Characterization of ACM varieties with *d*-linear resolutions

Sijong Kwak (KAIST, Korea)

Computational Commutative Algebra and Convex Polytopes, RIMS Kyoto, August 03, 2016,

 Ω

 $1.71 \times 1.71 \times$

画像

- $X \subset \mathbb{P}(V) = \mathbb{P}^{n+\theta}$: a nondegenerate, irreducible and reduced variety (not necessarily smooth) defined over $K = \overline{K}$ of char $(K) \geq 0$, dim $(X) = n$, deg $(X) = d$ and codim $(X, \mathbb{P}(V)) = e$.
- *R*/*I^X* : the projective coordinate ring of *X* where $R = K[x_0, x_1, \ldots, x_{n+e}]$ is a coordinate ring of $\mathbb{P}(V) = \mathbb{P}^{n+e}$, $J_X = \bigoplus_{m \geq 0} H^0(\mathcal{I}_X(m))$ is the saturated ideal.
- $\operatorname{depth}(X)=\operatorname{depth}(R/I_X)=\min\{i\mid H^i(\mathcal{I}_X(m))\neq 0\}$ for some *m* $\in \mathbb{Z}, i > 1$ and $1 < \text{depth}(R/I_X) < \text{dim}(R/I_X) = n + 1$.
- *X* is called ACM if depth $(R/I_X) = n + 1$, i.e $H^i(\mathbb{P}^{n+e}, \mathcal{I}_X(m)) = 0$ for all $m \in \mathbb{Z}, 1 \leq i \leq n$.
- *X* has a *d*-linear resolution if *R*/*I^X* has a *d*-linear minimal free resolution.

 Ω

- $X \subset \mathbb{P}(V) = \mathbb{P}^{n+\theta}$: a nondegenerate, irreducible and reduced variety (not necessarily smooth) defined over $K = \overline{K}$ of char $(K) \geq 0$, dim $(X) = n$, deg $(X) = d$ and $\text{codim}(X, \mathbb{P}(V)) = e$.
- *R*/*I^X* : the projective coordinate ring of *X* where $R = K[x_0, x_1, \ldots, x_{n+e}]$ is a coordinate ring of $\mathbb{P}(V) = \mathbb{P}^{n+e}$, $J_X = \bigoplus_{m \geq 0} H^0(\mathcal{I}_X(m))$ is the saturated ideal.
- $\operatorname{depth}(X)=\operatorname{depth}(R/I_X)=\min\{i\mid H^i(\mathcal{I}_X(m))\neq 0\}$ for some *m* $\in \mathbb{Z}, i > 1$ and $1 < \text{depth}(R/I_X) < \text{dim}(R/I_X) = n + 1$.
- *X* is called ACM if depth $(R/I_X) = n + 1$, i.e $H^i(\mathbb{P}^{n+e}, \mathcal{I}_X(m)) = 0$ for all $m \in \mathbb{Z}, 1 \leq i \leq n$.
- *X* has a *d*-linear resolution if *R*/*I^X* has a *d*-linear minimal free resolution.

 Ω

- $X \subset \mathbb{P}(V) = \mathbb{P}^{n+\theta}$: a nondegenerate, irreducible and reduced variety (not necessarily smooth) defined over $K = \overline{K}$ of char $(K) \geq 0$, dim $(X) = n$, deg $(X) = d$ and $\text{codim}(X, \mathbb{P}(V)) = e$.
- R/I_X : the projective coordinate ring of *X* where $R = K[x_0, x_1, \ldots, x_{n+e}]$ is a coordinate ring of $\mathbb{P}(V) = \mathbb{P}^{n+e}$, $J_X = \bigoplus_{m \geq 0} H^0(\mathcal{I}_X(m))$ is the saturated ideal.
- $\operatorname{depth}(X)=\operatorname{depth}(R/I_X)=\min\{i\mid H^i(\mathcal{I}_X(m))\neq 0\}$ for some *m* $\in \mathbb{Z}, i > 1$ and $1 < \text{depth}(R/I_X) < \text{dim}(R/I_X) = n + 1$.
- *X* is called ACM if depth $(R/I_X) = n + 1$, i.e $H^i(\mathbb{P}^{n+e}, \mathcal{I}_X(m)) = 0$ for all $m \in \mathbb{Z}, 1 \leq i \leq n$.
- *X* has a *d*-linear resolution if *R*/*I^X* has a *d*-linear minimal free resolution.

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

- $X \subset \mathbb{P}(V) = \mathbb{P}^{n+\theta}$: a nondegenerate, irreducible and reduced variety (not necessarily smooth) defined over $K = \overline{K}$ of char $(K) \geq 0$, dim $(X) = n$, deg $(X) = d$ and $\text{codim}(X, \mathbb{P}(V)) = e$.
- R/I_X : the projective coordinate ring of *X* where $R = K[x_0, x_1, \ldots, x_{n+e}]$ is a coordinate ring of $\mathbb{P}(V) = \mathbb{P}^{n+e}$, $J_X = \bigoplus_{m \geq 0} H^0(\mathcal{I}_X(m))$ is the saturated ideal.
- $\operatorname{depth}(X)=\operatorname{depth}(R/I_X)=\min\{i\mid H^i(\mathcal{I}_X(m))\neq 0\}$ for some *m* $\in \mathbb{Z}, i > 1$ and $1 < \text{depth}(R/I_X) < \text{dim}(R/I_X) = n + 1$.
- *X* is called ACM if depth $(R/I_X) = n + 1$, i.e $H^i(\mathbb{P}^{n+e}, \mathcal{I}_X(m)) = 0$ for all $m \in \mathbb{Z}, 1 \leq i \leq n$.
- *X* has a *d*-linear resolution if *R*/*I^X* has a *d*-linear minimal free resolution.

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

- $X \subset \mathbb{P}(V) = \mathbb{P}^{n+\theta}$: a nondegenerate, irreducible and reduced variety (not necessarily smooth) defined over $K = \overline{K}$ of char $(K) \geq 0$, dim $(X) = n$, deg $(X) = d$ and $\text{codim}(X, \mathbb{P}(V)) = e$.
- R/I_x : the projective coordinate ring of *X* where $R = K[x_0, x_1, \ldots, x_{n+e}]$ is a coordinate ring of $\mathbb{P}(V) = \mathbb{P}^{n+e}$, $J_X = \bigoplus_{m \geq 0} H^0(\mathcal{I}_X(m))$ is the saturated ideal.
- $\operatorname{depth}(X)=\operatorname{depth}(R/I_X)=\min\{i\mid H^i(\mathcal{I}_X(m))\neq 0\}$ for some $m \in \mathbb{Z}, i \geq 1$ and $1 \leq$ depth $(R/I_X) \leq$ dim $(R/I_X) = n + 1$.
- *X* is called ACM if depth $(R/I_X) = n + 1$, i.e $H^i(\mathbb{P}^{n+e}, \mathcal{I}_X(m)) = 0$ for all $m \in \mathbb{Z}, 1 \leq i \leq n$.
- *X* has a *d*-linear resolution if *R*/*I^X* has a *d*-linear minimal free resolution.

 Ω

- $X \subset \mathbb{P}(V) = \mathbb{P}^{n+\theta}$: a nondegenerate, irreducible and reduced variety (not necessarily smooth) defined over $K = \overline{K}$ of char $(K) \geq 0$, dim $(X) = n$, deg $(X) = d$ and $\text{codim}(X, \mathbb{P}(V)) = e$.
- R/I_x : the projective coordinate ring of *X* where $R = K[x_0, x_1, \ldots, x_{n+e}]$ is a coordinate ring of $\mathbb{P}(V) = \mathbb{P}^{n+e}$, $J_X = \bigoplus_{m \geq 0} H^0(\mathcal{I}_X(m))$ is the saturated ideal.
- $\operatorname{depth}(X)=\operatorname{depth}(R/I_X)=\min\{i\mid H^i(\mathcal{I}_X(m))\neq 0\}$ for some $m \in \mathbb{Z}, i \geq 1$ and $1 \leq$ depth $(R/I_X) \leq$ dim $(R/I_X) = n + 1$.
- *X* is called ACM if depth $(R/I_X) = n + 1$, i.e $H^i(\mathbb{P}^{n+\mathbf{e}}, \mathcal{I}_X(m)) = 0$ for all $m \in \mathbb{Z}, 1 \leq i \leq n$.
- *X* has a *d*-linear resolution if *R*/*I^X* has a *d*-linear minimal free resolution.

 Ω

- $X \subset \mathbb{P}(V) = \mathbb{P}^{n+\theta}$: a nondegenerate, irreducible and reduced variety (not necessarily smooth) defined over $K = \overline{K}$ of char $(K) \geq 0$, dim $(X) = n$, deg $(X) = d$ and $\text{codim}(X, \mathbb{P}(V)) = e$.
- R/I_x : the projective coordinate ring of *X* where $R = K[x_0, x_1, \ldots, x_{n+e}]$ is a coordinate ring of $\mathbb{P}(V) = \mathbb{P}^{n+e}$, $J_X = \bigoplus_{m \geq 0} H^0(\mathcal{I}_X(m))$ is the saturated ideal.
- $\operatorname{depth}(X)=\operatorname{depth}(R/I_X)=\min\{i\mid H^i(\mathcal{I}_X(m))\neq 0\}$ for some $m \in \mathbb{Z}, i \geq 1$ and $1 \leq$ depth $(R/I_X) \leq$ dim $(R/I_X) = n + 1$.
- *X* is called ACM if depth $(R/I_X) = n + 1$, i.e $H^i(\mathbb{P}^{n+\mathbf{e}}, \mathcal{I}_X(m)) = 0$ for all $m \in \mathbb{Z}, 1 \leq i \leq n$.
- *X* has a *d*-linear resolution if *R*/*I^X* has a *d*-linear minimal free resolution.

 Ω

- There are unique minimal free resolutions of *R*/*I^X* and $R(X) = \bigoplus_{m \geq 0} H^0(\mathcal{O}_X(m))$ and associated Betti tables.
- **•** It is still interesting to consider the minimal free resolution: $\cdots \rightarrow L_i \rightarrow L_{i-1} \rightarrow \cdots \rightarrow L_1 \rightarrow R \rightarrow R/I_X \rightarrow 0$ where $L_i = \bigoplus_j R(-i-j)^{\beta_{i,j}(X)}$.
- \bullet $\beta_{i,j}(X)$ is the rank of the degree *i* + *j* part in L_i and $\beta_{i,j}(X) := \dim_K \operatorname{Tor}_i^R(R/I_X,K)_{i+j}.$
- θ $\beta_{1,1}(X)$: the number of quadrics $Q_i \in I_X$;
- θ β _{2,1}(*X*) is the number of linear relations of the form $\sum L_i Q_i = 0$;
- θ $\beta_{1,2}(X)$ is the number of cubic generators of *I_X*.

