is a VMD.
Eisenbud-Green-Hulek-Popescu call this property (for d = 2)
"the syzygetic rigidity" in ‘Restricting linear syzygies’(2005).
[Problem] Does Nd ,e property imply the d-regularity of X for
d ≥ 3? This is true for d = 2.
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Basic ideas

How to prove the above Theorem?

Take the picture explaining the degree of X and
Use the graded ellimination mapping cone sequence to control the
minimal free resolution of R/IX as an Se-module ;
Interprete it locally by sheafification!
Finally, X is d-linear ACM if and only if R/IX is a free graded
Se-module, isomorphic to⊕

0≤i≤d−1

Se(−i)(e−1+i
i ) ' R/IX ,

where Se = K [xe, . . . , xe+n] if and only if deg(X ) =
(d−1+e

e

)
.
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I Elimination mapping cone sequence

Let S1 = k [x1, . . . , xn+e] ⊂ R = k [x0, x1 . . . , xn+e]
Let M be a graded R-module (so, M is also a graded S1-module).
Then, we have a natural long exact sequence:
TorR

i (M)i+j → TorS1
i−1(M)i−1+j

×x0→ TorS1
i−1(M)i−1+j+1 → TorR

i−1(M)i−1+j+1
whose connecting homomorphism is induced by the multiplication map
×x0 : M(−1)→ M.

I Elimination mapping cone sequence gives us the following:

depthR(R/IX ) = depthS1
(R/IX );

regR(R/IX ) = regS1
(R/IX )
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ACM varieties with d-linear resolution

X ⊂ Pn+e is ACM if depth R/IX = dim R/IX = dim(X ) + 1.
In particular, ACM varieties with d-linear resolution are very special:

deg(X ) =
(d−1+e

e

)
;

the graded Betti numbers βi,d−1(X ) =
(i+d−2

d−1

)(e+d−1
i+d−1

)
:

0 1 2 · · · i · · · e
0 1 − − · · · − · · · −
1 − − − · · · − · · · −
... − − − · · · − · · · −

d − 1 − β1,d−1 β2,d−1 · · · βi,d−1 · · · βe,d−1

Recall that X is 2-linear ACM iff X is of minimal degree e + 1.
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Multisecant spaces for property Nd ,p,1 ≤ p ≤ e

Suppose X ⊂ Pn+e satisfies Nd ,p,1 ≤ p ≤ e. Then,

Nd ,1 means X is cut out by equations of degree at most d . So,
there is no (d + 1)-secant line to X and furthermore,
A d-secant line to X is contained in any defining equation of
degree ≤ d − 1.

We have the following generalization:
Proposition (the generalized Bezout’s Theorem) [Ahn-Han-K]

For a variety X ⊂ Pn+e satisfying Nd ,p, we have
length(X ∩ Λ) ≤

(d−1+p
p

)
if it is finite for dim Λ = p,1 ≤ p ≤ e;

Furthermore, if length(X ∩ Λ) =
(d−1+p

p

)
, then Λ is contained in any

hypersurface F ∈ IX of degree ≤ d − 1.
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The locus of d-secant lines for Nd ,2,d ≥ 2

Proposition [Ahn-Han-K, preprint]
Consider the d-secant locus Σq,d (X ) through q ∈ Sec(X ) \ X . Then,
Σq,d (X ) := {x ∈ X | πq

−1(πq(x)) has length d }. Property Nd ,2,d ≥ 2
implies the following:

Σq,d (X ) is either empty or a hypersurface F of degree d in
〈
F ,q

〉
;

So, Zq,d = πq(Σq,d (X )) is either empty or a linear subspace
parametrizing d-secant lines through q;
For q ∈ Sec(X ) \ Tan(X ) ∪ X , ∃ a unique d-secant line through q if
Zd 6= ∅.

I The case of d = 2 has been well known and useful to classify
non-normal del Pezzo varieties because the entry locus is a quadric.
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The first strand of the Betti table

� The structure of the Betti Table.
We are intereested in the firsr linear strand starting from quadric
equations:

β1,1(X ), β2,1(X ), . . . , βe,1(X ), . . . .

� Natural Philosophy: More quadrics X has, higher linear syzygies
of quadrics can go further !
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The structure of Betti table in the quadratic world

� Elementary questions: X n ⊂ Pn+e: nondegenerate, irreducible and
reduced defined over K = K of char(K ) ≥ 0.
"How many quadric hypersurfaces containing X?"