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

- There are unique minimal free resolutions of *R*/*I^X* and $R(X) = \bigoplus_{m \geq 0} H^0(\mathcal{O}_X(m))$ and associated Betti tables.
- It is still interesting to consider the minimal free resolution:
	- $\cdots \rightarrow L_i \rightarrow L_{i-1} \rightarrow \cdots \rightarrow L_1 \rightarrow R \rightarrow R/l_X \rightarrow 0$ where $L_i = \bigoplus_j R(-i-j)^{\beta_{i,j}(X)}$.
- \bullet $\beta_{i,j}(X)$ is the rank of the degree *i* + *j* part in L_i and $\beta_{i,j}(X) := \dim_K \operatorname{Tor}_i^R(R/I_X,K)_{i+j}.$
- θ $\beta_{1,1}(X)$: the number of quadrics $Q_i \in I_X$;
- θ β _{2,1}(*X*) is the number of linear relations of the form $\sum L_i Q_i = 0$;
- θ $\beta_{1,2}(X)$ is the number of cubic generators of *I_X*.

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

- There are unique minimal free resolutions of *R*/*I^X* and $R(X) = \bigoplus_{m \geq 0} H^0(\mathcal{O}_X(m))$ and associated Betti tables.
- It is still interesting to consider the minimal free resolution: $\cdots \rightarrow L_i \rightarrow L_{i-1} \rightarrow \cdots \rightarrow L_1 \rightarrow R \rightarrow R/I_X \rightarrow 0$ where $L_i = \bigoplus_j R(-i-j)^{\beta_{i,j}(X)}$.
- \bullet $\beta_{i,j}(X)$ is the rank of the degree *i* + *j* part in L_i and $\beta_{i,j}(X) := \dim_K \operatorname{Tor}_i^R(R/I_X,K)_{i+j}.$
- θ $\beta_{1,1}(X)$: the number of quadrics $Q_i \in I_X$;
- θ β _{2,1}(*X*) is the number of linear relations of the form $\sum L_i Q_i = 0$;
- θ $\beta_{1,2}(X)$ is the number of cubic generators of *I_X*.

 Ω

- There are unique minimal free resolutions of *R*/*I^X* and $R(X) = \bigoplus_{m \geq 0} H^0(\mathcal{O}_X(m))$ and associated Betti tables.
- It is still interesting to consider the minimal free resolution: $\cdots \rightarrow L_i \rightarrow L_{i-1} \rightarrow \cdots \rightarrow L_1 \rightarrow R \rightarrow R/I_X \rightarrow 0$ where $L_i = \bigoplus_j R(-i-j)^{\beta_{i,j}(X)}$.
- θ β *i*,*j*(*X*) is the rank of the degree *i* + *j* part in *L_i* and $\beta_{i,j}(X) := \dim_K \operatorname{Tor}_i^R(R/I_X, K)_{i+j}.$
- θ $\beta_{1,1}(X)$: the number of quadrics $Q_i \in I_X$;
- θ β _{2,1}(*X*) is the number of linear relations of the form $\sum L_i Q_i = 0$;
- θ $\beta_{1,2}(X)$ is the number of cubic generators of *I_X*.

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

- There are unique minimal free resolutions of *R*/*I^X* and $R(X) = \bigoplus_{m \geq 0} H^0(\mathcal{O}_X(m))$ and associated Betti tables.
- It is still interesting to consider the minimal free resolution: $\cdots \rightarrow L_i \rightarrow L_{i-1} \rightarrow \cdots \rightarrow L_1 \rightarrow R \rightarrow R/I_X \rightarrow 0$ where $L_i = \bigoplus_j R(-i-j)^{\beta_{i,j}(X)}$.
- θ β *i*,*j*(*X*) is the rank of the degree *i* + *j* part in *L_i* and $\beta_{i,j}(X) := \dim_K \operatorname{Tor}_i^R(R/I_X, K)_{i+j}.$
- θ _{1,1}(*X*): the number of quadrics $Q_i \in I_X$;
- θ β _{2,1}(*X*) is the number of linear relations of the form $\sum L_i Q_i = 0$;
- θ $\beta_{1,2}(X)$ is the number of cubic generators of *I_X*.

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

- There are unique minimal free resolutions of *R*/*I^X* and $R(X) = \bigoplus_{m \geq 0} H^0(\mathcal{O}_X(m))$ and associated Betti tables.
- It is still interesting to consider the minimal free resolution: $\cdots \rightarrow L_i \rightarrow L_{i-1} \rightarrow \cdots \rightarrow L_1 \rightarrow R \rightarrow R/I_X \rightarrow 0$ where $L_i = \bigoplus_j R(-i-j)^{\beta_{i,j}(X)}$.
- θ β *i*,*j*(*X*) is the rank of the degree *i* + *j* part in *L_i* and $\beta_{i,j}(X) := \dim_K \operatorname{Tor}_i^R(R/I_X, K)_{i+j}.$
- θ $\beta_{1,1}(X)$: the number of quadrics $Q_i \in I_X$;
- $\theta_{2,1}(X)$ is the number of linear relations of the form $\Sigma L_i Q_i = 0$;
- θ $\beta_{1,2}(X)$ is the number of cubic generators of *I_X*.

 Ω

- There are unique minimal free resolutions of *R*/*I^X* and $R(X) = \bigoplus_{m \geq 0} H^0(\mathcal{O}_X(m))$ and associated Betti tables.
- It is still interesting to consider the minimal free resolution: $\cdots \rightarrow L_i \rightarrow L_{i-1} \rightarrow \cdots \rightarrow L_1 \rightarrow R \rightarrow R/I_X \rightarrow 0$ where $L_i = \bigoplus_j R(-i-j)^{\beta_{i,j}(X)}$.
- θ β *i*,*j*(*X*) is the rank of the degree *i* + *j* part in *L_i* and $\beta_{i,j}(X) := \dim_K \operatorname{Tor}_i^R(R/I_X, K)_{i+j}.$
- θ $\beta_{1,1}(X)$: the number of quadrics $Q_i \in I_X$;
- ϕ $\beta_{2,1}(X)$ is the number of linear relations of the form $\Sigma L_i Q_i = 0$;
- θ $\beta_{1,2}(X)$ is the number of cubic generators of *I_X*.

 Ω

- There are unique minimal free resolutions of *R*/*I^X* and $R(X) = \bigoplus_{m \geq 0} H^0(\mathcal{O}_X(m))$ and associated Betti tables.
- It is still interesting to consider the minimal free resolution: $\cdots \rightarrow L_i \rightarrow L_{i-1} \rightarrow \cdots \rightarrow L_1 \rightarrow R \rightarrow R/I_X \rightarrow 0$ where $L_i = \bigoplus_j R(-i-j)^{\beta_{i,j}(X)}$.
- θ β *i*,*j*(*X*) is the rank of the degree *i* + *j* part in *L_i* and $\beta_{i,j}(X) := \dim_K \operatorname{Tor}_i^R(R/I_X, K)_{i+j}.$
- θ $\beta_{1,1}(X)$: the number of quadrics $Q_i \in I_X$;
- ϕ $\beta_{2,1}(X)$ is the number of linear relations of the form $\Sigma L_i Q_i = 0$;
- θ $\beta_{1,2}(X)$ is the number of cubic generators of *I_X*.

 Ω

- By the symmetry of Tor, the graded Betti numbers are also defined via the Koszul exact sequence of the base field *K*:
- $V = K\langle x_0, \cdots, x_{n+e} \rangle$ be the *K*-vector space in $K[x_0, \ldots, x_{n+e}]$. Then, $\text{Tor}_i^R(R/I_X,K)_{i+j}$ is the homology of the Koszul complex:

 $\wedge^{i+1}V \otimes (R/I_X)_{j-1} \stackrel{\partial_{i+1,j-1}}{\longrightarrow} \wedge^i V \otimes (R/I_X)_j \stackrel{\partial_{i,j}}{\longrightarrow} \wedge^{i-1}V \otimes (R/I_X)_{j+1},$

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

- where the map is given by $\partial_{i,j}(x_{\alpha_1}\wedge x_{\alpha_2}\wedge\dots\wedge x_{\alpha_l}\otimes m)=$ $\sum_{1\leq \mu\leq i}\,(-1)^{\mu-1}x_{\alpha_1}\cdots\wedge\hat{x_{\alpha_\mu}}\wedge\ldots\wedge\hat{x_{\alpha_i}}\otimes(x_{\alpha_\mu}\cdot\hat{}m).$
- the Koszul complex is exact if $i > n + e + 1$ or $i >> 0$ (Hilbert syzygy theorem and Hilbert basis theorem).

- By the symmetry of Tor, the graded Betti numbers are also defined via the Koszul exact sequence of the base field *K*:
- $V = K\langle x_0, \cdots, x_{n+e} \rangle$ be the *K*-vector space in $K[x_0, \ldots, x_{n+e}]$. Then, $\text{Tor}_i^R (R/I_X,K)_{i+j}$ is the homology of the Koszul complex:

 $\wedge^{i+1}V \otimes (R/I_X)_{j-1} \stackrel{\partial_{i+1,j-1}}{\longrightarrow} \wedge^i V \otimes (R/I_X)_j \stackrel{\partial_{i,j}}{\longrightarrow} \wedge^{i-1}V \otimes (R/I_X)_{j+1},$

4 0 8 4 4 9 8 4 9 8 4 9 8

- where the map is given by $\partial_{i,j}(x_{\alpha_1}\wedge x_{\alpha_2}\wedge\dots\wedge x_{\alpha_l}\otimes m)=$ $\sum_{1\leq \mu\leq i}\,(-1)^{\mu-1}x_{\alpha_1}\cdots\wedge\hat{x_{\alpha_\mu}}\wedge\ldots\wedge\hat{x_{\alpha_i}}\otimes(x_{\alpha_\mu}\cdot\hat{}m).$
- the Koszul complex is exact if $i > n + e + 1$ or $i >> 0$ (Hilbert syzygy theorem and Hilbert basis theorem).

- By the symmetry of Tor, the graded Betti numbers are also defined via the Koszul exact sequence of the base field *K*:
- $V = K\langle x_0, \cdots, x_{n+e} \rangle$ be the *K*-vector space in $K[x_0, \ldots, x_{n+e}]$. Then, $\text{Tor}_i^R (R/I_X,K)_{i+j}$ is the homology of the Koszul complex:

 $\wedge^{i+1}V\otimes (R/I_X)_{j-1} \stackrel{\partial_{i+1,j-1}}{\longrightarrow} \wedge^i V\otimes (R/I_X)_j \stackrel{\partial_{i,j}}{\longrightarrow} \wedge^{i-1}V\otimes (R/I_X)_{j+1},$

イロト イ押 トイラ トイラトー

- where the map is given by $\partial_{i,j}(x_{\alpha_1}\wedge x_{\alpha_2}\wedge\dots\wedge x_{\alpha_l}\otimes m)=$ $\sum_{1\leq \mu\leq i}\,(-1)^{\mu-1}x_{\alpha_1}\cdots\wedge\hat{x_{\alpha_\mu}}\wedge\ldots\wedge\hat{x_{\alpha_i}}\otimes(x_{\alpha_\mu}\cdot\hat{}m).$
- the Koszul complex is exact if $i > n + e + 1$ or $i >> 0$ (Hilbert syzygy theorem and Hilbert basis theorem).

- By the symmetry of Tor, the graded Betti numbers are also defined via the Koszul exact sequence of the base field *K*:
- $V = K\langle x_0, \cdots, x_{n+e} \rangle$ be the *K*-vector space in $K[x_0, \ldots, x_{n+e}]$. Then, $\text{Tor}_i^R (R/I_X,K)_{i+j}$ is the homology of the Koszul complex:

 $\wedge^{i+1}V\otimes (R/I_X)_{j-1} \stackrel{\partial_{i+1,j-1}}{\longrightarrow} \wedge^i V\otimes (R/I_X)_j \stackrel{\partial_{i,j}}{\longrightarrow} \wedge^{i-1}V\otimes (R/I_X)_{j+1},$

where the map is given by $\partial_{i,j}(x_{\alpha_1}\wedge x_{\alpha_2}\wedge\dots\wedge x_{\alpha_i}\otimes m)=$ $\sum_{1\leq \mu\leq i}\,(-1)^{\mu-1}x_{\alpha_1}\cdots\wedge\hat{x_{\alpha_\mu}}\wedge\ldots\wedge x_{\alpha_i}\otimes(x_{\alpha_\mu}\cdot\bar m).$

• the Koszul complex is exact if $i > n + e + 1$ or $i >> 0$ (Hilbert syzygy theorem and Hilbert basis theorem).

 Ω

K ロ ト K 御 ト K 澄 ト K 澄 ト 一連

- By the symmetry of Tor, the graded Betti numbers are also defined via the Koszul exact sequence of the base field *K*:
- $V = K\langle x_0, \cdots, x_{n+e} \rangle$ be the *K*-vector space in $K[x_0, \ldots, x_{n+e}]$. Then, $\text{Tor}_i^R (R/I_X,K)_{i+j}$ is the homology of the Koszul complex:

 $\wedge^{i+1}V\otimes (R/I_X)_{j-1} \stackrel{\partial_{i+1,j-1}}{\longrightarrow} \wedge^i V\otimes (R/I_X)_j \stackrel{\partial_{i,j}}{\longrightarrow} \wedge^{i-1}V\otimes (R/I_X)_{j+1},$

- where the map is given by $\partial_{i,j}(x_{\alpha_1}\wedge x_{\alpha_2}\wedge\dots\wedge x_{\alpha_i}\otimes m)=$ $\sum_{1\leq \mu\leq i}\,(-1)^{\mu-1}x_{\alpha_1}\cdots\wedge\hat{x_{\alpha_\mu}}\wedge\ldots\wedge x_{\alpha_i}\otimes(x_{\alpha_\mu}\cdot\bar m).$
- the Koszul complex is exact if $i > n + e + 1$ or $j >> 0$ (Hilbert syzygy theorem and Hilbert basis theorem).

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

- By the symmetry of Tor, the graded Betti numbers are also defined via the Koszul exact sequence of the base field *K*:
- $V = K\langle x_0, \cdots, x_{n+e} \rangle$ be the *K*-vector space in $K[x_0, \ldots, x_{n+e}]$. Then, $\text{Tor}_i^R (R/I_X,K)_{i+j}$ is the homology of the Koszul complex:

 $\wedge^{i+1}V\otimes (R/I_X)_{j-1} \stackrel{\partial_{i+1,j-1}}{\longrightarrow} \wedge^i V\otimes (R/I_X)_j \stackrel{\partial_{i,j}}{\longrightarrow} \wedge^{i-1}V\otimes (R/I_X)_{j+1},$

- where the map is given by $\partial_{i,j}(x_{\alpha_1}\wedge x_{\alpha_2}\wedge\dots\wedge x_{\alpha_i}\otimes m)=$ $\sum_{1\leq \mu\leq i}\,(-1)^{\mu-1}x_{\alpha_1}\cdots\wedge\hat{x_{\alpha_\mu}}\wedge\ldots\wedge x_{\alpha_i}\otimes(x_{\alpha_\mu}\cdot\bar m).$
- the Koszul complex is exact if $i > n + e + 1$ or $j >> 0$ (Hilbert syzygy theorem and Hilbert basis theorem).

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

The Betti table of *R*/*I^X*

 $\bullet \Delta$ = the projective dimension of $R/I_X > e$.

 \bullet \square = reg(R/I_X) = reg(X) – 1 $\leq d - e$ if X is irreducible, reduced (Eisenbud-Goto Conjecture).

メロメメ 御き メミメメ 急ず 一番

The Betti table of *R*/*I^X*

 $\bullet \triangle$ = the projective dimension of $R/I_X \geq e$.

 \bullet \square = reg(R/I_X) = reg(X) – 1 $\leq d - e$ if X is irreducible, reduced (Eisenbud-Goto Conjecture).

KET KET KET KET KARA

The Betti table of *R*/*I^X*

- $\bullet \triangle$ = the projective dimension of $R/I_X \geq e$.
- \bullet \square = reg(R/I_X) = reg(X) 1 $\leq d e$ if X is irreducible, reduced (Eisenbud-Goto Conjecture).

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

- J. Macollough and I. Peeva announced the counterexamples in the seminar talk in the U. of Michigan in July, 2016.
- They claim that the regularity of non-degenerate homogeneous prime ideals is not bounded by any polynomial function of the degree. So, it provides counter-examples to the longstanding Eisenbud-Goto Regularity Conjecture.
- For integral curves, EG conjecture is true!(Castelnuovo(1896), Gruson-Lazarsfeld-Peskine (1986)).
- For smooth cases, it is still open and it is good to consider some conditions under which EG conjecture is true even in the integral varieties.

 Ω

イロト イ押ト イヨト イヨト

- J. Macollough and I. Peeva announced the counterexamples in the seminar talk in the U. of Michigan in July, 2016.
- They claim that the regularity of non-degenerate homogeneous prime ideals is not bounded by any polynomial function of the degree. So, it provides counter-examples to the longstanding Eisenbud-Goto Regularity Conjecture.
- For integral curves, EG conjecture is true!(Castelnuovo(1896), Gruson-Lazarsfeld-Peskine (1986)).
- For smooth cases, it is still open and it is good to consider some conditions under which EG conjecture is true even in the integral varieties.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

- J. Macollough and I. Peeva announced the counterexamples in the seminar talk in the U. of Michigan in July, 2016.
- They claim that the regularity of non-degenerate homogeneous prime ideals is not bounded by any polynomial function of the degree. So, it provides counter-examples to the longstanding Eisenbud-Goto Regularity Conjecture.
- For integral curves, EG conjecture is true!(Castelnuovo(1896), Gruson-Lazarsfeld-Peskine (1986)).
- For smooth cases, it is still open and it is good to consider some conditions under which EG conjecture is true even in the integral varieties.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

- J. Macollough and I. Peeva announced the counterexamples in the seminar talk in the U. of Michigan in July, 2016.
- They claim that the regularity of non-degenerate homogeneous prime ideals is not bounded by any polynomial function of the degree. So, it provides counter-examples to the longstanding Eisenbud-Goto Regularity Conjecture.
- For integral curves, EG conjecture is true!(Castelnuovo(1896), Gruson-Lazarsfeld-Peskine (1986)).
- For smooth cases, it is still open and it is good to consider some conditions under which EG conjecture is true even in the integral varieties.

 Ω

イロト イ押ト イヨト イヨト

The simplest Betti table - Varieties of minimal degree

- $X^n \subset \mathbb{P}^{n+e}$: nondegenerate, irreducible and reduced (not necessarily smooth) of degree $d > e + 1$. Then X is called a "variety of minimal degree"(VMD) if $d = e + 1$.
- The simplest Betti table of *X* which is 2-linear ACM with

$$
\beta_{i,1}=i\cdot\binom{e+1}{i+1}:
$$

Table 1 minimal degree varieties

イロト イ押 トイラト イラト

 Ω

A VMD has a rational normal curve section and they have the same Betti table.

The simplest Betti table - Varieties of minimal degree

- $X^n \subset \mathbb{P}^{n+e}$: nondegenerate, irreducible and reduced (not necessarily smooth) of degree $d \ge e + 1$. Then X is called a "variety of minimal degree"(VMD) if $d = e + 1$.
- The simplest Betti table of *X* which is 2-linear ACM with

$$
\beta_{i,1}=i\cdot\binom{e+1}{i+1}:
$$

Table 1 minimal degree varieties

A VMD has a rational normal curve section and they have the same Betti table.

 Ω

イロト イ押ト イヨト イヨ

The simplest Betti table - Varieties of minimal degree

- $X^n \subset \mathbb{P}^{n+\theta}$: nondegenerate, irreducible and reduced (not necessarily smooth) of degree $d > e + 1$. Then X is called a "variety of minimal degree"(VMD) if $d = e + 1$.
- The simplest Betti table of *X* which is 2-linear ACM with

$$
\beta_{i,1}=i\cdot\binom{e+1}{i+1}:
$$

Table 1 minimal degree varieties

A VMD has a rational normal curve section and they have the same Betti table.

 \triangleright *X* is of minimal degree \Leftrightarrow *X* is 2-regular ACM (characterization) if and only if *X* is (a cone of) one of the following (classification);

(a) a quadric hypersurface;

(b) a Veronese surface $\nu_2(\mathbb{P}^2)$ in \mathbb{P}^5 ;

(c) a rational normal scroll, i.e. $\mathbb{P}(\mathcal{E}) \hookrightarrow \mathbb{P}^{\Sigma a_i + d}$, where $\mathcal{E} \simeq \bigoplus_{i=0}^d \mathcal{O}_{\mathbb{P}^1}(a_i), a_i \geq 1.$

Also See the paper "On Varieties of Minimal Degree (A centennial Account)-1987" due to D. Eisenbud and J. Harris.

イロト イ押ト イヨト イヨ

X is of minimal degree \Leftrightarrow *X* is 2-regular ACM (characterization) if and only if *X* is (a cone of) one of the following (classification);

(a) a quadric hypersurface;

(b) a Veronese surface $\nu_2(\mathbb{P}^2)$ in \mathbb{P}^5 ;

(c) a rational normal scroll, i.e. $\mathbb{P}(\mathcal{E}) \hookrightarrow \mathbb{P}^{\Sigma a_i + d}$, where $\mathcal{E} \simeq \bigoplus_{i=0}^d \mathcal{O}_{\mathbb{P}^1}(a_i), a_i \geq 1.$

Also See the paper "On Varieties of Minimal Degree (A centennial Account)-1987" due to D. Eisenbud and J. Harris.