(Castelnuovo, 1889)
β1,1(X ) = h0(IX/Pn+e (2)) ≤

(e+1
2

)
and “ = ” holds iff X is a variety

of minimal degree, i.e. deg(X ) = e + 1.
(Fano, 1894) Unless X is VMD,
β1,1(X ) = h0(IX/Pn+e (2)) ≤

(e+1
2

)
− 1 and “ = ” holds iff X is a del

Pezzo variety (i.e. ACM and deg(X ) = e + 2).
There are many interesting proofs on this upper bound.
Note that every proof depends on the Bertini Theorem, i.e. the generic
linear sections up to finite points are also nondegenerate.
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del Pezzo varieties

X is called a del Pezzo variety if d = e + 2 and depth(X ) = n + 1.

The (next-to-simplest) Betti table of a del Pezzo variety with

βi,1(X ) = i
(

e + 1
i + 1

)
−
(

e
i − 1

)
:

0 1 2 3 · · · i · · · e − 1 e
0 1 − − − · · · − · · · − −
1 − β1,1 β2,1 β3,1 · · · βi,1 · · · βe−1,1 −
2 − − − − · · · − − − βe,2 = 1

A del Pezzo variety has an elliptic normal curve section or a
rational nodal curve section and they have the same Betti table.
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Upper bound on quadrics and higher linear syzygies

I Castelnuovo’s simple proof.

Γ = X ∩ Pe is a set of d-points in general position for general Pe.
Since d ≥ e + 1, take a subset Γ′ = {p1,p1, . . . ,pe+1} ⊂ Γ ⊂ Pe.
h0(IX (2)) ≤ h0(IΓ(2)) ≤ h0(IΓ′(2)) =

(e+2
2

)
− (e + 1) =

(e+1
2

)
.

I Inner projection method is more powerful.

Theorem [Basic Inequality] (Han-K, 2015)

βi,1(X ) ≤ βi,1(Xq) + βi−1,1(Xq) +
(e

i

)
, i ≥ 1.

The equality holds for i ≤ p if X satisfies property N2, p.
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Natural Philosophy: More quadrics X has, higher linear syzygies of
quadrics can go further !

[Green, 1984] If βp,1 6= 0, then h0(IX (2)) ≥
(p+1

2

)
= (p+1)p

2 ;
[Han-K, 2012] If X satisfies property N2,p, then

h0(IX (2)) ≥
(e+1

2

)
−
(e+1−p

2

)
= (2e+1−p)p

2 .
[Han-K, 2015] Using the above basic inequality under inner

projection, we have the following:
X ⊂ Pn+e : irreducible, reduced (not necessarily smooth).

βi,1(X ) ≤ i
(

e + 1
i + 1

)
, i ≥ 1

Furthermore, βi,1(X ) = i
(e+1

i+1

)
for some 1 ≤ i ≤ e

if and only if X is a VMD iff X is a 2-regular ACM variety.
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We also characterize Fano varieties as follows:
Theorem [Han-K, 2015]
Unless X is a variety of minimal degree, then we have

βi,1(X ) ≤ i
(

e + 1
i + 1

)
−
(

e
i − 1

)
for all 1 ≤ i ≤ e ,

and in particular,
X is del Pezzo iff βi,1(X ) = i

(e+1
i+1

)
−
( e

i−1

)
for some 1 ≤ i ≤ e − 1

Corollary There is no projective variety with the Betti number

i
(

e + 1
i + 1

)
−
(

e
i − 1

)
< βi,1(X ) < i

(
e + 1
i + 1

)
.
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The first strand of the Betti table in the cubic world

� The structure of Betti Tables.
We are intereested in the firsr linear strand starting from cubic
equations assuming that X has no quadrics:

β1,2(X ), β2,2(X ), . . . , βe,2(X ), . . . .

�We have many parallel problems as in the quadratic world.

How many cubics are required for βp,2(X ) 6= 0 for 1 ≤ p ≤ e? ;
Kp,2 Theorem, i.e. βp,2(X ) = 0 for p > e? ;
Upper bounds for βp,2(X ) for 1 ≤ p ≤ e? ;
what are the simplest Betti table and the next simplest Betti
tables?
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Notion of ND(2)

An irreducible variety X n ⊂ Pn+e is called a ND(m)(i.e., nondegenerate
in degree m) variety if for a general Λ of dimension e, (IX∩Λ)m = 0.