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

X is of minimal degree \Leftrightarrow *X* is 2-regular ACM (characterization) if and only if *X* is (a cone of) one of the following (classification);

(a) a quadric hypersurface;

- (b) a Veronese surface $\nu_2(\mathbb{P}^2)$ in \mathbb{P}^5 ;
- (c) a rational normal scroll, i.e. $\mathbb{P}(\mathcal{E}) \hookrightarrow \mathbb{P}^{\Sigma a_i + d}$, where $\mathcal{E} \simeq \bigoplus_{i=0}^d \mathcal{O}_{\mathbb{P}^1}(a_i), a_i \geq 1.$

Also See the paper "On Varieties of Minimal Degree (A centennial Account)-1987" due to D. Eisenbud and J. Harris.

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

 \triangleright *X* is of minimal degree \Leftrightarrow *X* is 2-regular ACM (characterization) if and only if *X* is (a cone of) one of the following (classification);

(a) a quadric hypersurface;

- (b) a Veronese surface $\nu_2(\mathbb{P}^2)$ in \mathbb{P}^5 ;
- (c) a rational normal scroll, i.e. $\mathbb{P}(\mathcal{E}) \hookrightarrow \mathbb{P}^{\Sigma a_i + d}$, where $\mathcal{E} \simeq \bigoplus_{i=0}^d \mathcal{O}_{\mathbb{P}^1}(a_i), a_i \geq 1.$

Also See the paper "On Varieties of Minimal Degree (A centennial Account)-1987" due to D. Eisenbud and J. Harris.

 Ω

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$
- Many geometric information on *X* can be read off from the table (e.g. gonality, genus, degree bound and multisecant to *X*).
- X satisfies $N_{2,p}$ or N_p (i.e., 2-regular until p-th step) if $\beta_{i,j}(X) = 0, 1 \leq i \leq p, j \geq 2.$

For a variety *X* satisfying **N**2,*^p* , if *X* ∩ Λ is finite for a linear space Λ of dimension *p*, then they are linearly independent as a scheme. (Eisenbud-Green-Hulek-Popescu 2005)

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

- Many geometric information on *X* can be read off from the table (e.g. gonality, genus, degree bound and multisecant to *X*).
- *X* satisfies $N_{2,p}$ or N_p (i.e., 2-regular until p-th step) if $\beta_{i,j}(X) = 0, 1 \leq i \leq p, j \geq 2.$

For a variety *X* satisfying **N**2,*^p* , if *X* ∩ Λ is finite for a linear space Λ of dimension *p*, then they are linearly independent as a scheme. (Eisenbud-Green-Hulek-Popescu 2005)

イロト イ押ト イヨト イヨト

- Many geometric information on *X* can be read off from the table (e.g. gonality, genus, degree bound and multisecant to *X*).
- *X* satisfies $N_{2,p}$ or N_p (i.e., 2-regular until p-th step) if $\beta_{i,j}(X) = 0, 1 \leq i \leq p, j \geq 2.$

For a variety *X* satisfying **N**2,*^p* , if *X* ∩ Λ is finite for a linear space Λ of dimension *p*, then they are linearly independent as a scheme. (Eisenbud-Green-Hulek-Popescu 2005)

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

- Many geometric information on *X* can be read off from the table (e.g. gonality, genus, degree bound and multisecant to *X*).
- *X* satisfies $N_{2,p}$ or N_p (i.e., 2-regular until p-th step) if $\beta_{i,j}(X) = 0, 1 \le i \le p, j \ge 2.$

For a variety *X* satisfying **N**2,*^p* , if *X* ∩ Λ is finite for a linear space Λ of dimension *p*, then they are linearly independent as a scheme. (Eisenbud-Green-Hulek-Popescu 2005)

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

 \equiv

Let *C* be a smooth curve of genus *g* and gonality gon(*C*) completely **embedded in** \mathbb{P}^r **by** \mathcal{L} **.** Suppose deg $(\mathcal{L}) = 2g + 1 + p \geq 4g - 3$ and $r = h^0(\mathcal{C}, \mathcal{L}) - 1 = g + \rho + 1.$ Then we have the following:

- θ , $\beta_{i,1}(C) \neq 0 \Longleftrightarrow 1 \leq i \leq r -$ gon(*C*) (Ein-Lazarsfeld);
- θ , β _i, β (*C*) \neq 0 \Longleftrightarrow *p* + 1 < *i* < *r* − 1 = *q* + *p* (Green and Schreyer);

• In addition, there exists $(p+3)$ -secant $(p+1)$ -plane by the geometric Riemann-Roch and $\beta_{p+1,2} \neq 0$. So $N_{2,p+1}$ does not hold for *X*.

KID KARA KE KA E KILE

Let *C* be a smooth curve of genus *g* and gonality gon(*C*) completely embedded in \mathbb{P}^r by $\mathcal{L}.$ Suppose $\mathsf{deg}(\mathcal{L}) = 2g + 1 + p \geq 4g - 3$ and $r = h^0(C, \mathcal{L}) - 1 = g + \rho + 1.$ Then we have the following:

- $\mathbf{0}$, $\beta_{i,1}(C) \neq 0 \Longleftrightarrow 1 \leq i \leq r \text{gon}(C)$ (Ein-Lazarsfeld);
- θ , β _i, β (*C*) \neq 0 \Longleftrightarrow *p* + 1 < *i* < *r* − 1 = *q* + *p* (Green and Schreyer);

• In addition, there exists $(p+3)$ -secant $(p+1)$ -plane by the geometric Riemann-Roch and $\beta_{p+1,2} \neq 0$. So $N_{2,p+1}$ does not hold for *X*.

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Let *C* be a smooth curve of genus *g* and gonality gon(*C*) completely embedded in \mathbb{P}^r by $\mathcal{L}.$ Suppose $\mathsf{deg}(\mathcal{L}) = 2g + 1 + p \geq 4g - 3$ and $r = h^0(C, \mathcal{L}) - 1 = g + \rho + 1.$ Then we have the following:

 θ , $\beta_{i,1}(C) \neq 0 \Longleftrightarrow 1 \leq i \leq r - \text{gon}(C)$ (Ein-Lazarsfeld);

 θ , β _i, θ (*C*) \neq 0 \Longleftrightarrow *p* + 1 < *i* < *r* − 1 = *q* + *p* (Green and Schreyer);

• In addition, there exists $(p+3)$ -secant $(p+1)$ -plane by the geometric Riemann-Roch and $\beta_{p+1,2} \neq 0$. So $N_{2,p+1}$ does not hold for *X*.

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Let *C* be a smooth curve of genus *g* and gonality gon(*C*) completely embedded in \mathbb{P}^r by $\mathcal{L}.$ Suppose $\mathsf{deg}(\mathcal{L}) = 2g + 1 + p \geq 4g - 3$ and $r = h^0(C, \mathcal{L}) - 1 = g + \rho + 1.$ Then we have the following:

- θ , $\beta_{i,1}(C) \neq 0 \Longleftrightarrow 1 \leq i \leq r \text{gon}(C)$ (Ein-Lazarsfeld);
- θ , β _{*i*}, β (*C*) \neq 0 \Longleftrightarrow *p* + 1 < *i* < *r* − 1 = *q* + *p* (Green and Schreyer);

• In addition, there exists $(p+3)$ -secant $(p+1)$ -plane by the geometric Riemann-Roch and $\beta_{p+1,2} \neq 0$. So $N_{2,p+1}$ does not hold for *X*.

イロト イ押 トイラト イラト・ラー

Let *C* be a smooth curve of genus *g* and gonality gon(*C*) completely embedded in \mathbb{P}^r by $\mathcal{L}.$ Suppose $\mathsf{deg}(\mathcal{L}) = 2g + 1 + p \geq 4g - 3$ and $r = h^0(C, \mathcal{L}) - 1 = g + \rho + 1.$ Then we have the following:

- Θ $\beta_{i,1}(C) \neq 0 \Longleftrightarrow 1 \leq i \leq r \text{gon}(C)$ (Ein-Lazarsfeld);
- θ , β _i,2(*C*) \neq 0 \Longleftrightarrow *p* + 1 < *i* < *r* − 1 = *q* + *p* (Green and Schreyer);

• In addition, there exists $(p+3)$ -secant $(p+1)$ -plane by the geometric Riemann-Roch and $\beta_{p+1,2} \neq 0$. So $N_{2,p+1}$ does not hold for *X*.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Let *C* be a smooth curve of genus *g* and gonality gon(*C*) completely embedded in \mathbb{P}^r by $\mathcal{L}.$ Suppose $\mathsf{deg}(\mathcal{L}) = 2g + 1 + p \geq 4g - 3$ and $r = h^0(C, \mathcal{L}) - 1 = g + \rho + 1.$ Then we have the following:

- θ , $\beta_{i,1}(C) \neq 0 \Longleftrightarrow 1 \leq i \leq r \text{gon}(C)$ (Ein-Lazarsfeld);
- θ , β _{*i*,2}(*C*) \neq 0 \Longleftrightarrow *p* + 1 \leq *i* \leq *r* − 1 = *g* + *p* (Green and Schreyer);

• In addition, there exists $(p+3)$ -secant $(p+1)$ -plane by the geometric Riemann-Roch and $\beta_{p+1,2} \neq 0$. So $\mathbb{N}_{2,p+1}$ does not hold for *X*.

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

■ *d*-regular in a few steps for *d* \geq 2.

÷.

 299

イロトメ 倒 トメ 差 トメ 差

• More generally, one says that X satisfies $N_{d,p}$ for $d \geq 2$ if $\beta_{i,j}(X) = 0, 1 \leq i \leq p, j \geq d$, i.e. X is *d*-regular until *p*-th step. Note that *X* is *d*-regular if $N_{d,p}$ holds for all $p \geq 1$.

We have also some geometric properties [fo](#page-46-0)r [p](#page-48-0)[r](#page-46-0)[o](#page-47-0)[p](#page-50-0)[e](#page-51-0)[rty](#page-0-0) **[N](#page-143-0)***[d](#page-0-0)*,*[p](#page-143-0)*[.](#page-143-0)

Sijong Kwak (KAIST, Korea) [Characterization of ACM varieties with](#page-0-0) *d*-linear resolutions August 03, 2016 12 / 31

• More generally, one says that X satisfies $N_{d,p}$ for $d \geq 2$ if $\beta_{i,i}(X) = 0, 1 \leq i \leq p, j \geq d$, i.e. *X* is *d*-regular until *p*-th step. Note that *X* is *d*-regular if $N_{d,p}$ holds for all $p \geq 1$.

We have also some geometric properties [fo](#page-47-0)r [p](#page-49-0)[r](#page-46-0)[o](#page-47-0)[p](#page-50-0)[e](#page-51-0)[rty](#page-0-0) **[N](#page-143-0)***[d](#page-0-0)*,*[p](#page-143-0)*[.](#page-143-0)

Sijong Kwak (KAIST, Korea) [Characterization of ACM varieties with](#page-0-0) *d*-linear resolutions August 03, 2016 12 / 31

• More generally, one says that X satisfies $N_{d,p}$ for $d \geq 2$ if $\beta_{i,i}(X) = 0, 1 \leq i \leq p, j \geq d$, i.e. *X* is *d*-regular until *p*-th step. Note that *X* is *d*-regular if $N_{d,p}$ holds for all $p \geq 1$.

We have also some geometric properties [fo](#page-48-0)r [p](#page-50-0)[r](#page-46-0)[o](#page-47-0)[p](#page-50-0)[e](#page-51-0)[rty](#page-0-0) **[N](#page-143-0)***[d](#page-0-0)*,*[p](#page-143-0)*[.](#page-143-0)

Sijong Kwak (KAIST, Korea) [Characterization of ACM varieties with](#page-0-0) *d*-linear resolutions August 03, 2016 12 / 31

• More generally, one says that X satisfies $N_{d,p}$ for $d \geq 2$ if $\beta_{i,j}(X) = 0, 1 \leq i \leq p, j \geq d$, i.e. X is *d*-regular until *p*-th step. Note that *X* is *d*-regular if $N_{d,p}$ holds for all $p \geq 1$.

We have also some geometric properties [fo](#page-49-0)r [p](#page-51-0)[r](#page-46-0)[o](#page-47-0)[p](#page-50-0)[e](#page-51-0)[rty](#page-0-0) **[N](#page-143-0)***[d](#page-0-0)*,*[p](#page-143-0)*[.](#page-143-0)

deg(*X*) ≤ *d*−1+*e* e^{1+e} ;

 $\textsf{deg}(X) = \binom{d-1+e}{e}$ $e^{(1+e)}$ if and only if X is ACM with *d*-linear resolution.

Remark

- N_2 , iff deg(*X*) = $e+1$ iff *X* is 2-regular ACM iff *X* is a VMD.
- \bullet Eisenbud-Green-Hulek-Popescu call this property (for $d = 2$) "the syzygetic rigidity" in 'Restricting linear syzygies'(2005).
- **[Problem]** Does **N***d*,*^e* property imply the *d*-regularity of *X* for $d > 3$? This is true for $d = 2$.

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

deg(*X*) ≤ *d*−1+*e* e^{1+e} ;

 $\textsf{deg}(X) = \binom{d-1+e}{e}$ $e^{(1+e)}$ if and only if X is ACM with *d*-linear resolution.

Remark

- N_2 , iff deg(*X*) = $e+1$ iff *X* is 2-regular ACM iff *X* is a VMD.
- \bullet Eisenbud-Green-Hulek-Popescu call this property (for $d = 2$) "the syzygetic rigidity" in 'Restricting linear syzygies'(2005).
- **[Problem]** Does **N***d*,*^e* property imply the *d*-regularity of *X* for $d > 3$? This is true for $d = 2$.

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

•
$$
\deg(X) \leq {d-1+e \choose e};
$$

 $\textsf{deg}(X) = \binom{d-1+e}{e}$ $e^{(1+e)}$ if and only if X is ACM with *d*-linear resolution.

Remark

- N_2 , iff deg(*X*) = $e+1$ iff *X* is 2-regular ACM iff *X* is a VMD.
- \bullet Eisenbud-Green-Hulek-Popescu call this property (for $d = 2$) "the syzygetic rigidity" in 'Restricting linear syzygies'(2005).
- **[Problem]** Does **N***d*,*^e* property imply the *d*-regularity of *X* for $d > 3$? This is true for $d = 2$.

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

$$
\bullet\;\deg(X)\leq \tbinom{d-1+e}{e};
$$

 $\textsf{deg}(X) = \binom{d-1+e}{e}$ $e^{(1+e)}$ if and only if X is ACM with *d*-linear resolution.

Remark

• $N_{2,e}$ iff deg(*X*) = $e + 1$ iff *X* is 2-regular ACM iff *X* is a VMD.

 \bullet Eisenbud-Green-Hulek-Popescu call this property (for $d = 2$) "the syzygetic rigidity" in 'Restricting linear syzygies'(2005).

[Problem] Does **N***d*,*^e* property imply the *d*-regularity of *X* for $d > 3$? This is true for $d = 2$.

イロト イ押 トイラト イラト・ラー

- deg(*X*) ≤ *d*−1+*e* e^{1+e} ;
- $\textsf{deg}(X) = \binom{d-1+e}{e}$ $e^{(1+e)}$ if and only if X is ACM with *d*-linear resolution.

Remark

- $N_{2,e}$ iff deg(*X*) = $e + 1$ iff *X* is 2-regular ACM iff *X* is a VMD.
- **•** Eisenbud-Green-Hulek-Popescu call this property (for $d = 2$) "the syzygetic rigidity" in 'Restricting linear syzygies'(2005).
- **[Problem]** Does **N***d*,*^e* property imply the *d*-regularity of *X* for $d > 3$? This is true for $d = 2$.

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

- deg(*X*) ≤ *d*−1+*e* e^{1+e} ;
- $\textsf{deg}(X) = \binom{d-1+e}{e}$ $e^{(1+e)}$ if and only if X is ACM with *d*-linear resolution.

Remark

- $N_{2,e}$ iff deg(*X*) = $e + 1$ iff *X* is 2-regular ACM iff *X* is a VMD.
- **•** Eisenbud-Green-Hulek-Popescu call this property (for $d = 2$) "the syzygetic rigidity" in 'Restricting linear syzygies'(2005).
- **[Problem]** Does **N***d*,*^e* property imply the *d*-regularity of *X* for $d > 3$? This is true for $d = 2$.

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

How to prove the above Theorem?

Take the picture explaining the degree of *X* and

- Use the graded ellimination mapping cone sequence to control the minimal free resolution of R/I_X as an S_e -module ;
- Interprete it locally by sheafification!
- Finally, *X* is *d*-linear ACM if and only if *R*/*I^X* is a free graded *Se*-module, isomorphic to

$$
\bigoplus_{0\leq i\leq d-1}S_e(-i)^{e^{-1+i}}\simeq R/I_X,
$$

where $S_e = K[x_e, \ldots, x_{e+n}]$ if and only if $\deg(X) = \binom{d-1+e}{e}$ ^{1+e}).

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

How to prove the above Theorem?

- Take the picture explaining the degree of *X* and
- Use the graded ellimination mapping cone sequence to control the minimal free resolution of R/I_X as an S_e -module ;
- Interprete it locally by sheafification!
- Finally, *X* is *d*-linear ACM if and only if *R*/*I^X* is a free graded *Se*-module, isomorphic to

$$
\bigoplus_{0\leq i\leq d-1}S_{\theta}(-i)^{(\theta-1+i)}\simeq R/I_X,
$$

where $S_e = K[x_e, \ldots, x_{e+n}]$ if and only if $\deg(X) = \binom{d-1+e}{e}$ ^{1+e}).

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

How to prove the above Theorem?

- Take the picture explaining the degree of *X* and
- Use the graded ellimination mapping cone sequence to control the minimal free resolution of R/I_X as an S_e -module ;
- Interprete it locally by sheafification!
- Finally, *X* is *d*-linear ACM if and only if *R*/*I^X* is a free graded *Se*-module, isomorphic to

$$
\bigoplus_{0\leq i\leq d-1}S_e(-i)^{\binom{e-1+i}{i}}\simeq R/I_X,
$$

where $S_e = K[x_e, \ldots, x_{e+n}]$ if and only if $\deg(X) = \binom{d-1+e}{e}$ ^{1+e}).

 Ω

How to prove the above Theorem?

- Take the picture explaining the degree of *X* and
- Use the graded ellimination mapping cone sequence to control the minimal free resolution of R/I_X as an S_e -module ;
- Interprete it locally by sheafification!
- Finally, *X* is *d*-linear ACM if and only if *R*/*I^X* is a free graded *Se*-module, isomorphic to

$$
\bigoplus_{0\leq i\leq d-1}S_e(-i)^{\binom{e-1+i}{i}}\simeq R/I_X,
$$

where $S_e = K[x_e, \ldots, x_{e+n}]$ if and only if $\deg(X) = \binom{d-1+e}{e}$ ^{1+e}).

 Ω

How to prove the above Theorem?

- Take the picture explaining the degree of *X* and
- Use the graded ellimination mapping cone sequence to control the minimal free resolution of R/I_X as an S_e -module;
- Interprete it locally by sheafification!
- Finally, *X* is *d*-linear ACM if and only if *R*/*I^X* is a free graded *Se*-module, isomorphic to

$$
\bigoplus_{0\leq i\leq d-1}S_{e}(-i)^{e^{-(n+1)i}}\simeq R/I_X,
$$

 \bm{w} here $\bm{S_e} = \bm{K}[\bm{x_e}, \dots, \bm{x_{e+n}}]$ if and only if $\deg(X) = \binom{d-1+e}{e}$ ^{1+e}).

 Ω

How to prove the above Theorem?

- Take the picture explaining the degree of *X* and
- Use the graded ellimination mapping cone sequence to control the minimal free resolution of R/I_X as an S_e -module ;
- Interprete it locally by sheafification!
- Finally, *X* is *d*-linear ACM if and only if *R*/*I^X* is a free graded *Se*-module, isomorphic to

$$
\bigoplus_{0\leq i\leq d-1}S_e(-i)^{(\begin{smallmatrix}e-1+i\\i\end{smallmatrix})}\simeq R/I_X,
$$

where $S_e = K[x_e, \ldots, x_{e+n}]$ if and only if $\deg(X) = \binom{d-1+e}{e}$ e^{1+e} .

 Ω

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

I **Elimination mapping cone sequence**

Let *S*¹ = *k*[*x*₁, . . . , *x*_{*n*+*e*] ⊂ *R* = *k*[*x*₀, *x*₁ *, x*_{*n*+*e*]}} Let *M* be a graded *R*-module (so, *M* is also a graded S_1 -module). Then, we have a natural long exact sequence: $\text{Tor}^R_i(\mathcal{M})_{i+j}\rightarrow \text{Tor}^{S_1}_{i-1}(\mathcal{M})_{i-1+j}\overset{\times x_0}{\rightarrow}\text{Tor}^{S_1}_{i-1}(\mathcal{M})_{i-1+j+1}\rightarrow \text{Tor}^R_{i-1}(\mathcal{M})_{i-1+j+1}$ whose connecting homomorphism is induced by the multiplication map $\times x_0$: $M(-1) \rightarrow M$.

- **Elimination mapping cone sequence** gives us the following:
	- $\text{depth}_R(R/I_X) = \text{depth}_{\mathcal{S}_1}(R/I_X);$
	- $\mathrm{reg}_{R}(R/I_{X}) = \mathrm{reg}_{\mathcal{S}_{1}}(R/I_{X})$

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

I **Elimination mapping cone sequence**

Let *S*¹ = *k*[*x*₁, . . . , *x*_{*n*+*e*] ⊂ *R* = *k*[*x*₀, *x*₁ *, x*_{*n*+*e*]}} Let *M* be a graded *R*-module (so, *M* is also a graded S_1 -module). Then, we have a natural long exact sequence: $\text{Tor}_{i}^{R}(M)_{i+j}\rightarrow \text{Tor}_{i-1}^{S_1}(M)_{i-1+j}\overset{\times x_0}{\rightarrow}\text{Tor}_{i-1}^{S_1}(M)_{i-1+j+1}\rightarrow \text{Tor}_{i-1}^{R}(M)_{i-1+j+1}$ whose connecting homomorphism is induced by the multiplication map

 $\times x_0$: $M(-1) \rightarrow M$.