ND(1)⇔ nondegenerate⇔ not contained in any hyperplane.
ND(2)⇔ nondegenerate in degree 2⇔ not contained in any
quadric after linear sections.
The Betti table of ND(d − 1) variety X in Pn+e:

0 1 2 3 · · · i i + 1 · · · 4
0 1 − − − · · · − − · · · −
1 − − − − · · · − − · · · −
... − − · · · −

. . . · · ·
...

... · · ·
d − 1 − β1,d−1 β2,d−1 β3,d−1 · · · βi,d−1 βi+1,d−1 · · · β4,d−1

d − β1,d β2,d β3,d · · · βi,d βi+1,d · · · β4,d
... · · · −

. . . · · ·
... · · · · · ·
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Upper bound of βp,2(X ) and Kp,2 Theorem

Theorem (Ahn, Han and K-, preprint)

Suppose that X n ⊂ Pn+e is a ND(2) subscheme, defined over K = K
of char (K ) = 0. Then,(e+2

2

)
≤ deg(X ) and h0(IX (3)) ≤

(e+2
3

)
.

In general, βp,2(X ) ≤
(p+1

2

)(e+2
p+2

)
for p ≥ 1.

For the extremal cases, the following are equivalent:
(a) deg(X ) =

(e+2
2

)
;

(b) h0(IX (3)) =
(e+2

3

)
;

(c) one of βp,2(X ) attains “=” for 1 ≤ p ≤ e ;
(d) IX has ACM 3-linear resolution.

This also gives a natural Kp,2 theorem generalizing Kp,1-theorem
because βp,2(X ) = 0 for p > e.
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Degree lower bound and the upper bound on syzygies

Theorem [Ahn-Han-K] More generally, if X ⊂ Pn+e is a ND(d − 1)
variety defined over K of char (K ) = 0 then,(e+d−1

d−1

)
≤ deg(X ) and h0(IX (d)) ≤

(e+d−1
d

)
;

βi,d−1(X ) ≤
(i+d−2

d−1

)(e+d−1
i+d−1

)
for i ≥ 1. In particular,

βi,d−1(X ) = 0 for i 
 e.
For the extremal cases, the following are equivalent:

deg(X ) =
(e+d−1

d−1

)
;

h0(IX (d)) =
(e+d−1

d

)
;

βi,d−1(X ) attains the maximum for some 1 ≤ i ≤ e ;
X is ACM with d-linear resolution.

Remark
I For d ≥ 2, βi,d−1(X ) = 0 for i > e is a generalization

of Green’s Kp,1-Theorem (d = 2).
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How to Prove? in case char(K ) = 0

Let m = (x0, x1, . . . , xe−1) be the irrelevant maximal ideal in Λ = Pe−1.
The graded Betti number of a ND(d − 1)-variety is less than or equal to
that of the md , i.e.

βp,d−1(X ) ≤ βp,d−1(R/md ) =

(
e + d − 1
p + d − 1

)(
p + d − 2

d − 1

)
for p ≥ 1

by using the generic initial ideal theory developed by M. Green,
Bayer-Stillman and Eliahou-Kervaire theorem.
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(a) Generic initial ideal Consider inτ (g(I)). For a general change g,
inτ (g(I)) is constant. We will call this the generic initial ideal of I
w.r.t τ Ginτ (I)

(b) Other ingredients
- Use degree reverse lexicographic order;
- Cancellation principle;
- Eliahou-Kervaire theorem;
- Gin(̄I) = (Gin(I),xn)

(xn) = Gin(I)| xn→0;
- Gin(̄Isat) =

⋃∞
k=0(Gin(̄I) : xk

n−1) = (Gin(I)| xn→0)|xn−1→1.

(c) Strategy Find maximal possible Borel fixed set which contains
Gin(IX )3!
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For all ND(2)-varieties, deg(X ) ≥
(e+2

2

)
and 3-linear ACM varieties

are called ‘minimal degree varieties of the second kind’.
Problem: What is a geometric properties /or classification of
‘minimal degree varieties of the second kind’?

Examples of varieties having ACM 3-linear resolution]

3-minors of 4× 4 generic symmetric matrix (i.e. Sec(v2(P3)) ⊂ P9);
3-minors of 3× (e + 2) sufficiently generic matrices (e.g.
Sec(RNS));
Sec(v3(P2));
Sec(P2 × P1 × P1);
Non-trivial 3-linear ACM smooth varieties are interesting! (L. Ein)
Are they all the secant varieties of varieties of small degree?
(M. Mella.)
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