- **Elimination mapping cone sequence** gives us the following:
	- $\text{depth}_R(R/I_X) = \text{depth}_{\mathcal{S}_1}(R/I_X);$
	- $\mathrm{reg}_{R}(R/I_{X}) = \mathrm{reg}_{\mathcal{S}_{1}}(R/I_{X})$

 Ω

Elimination mapping cone sequence

Let *S*¹ = *k*[*x*₁, . . . , *x*_{*n*+*e*] ⊂ *R* = *k*[*x*₀, *x*₁ *, x*_{*n*+*e*]}} Let *M* be a graded *R*-module (so, *M* is also a graded S_1 -module). Then, we have a natural long exact sequence: $\text{Tor}_{i}^{R}(M)_{i+j}\rightarrow \text{Tor}_{i-1}^{S_1}(M)_{i-1+j}\overset{\times \chi_0}{\rightarrow}\text{Tor}_{i-1}^{S_1}(M)_{i-1+j+1}\rightarrow \text{Tor}_{i-1}^{R}(M)_{i-1+j+1}$ whose connecting homomorphism is induced by the multiplication map $\times x_0$: $M(-1) \rightarrow M$.

- **Elimination mapping cone sequence** gives us the following:
	- $\text{depth}_R(R/I_X) = \text{depth}_{\mathcal{S}_1}(R/I_X);$
	- $\mathrm{reg}_{R}(R/I_{X}) = \mathrm{reg}_{\mathcal{S}_{1}}(R/I_{X})$

 Ω

Elimination mapping cone sequence

Let *S*¹ = *k*[*x*₁, . . . , *x*_{*n*+*e*] ⊂ *R* = *k*[*x*₀, *x*₁ *, x*_{*n*+*e*]}} Let *M* be a graded *R*-module (so, *M* is also a graded S_1 -module). Then, we have a natural long exact sequence: $\text{Tor}_{i}^{R}(M)_{i+j}\rightarrow \text{Tor}_{i-1}^{S_1}(M)_{i-1+j}\overset{\times \chi_0}{\rightarrow}\text{Tor}_{i-1}^{S_1}(M)_{i-1+j+1}\rightarrow \text{Tor}_{i-1}^{R}(M)_{i-1+j+1}$ whose connecting homomorphism is induced by the multiplication map $\times x_0$: $M(-1) \rightarrow M$.

Elimination mapping cone sequence gives us the following:

•
$$
\operatorname{depth}_{R}(R/I_X) = \operatorname{depth}_{S_1}(R/I_X);
$$

 $\mathrm{reg}_{R}(R/I_{X}) = \mathrm{reg}_{\mathcal{S}_{1}}(R/I_{X})$

 Ω

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Elimination mapping cone sequence

Let *S*¹ = *k*[*x*₁, . . . , *x*_{*n*+*e*] ⊂ *R* = *k*[*x*₀, *x*₁ *, x*_{*n*+*e*]}} Let *M* be a graded *R*-module (so, *M* is also a graded *S*1-module). Then, we have a natural long exact sequence: $\text{Tor}_{i}^{R}(M)_{i+j}\rightarrow \text{Tor}_{i-1}^{S_1}(M)_{i-1+j}\overset{\times \chi_0}{\rightarrow}\text{Tor}_{i-1}^{S_1}(M)_{i-1+j+1}\rightarrow \text{Tor}_{i-1}^{R}(M)_{i-1+j+1}$ whose connecting homomorphism is induced by the multiplication map $\times x_0$: $M(-1) \rightarrow M$.

Elimination mapping cone sequence gives us the following:

- $\text{depth}_R(R/I_X) = \text{depth}_{\mathcal{S}_1}(R/I_X);$
- $\operatorname{reg}_R(R/I_X) = \operatorname{reg}_{S_1}(R/I_X)$

KOLKARIK EIKIEL EIKORO

 $X \subset \mathbb{P}^{n+e}$ is ACM if depth $R/I_X = \dim R/I_X = \dim(X) + 1$.

In particular, ACM varieties with *d*-linear resolution are very special:

$$
\bullet\;\deg(X)=\bigl(\begin{smallmatrix} d-1+e\cr e\end{smallmatrix}\bigr);
$$

the graded Betti numbers $\beta_{i,d-1}(X) = \binom{i+d-2}{d-1}$ +*d−*2) (*e*+*d−*1):
*d−*1) (*i*+*d−*1):

Recall that *X* is 2-linear ACM iff *X* is of minimal degree $e + 1$.

 Ω

4 (D) 3 (F) 3 (F) 3 (F)

 $X \subset \mathbb{P}^{n+e}$ is ACM if depth $R/I_X = \dim R/I_X = \dim(X) + 1$. In particular, ACM varieties with *d*-linear resolution are very special:

 $\textsf{deg}(X) = \binom{d-1+e}{e}$ (e^{1+e}) ;

the graded Betti numbers $\beta_{i,d-1}(X) = \binom{i+d-2}{d-1}$ +*d−*2) (*e*+*d−*1):
*d−*1) (*i*+*d−*1):

Recall that *X* is 2-linear ACM iff *X* is of minimal degree $e + 1$.

 Ω

イロト イ押 トイラト イラト

 $X \subset \mathbb{P}^{n+e}$ is ACM if depth $R/I_X = \dim R/I_X = \dim(X) + 1$. In particular, ACM varieties with *d*-linear resolution are very special:

•
$$
\deg(X) = \binom{d-1+e}{e};
$$

the graded Betti numbers $\beta_{i,d-1}(X) = \binom{i+d-2}{d-1}$ +*d−*2) (*e*+*d−*1):
*d−*1) (*i*+*d−*1):

Recall that *X* is 2-linear ACM iff *X* is of minimal degree $e + 1$.

 Ω

4 (D) 3 (F) 3 (F) 3 (F)

 $X \subset \mathbb{P}^{n+e}$ is ACM if depth $R/I_X = \dim R/I_X = \dim(X) + 1$. In particular, ACM varieties with *d*-linear resolution are very special:

•
$$
deg(X) = {d-1+e \choose e};
$$

the graded Betti numbers $\beta_{i,d-1}(X) = \binom{i+d-2}{d-1}$ +*d−*2) (*e*+*d−*1):
*d−*1) (*i*+*d−*1):

• Recall that *X* is 2-linear ACM iff *X* is of minimal degree $e + 1$.

 Ω

イロト イ押ト イヨト イヨ
ACM varieties with *d*-linear resolution

 $X \subset \mathbb{P}^{n+e}$ is ACM if depth $R/I_X = \dim R/I_X = \dim(X) + 1$. In particular, ACM varieties with *d*-linear resolution are very special:

•
$$
\deg(X) = \binom{d-1+e}{e};
$$

the graded Betti numbers $\beta_{i,d-1}(X) = \binom{i+d-2}{d-1}$ +*d−*2) (*e*+*d−*1):
*d−*1) (*i*+*d−*1):

• Recall that *X* is 2-linear ACM iff *X* is of minimal degree $e + 1$.

 Ω

 $\left\{ \begin{array}{ccc} \square & \times & \overline{\cap} & \times \end{array} \right.$, $\left\{ \begin{array}{ccc} \square & \times & \times & \overline{\square} & \times \end{array} \right.$

ACM varieties with *d*-linear resolution

 $X \subset \mathbb{P}^{n+e}$ is ACM if depth $R/I_X = \dim R/I_X = \dim(X) + 1$. In particular, ACM varieties with *d*-linear resolution are very special:

•
$$
\deg(X) = \binom{d-1+e}{e};
$$

the graded Betti numbers $\beta_{i,d-1}(X) = \binom{i+d-2}{d-1}$ +*d−*2) (*e*+*d−*1):
*d−*1) (*i*+*d−*1):

• Recall that *X* is 2-linear ACM iff *X* is of minimal degree $e + 1$.

 Ω

 $\left\{ \begin{array}{ccc} \square & \times & \overline{\cap} & \times \end{array} \right.$, $\left\{ \begin{array}{ccc} \square & \times & \times & \overline{\square} & \times \end{array} \right.$

Multisecant spaces for property $N_{d,p}$, $1 \leq p \leq e$

Suppose $X \subset \mathbb{P}^{n+\bm{e}}$ satisfies $\mathsf{N}_{d,\bm{\rho}},$ 1 $\leq \bm{\rho} \leq \bm{e}.$ Then,

- **N***d*,¹ means *X* is cut out by equations of degree at most *d*. So, there is no $(d + 1)$ -secant line to X and furthermore,
- A *d*-secant line to *X* is contained in any defining equation of degree $\leq d-1$.

We have the following generalization:

Proposition (the generalized Bezout's Theorem) [Ahn-Han-K]

For a variety $X \subset \mathbb{P}^{n+\theta}$ satisfying $\mathbf{N}_{d,p}$, we have $\text{length}(X \cap \Lambda) \leq {d-1+p \choose p}$ $p_{\rho}^{1+\rho})$ if it is finite for dim $\,\Lambda = \rho, 1\leq \rho\leq e;$

Furthermore, if length $(X \cap \Lambda) = {d-1+p \choose p}$ $\binom{1+\rho}{\rho}$, then Λ is contained in any hypersurface $F \in I_x$ of degree $\le d - 1$.

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Multisecant spaces for property $N_{d,p}$, $1 \leq p \leq e$

Suppose $X \subset \mathbb{P}^{n+\bm{e}}$ satisfies $\mathsf{N}_{d,\bm{\rho}},$ 1 $\leq \bm{\rho} \leq \bm{e}.$ Then,

- **N***d*,¹ means *X* is cut out by equations of degree at most *d*. So, there is no $(d + 1)$ -secant line to X and furthermore,
- A *d*-secant line to *X* is contained in any defining equation of degree $\leq d-1$.

We have the following generalization:

Proposition (the generalized Bezout's Theorem) [Ahn-Han-K]

For a variety $X \subset \mathbb{P}^{n+\theta}$ satisfying $\mathbf{N}_{d,p}$, we have $\text{length}(X \cap \Lambda) \leq {d-1+p \choose p}$ $p_{\rho}^{1+\rho})$ if it is finite for dim $\,\Lambda = \rho, 1\leq \rho\leq e;$

Furthermore, if length $(X \cap \Lambda) = {d-1+p \choose p}$ $\binom{1+\rho}{\rho}$, then Λ is contained in any hypersurface $F \in I_x$ of degree $\le d - 1$.

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Multisecant spaces for property $N_{d,p}$, $1 \leq p \leq e$

Suppose $X \subset \mathbb{P}^{n+\bm{e}}$ satisfies $\mathsf{N}_{d,\bm{\rho}},$ 1 $\leq \bm{\rho} \leq \bm{e}.$ Then,

- **N***d*,¹ means *X* is cut out by equations of degree at most *d*. So, there is no $(d + 1)$ -secant line to X and furthermore,
- A *d*-secant line to *X* is contained in any defining equation of degree $\leq d-1$.

We have the following generalization:

Proposition (the generalized Bezout's Theorem) [Ahn-Han-K]

- For a variety $X \subset \mathbb{P}^{n+\theta}$ satisfying $\mathbf{N}_{d,p}$, we have $\text{length}(X \cap \Lambda) \leq {d-1+p \choose p}$ $p_{\rho}^{1+\rho})$ if it is finite for dim $\,\Lambda = \rho, 1\leq \rho\leq e;$
- Furthermore, if length $(X \cap \Lambda) = {d-1+p \choose p}$ $\binom{1+\rho}{\rho}$, then Λ is contained in any hypersurface $F \in I_x$ of degree $\le d - 1$.

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

- **N***d*,¹ means *X* is cut out by equations of degree at most *d*. So, there is no $(d + 1)$ -secant line to X and furthermore,
- A *d*-secant line to *X* is contained in any defining equation of degree $\leq d-1$.

We have the following generalization:

Proposition (the generalized Bezout's Theorem) [Ahn-Han-K]

- For a variety $X \subset \mathbb{P}^{n+\theta}$ satisfying $\mathbf{N}_{d,p}$, we have $\text{length}(X \cap \Lambda) \leq {d-1+p \choose p}$ $p_{\rho}^{1+\rho})$ if it is finite for dim $\,\Lambda = \rho, 1\leq \rho\leq e;$
- Furthermore, if length $(X \cap \Lambda) = {d-1+p \choose p}$ $\binom{1+\rho}{\rho}$, then Λ is contained in any hypersurface $F \in I_x$ of degree $\le d - 1$.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

- **N***d*,¹ means *X* is cut out by equations of degree at most *d*. So, there is no $(d + 1)$ -secant line to X and furthermore,
- A *d*-secant line to *X* is contained in any defining equation of degree $\leq d-1$.

We have the following generalization:

Proposition (the generalized Bezout's Theorem) [Ahn-Han-K]

For a variety $X \subset \mathbb{P}^{n+\mathbf{e}}$ satisfying $\mathsf{N}_{d,\mathsf{p}},$ we have length $(X \cap \Lambda) \leq {d-1+p \choose p}$ $p_{\rho}^{1+\rho})$ if it is finite for dim $\,\Lambda=\rho,$ 1 \leq $\rho\leq e;$

Furthermore, if length $(X \cap \Lambda) = {d-1+p \choose p}$ $\binom{1+\rho}{\rho}$, then Λ is contained in any hypersurface $F \in I_x$ of degree $\le d - 1$.

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

- **N***d*,¹ means *X* is cut out by equations of degree at most *d*. So, there is no $(d + 1)$ -secant line to X and furthermore,
- A *d*-secant line to *X* is contained in any defining equation of degree $\leq d-1$.

We have the following generalization:

Proposition (the generalized Bezout's Theorem) [Ahn-Han-K]

- For a variety $X \subset \mathbb{P}^{n+\mathbf{e}}$ satisfying $\mathsf{N}_{d,\mathsf{p}},$ we have length $(X \cap \Lambda) \leq {d-1+p \choose p}$ $p_{\rho}^{1+\rho})$ if it is finite for dim $\,\Lambda=\rho,$ 1 \leq $\rho\leq e;$
- Furthermore, if length $(X \cap \Lambda) = {d-1+p \choose p}$ $\binom{1+\rho}{\rho}$, then Λ is contained in any hypersurface $F \in I_X$ of degree $\le d - 1$.

 Ω

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

- **N***d*,¹ means *X* is cut out by equations of degree at most *d*. So, there is no $(d + 1)$ -secant line to X and furthermore,
- A *d*-secant line to *X* is contained in any defining equation of degree $\leq d-1$.

We have the following generalization:

Proposition (the generalized Bezout's Theorem) [Ahn-Han-K]

- For a variety $X \subset \mathbb{P}^{n+\mathbf{e}}$ satisfying $\mathsf{N}_{d,\mathsf{p}},$ we have length $(X \cap \Lambda) \leq {d-1+p \choose p}$ $p_{\rho}^{1+\rho})$ if it is finite for dim $\,\Lambda=\rho,$ 1 \leq $\rho\leq e;$
- Furthermore, if length $(X \cap \Lambda) = {d-1+p \choose p}$ $\binom{1+\rho}{\rho}$, then Λ is contained in any hypersurface $F \in I_X$ of degree $\le d - 1$.

 Ω

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

The locus of *d*-secant lines for $N_{d,2}$, $d > 2$

Proposition [Ahn-Han-K, preprint] Consider the *d*-secant locus $\Sigma_{a,d}(X)$ through $q \in \text{Sec}(X) \setminus X$. Then, $\Sigma_{\bm{q},\bm{d}}(X):=\{x\in X\mid \pi_{\bm{q}}^{-1}(\pi_{\bm{q}}(x))\text{ has length }\bm{\mathsf{d}}\text{ } \}.$ Property $\mathbf{N}_{d,2},d\geq 2$ implies the following:

- $\Sigma_{q,d}(X)$ is either empty or a hypersurface F of degree d in $\langle F,q\rangle;$
- **So,** $Z_{a,d} = \pi_q(\Sigma_{a,d}(X))$ is either empty or a linear subspace parametrizing *d*-secant lines through *q*;
- For *q* ∈ Sec(*X*) \ Tan(*X*) ∪ *X*, ∃ a unique *d*-secant line through *q* if $Z_d \neq \emptyset$.

 \triangleright The case of $d = 2$ has been well known and useful to classify non-normal del Pezzo varieties because the entry locus is a quadric.

(ロ) (個) (悪) (悪)

The locus of *d*-secant lines for $N_{d,2}$, $d > 2$

Proposition [Ahn-Han-K, preprint]

Consider the *d*-secant locus $\Sigma_{a,d}(X)$ through $q \in \text{Sec}(X) \setminus X$. Then, $\Sigma_{q,d}(X) := \{x \in X \mid \pi_q^{-1}(\pi_q(x)) \text{ has length d }\}.$ Property $\mathsf{N}_{d,2}, d \geq 2$ implies the following:

- $\Sigma_{q,d}(X)$ is either empty or a hypersurface F of degree d in $\langle F,q\rangle;$
- \bullet So, $Z_{\alpha,d} = \pi_q(\Sigma_{\alpha,d}(X))$ is either empty or a linear subspace parametrizing *d*-secant lines through *q*;
- For *q* ∈ Sec(*X*) \ Tan(*X*) ∪ *X*, ∃ a unique *d*-secant line through *q* if $Z_d \neq \emptyset$.

 \triangleright The case of $d = 2$ has been well known and useful to classify non-normal del Pezzo varieties because the entry locus is a quadric.

◆ロト→個ト→老ト→老トー

Consider the *d*-secant locus $\Sigma_{a,d}(X)$ through $q \in \text{Sec}(X) \setminus X$. Then, $\Sigma_{q,d}(X) := \{x \in X \mid \pi_q^{-1}(\pi_q(x)) \text{ has length d }\}.$ Property $\mathsf{N}_{d,2}, d \geq 2$ implies the following:

- $\Sigma_{q,d}(X)$ is either empty or a hypersurface \digamma of degree d in $\langle \digamma,q\rangle;$
- \bullet So, $Z_{\alpha,d} = \pi_q(\Sigma_{\alpha,d}(X))$ is either empty or a linear subspace parametrizing *d*-secant lines through *q*;
- For *q* ∈ Sec(*X*) \ Tan(*X*) ∪ *X*, ∃ a unique *d*-secant line through *q* if $Z_d \neq \emptyset$.

 \triangleright The case of $d = 2$ has been well known and useful to classify non-normal del Pezzo varieties because the entry locus is a quadric.

メロメメ 御きメ 重き メ唐 メー 重

Consider the *d*-secant locus $\Sigma_{a,d}(X)$ through $q \in \text{Sec}(X) \setminus X$. Then, $\Sigma_{q,d}(X) := \{x \in X \mid \pi_q^{-1}(\pi_q(x)) \text{ has length d }\}.$ Property $\mathsf{N}_{d,2}, d \geq 2$ implies the following:

- $\Sigma_{q,d}(X)$ is either empty or a hypersurface \digamma of degree d in $\langle \digamma,q\rangle;$
- **So,** $Z_{a,d} = \pi_a(\Sigma_{a,d}(X))$ is either empty or a linear subspace parametrizing *d*-secant lines through *q*;

For *q* ∈ Sec(*X*) \ Tan(*X*) ∪ *X*, ∃ a unique *d*-secant line through *q* if $Z_d \neq \emptyset$.

 \triangleright The case of $d = 2$ has been well known and useful to classify non-normal del Pezzo varieties because the entry locus is a quadric.

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Consider the *d*-secant locus $\Sigma_{a,d}(X)$ through $q \in \text{Sec}(X) \setminus X$. Then, $\Sigma_{q,d}(X) := \{x \in X \mid \pi_q^{-1}(\pi_q(x)) \text{ has length d }\}.$ Property $\mathsf{N}_{d,2}, d \geq 2$ implies the following:

- $\Sigma_{q,d}(X)$ is either empty or a hypersurface \digamma of degree d in $\langle \digamma,q\rangle;$
- **So,** $Z_{a,d} = \pi_a(\Sigma_{a,d}(X))$ is either empty or a linear subspace parametrizing *d*-secant lines through *q*;
- For *q* ∈ Sec(*X*) \ Tan(*X*) ∪ *X*, ∃ a unique *d*-secant line through *q* if $Z_d \neq \emptyset$.

 \triangleright The case of $d = 2$ has been well known and useful to classify non-normal del Pezzo varieties because the entry locus is a quadric.

メロメメ 御き メミメメ 急ず 一番

Consider the *d*-secant locus $\Sigma_{a,d}(X)$ through $q \in \text{Sec}(X) \setminus X$. Then, $\Sigma_{q,d}(X) := \{x \in X \mid \pi_q^{-1}(\pi_q(x)) \text{ has length d }\}.$ Property $\mathsf{N}_{d,2}, d \geq 2$ implies the following:

- $\Sigma_{q,d}(X)$ is either empty or a hypersurface \digamma of degree d in $\langle \digamma,q\rangle;$
- **So,** $Z_{a,d} = \pi_a(\Sigma_{a,d}(X))$ is either empty or a linear subspace parametrizing *d*-secant lines through *q*;
- For *q* ∈ Sec(*X*) \ Tan(*X*) ∪ *X*, ∃ a unique *d*-secant line through *q* if $Z_d \neq \emptyset$.

 \triangleright The case of $d = 2$ has been well known and useful to classify non-normal del Pezzo varieties because the entry locus is a quadric.

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

The first strand of the Betti table

The structure of the Betti Table.

We are intereested in the firsr linear strand starting from quadric equations:

$$
\beta_{1,1}(X), \beta_{2,1}(X), \ldots, \beta_{e,1}(X), \ldots
$$

 Natural Philosophy: More quadrics *X* has, higher linear syzygies of quadrics can go further !

イロト イ押ト イヨト イヨ

The first strand of the Betti table

The structure of the Betti Table.

We are intereested in the firsr linear strand starting from quadric equations:

$$
\beta_{1,1}(X), \beta_{2,1}(X), \ldots, \beta_{e,1}(X), \ldots
$$

 Natural Philosophy: More quadrics *X* has, higher linear syzygies of quadrics can go further !

イロト イ押ト イヨト イヨ

■ Elementary questions: $X^n \subset \mathbb{P}^{n+\epsilon}$: nondegenerate, irreducible and reduced defined over $K = \overline{K}$ of char(K) > 0.

"How many quadric hypersurfaces containing *X*?"

- (Castelnuovo, 1889) $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2}$ and " $=$ " holds iff X is a variety of minimal degree, i.e. $deg(X) = e + 1$.
- (Fano, 1894) Unless *X* is VMD, $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2} - 1$ and " $=$ " holds iff X is a del Pezzo variety (i.e. ACM and deg $(X) = e + 2$).

There are many interesting proofs on this upper bound. Note that every proof depends on the Bertini Theorem, i.e. the generic linear sections up to finite points are also nondegenerate.

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

■ Elementary questions: $X^n \subset \mathbb{P}^{n+\epsilon}$: nondegenerate, irreducible and reduced defined over $K = \overline{K}$ of char(K) > 0. "How many quadric hypersurfaces containing *X*?"

(Castelnuovo, 1889) $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2}$ and " $=$ " holds iff X is a variety of minimal degree, i.e. $deg(X) = e + 1$.

(Fano, 1894) Unless *X* is VMD, $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2} - 1$ and " $=$ " holds iff X is a del Pezzo variety (i.e. ACM and deg $(X) = e + 2$).

There are many interesting proofs on this upper bound. Note that every proof depends on the Bertini Theorem, i.e. the generic linear sections up to finite points are also nondegenerate.

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

■ Elementary questions: $X^n \subset \mathbb{P}^{n+\epsilon}$: nondegenerate, irreducible and reduced defined over $K = \overline{K}$ of char(K) > 0.

"How many quadric hypersurfaces containing *X*?"

- (Castelnuovo, 1889) $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2}$ and " $=$ " holds iff X is a variety of minimal degree, i.e. $deg(X) = e + 1$.
- (Fano, 1894) Unless *X* is VMD, $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2} - 1$ and " $=$ " holds iff X is a del Pezzo variety (i.e. ACM and deg $(X) = e + 2$).

There are many interesting proofs on this upper bound. Note that every proof depends on the Bertini Theorem, i.e. the generic linear sections up to finite points are also nondegenerate.

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

■ Elementary questions: $X^n \subset \mathbb{P}^{n+\epsilon}$: nondegenerate, irreducible and reduced defined over $K = \overline{K}$ of char(K) > 0.

"How many quadric hypersurfaces containing *X*?"

- (Castelnuovo, 1889) $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2}$ and " $=$ " holds iff X is a variety of minimal degree, i.e. $deg(X) = e + 1$.
- (Fano, 1894) Unless *X* is VMD, $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2} - 1$ and " $=$ " holds iff X is a del Pezzo variety (i.e. ACM and deg $(X) = e + 2$).

There are many interesting proofs on this upper bound. Note that every proof depends on the Bertini Theorem, i.e. the generic linear sections up to finite points are also nondegenerate.

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

■ Elementary questions: $X^n \subset \mathbb{P}^{n+\epsilon}$: nondegenerate, irreducible and reduced defined over $K = \overline{K}$ of char(K) > 0.

"How many quadric hypersurfaces containing *X*?"

- (Castelnuovo, 1889) $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2}$ and " $=$ " holds iff X is a variety of minimal degree, i.e. $deg(X) = e + 1$.
- (Fano, 1894) Unless *X* is VMD, $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2}$ – 1 and " = " holds iff X is a del Pezzo variety (i.e. ACM and $deg(X) = e + 2$).

There are many interesting proofs on this upper bound. Note that every proof depends on the Bertini Theorem, i.e. the generic linear sections up to finite points are also nondegenerate.

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

■ Elementary questions: $X^n \subset \mathbb{P}^{n+\epsilon}$: nondegenerate, irreducible and reduced defined over $K = \overline{K}$ of char(K) > 0.

"How many quadric hypersurfaces containing *X*?"

- (Castelnuovo, 1889) $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2}$ and " $=$ " holds iff X is a variety of minimal degree, i.e. $deg(X) = e + 1$.
- (Fano, 1894) Unless *X* is VMD, $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2}$ – 1 and " = " holds iff X is a del Pezzo variety (i.e. ACM and $deg(X) = e + 2$).

There are many interesting proofs on this upper bound.

Note that every proof depends on the Bertini Theorem, i.e. the generic linear sections up to finite points are also nondegenerate.

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

■ Elementary questions: $X^n \subset \mathbb{P}^{n+\epsilon}$: nondegenerate, irreducible and reduced defined over $K = \overline{K}$ of char(K) > 0.

"How many quadric hypersurfaces containing *X*?"

- (Castelnuovo, 1889) $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2}$ and " $=$ " holds iff X is a variety of minimal degree, i.e. $deg(X) = e + 1$.
- (Fano, 1894) Unless *X* is VMD, $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2}$ – 1 and " = " holds iff X is a del Pezzo variety (i.e. ACM and $deg(X) = e + 2$).

There are many interesting proofs on this upper bound. Note that every proof depends on the Bertini Theorem, i.e. the generic linear sections up to finite points are also nondegenerate.

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

■ Elementary questions: $X^n \subset \mathbb{P}^{n+\epsilon}$: nondegenerate, irreducible and reduced defined over $K = \overline{K}$ of char(K) > 0.

"How many quadric hypersurfaces containing *X*?"

- (Castelnuovo, 1889) $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2}$ and " $=$ " holds iff X is a variety of minimal degree, i.e. $deg(X) = e + 1$.
- (Fano, 1894) Unless *X* is VMD, $\beta_{1,1}(X)=\mathit{h}^{0}(\mathcal{I}_{X/\mathbb{P}^{n+\theta}}(2))\leq\binom{e+1}{2}$ $\binom{+1}{2}$ – 1 and " = " holds iff X is a del Pezzo variety (i.e. ACM and $deg(X) = e + 2$).

There are many interesting proofs on this upper bound. Note that every proof depends on the Bertini Theorem, i.e. the generic linear sections up to finite points are also nondegenerate.

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

X is called a del Pezzo variety if $d = e + 2$ and $\text{depth}(X) = n + 1$.

The (next-to-simplest) Betti table of a del Pezzo variety with

$$
\beta_{i,1}(X) = i \binom{e+1}{i+1} - \binom{e}{i-1}
$$

A del Pezzo variety has an elliptic normal curve section or a rational nodal curve section and they have the same Betti table.

イロト イ押ト イヨト イヨト

X is called a del Pezzo variety if $d = e + 2$ and $\text{depth}(X) = n + 1$.

The (next-to-simplest) Betti table of a del Pezzo variety with

$$
\beta_{i,1}(X)=i\binom{e+1}{i+1}-\binom{e}{i-1}:
$$

A del Pezzo variety has an elliptic normal curve section or a rational nodal curve section and they have the same Betti table.

イロト イ押ト イヨト イヨ

\triangleright Castelnuovo's simple proof.

 $\Gamma = X \cap \mathbb{P}^e$ is a set of *d*-points in general position for general \mathbb{P}^e . Since $d \ge e+1$, take a subset $\Gamma' = \{p_1, p_1, \ldots, p_{e+1}\} \subset \Gamma \subset \mathbb{P}^e$. $h^0(\mathcal{I}_X(2))\leq h^0(\mathcal{I}_{\Gamma}(2))\leq h^0(\mathcal{I}_{\Gamma'}(2))=\binom{e+2}{2}$ $\binom{+2}{2} - (e+1) = \binom{e+1}{2}$

 \triangleright Inner projection method is more powerful.

Theorem [Basic Inequality] (Han-K, 2015)

 $\beta_{i,1}(X) \leq \beta_{i,1}(X_q) + \beta_{i-1,1}(X_q) + \binom{e}{i}$ $_{i}^{e}$, $i \geq 1$.

• The equality holds for $i \leq p$ if X satisfies property $N_{2,p}$.

イロト イ押 トイラト イラト

\triangleright Castelnuovo's simple proof.

 $\Gamma = X \cap \mathbb{P}^e$ is a set of *d*-points in general position for general \mathbb{P}^e . Since $d \ge e+1$, take a subset $\Gamma' = \{p_1, p_1, \ldots, p_{e+1}\} \subset \Gamma \subset \mathbb{P}^e$. $h^0(\mathcal{I}_X(2))\leq h^0(\mathcal{I}_{\Gamma}(2))\leq h^0(\mathcal{I}_{\Gamma'}(2))=\binom{e+2}{2}$ $\binom{+2}{2} - (e+1) = \binom{e+1}{2}$

 \triangleright Inner projection method is more powerful.

Theorem [Basic Inequality] (Han-K, 2015)

- $\beta_{i,1}(X) \leq \beta_{i,1}(X_q) + \beta_{i-1,1}(X_q) + \binom{e}{i}$ $_{i}^{e}$, $i \geq 1$.
- The equality holds for $i \leq p$ if X satisfies property $N_{2,p}$.

イロト イ押 トイラト イラト

\triangleright Castelnuovo's simple proof.

 $\Gamma = X \cap \mathbb{P}^e$ is a set of *d*-points in general position for general \mathbb{P}^e . Since $d \ge e+1$, take a subset $\Gamma' = \{p_1, p_1, \ldots, p_{e+1}\} \subset \Gamma \subset \mathbb{P}^e$. $h^0(\mathcal{I}_X(2)) \leq h^0(\mathcal{I}_{\Gamma}(2)) \leq h^0(\mathcal{I}_{\Gamma'}(2)) = \binom{e+2}{2}$ $\binom{+2}{2} - (e + 1) = \binom{e+1}{2}$

 \triangleright Inner projection method is more powerful.

Theorem [Basic Inequality] (Han-K, 2015)

 $\beta_{i,1}(X) \leq \beta_{i,1}(X_q) + \beta_{i-1,1}(X_q) + \binom{e}{i}$ $_{i}^{e}$, $i \geq 1$.

• The equality holds for $i \leq p$ if X satisfies property $N_{2,p}$.

イロト イ押ト イヨト イヨトー

\triangleright Castelnuovo's simple proof.

 $\Gamma = X \cap \mathbb{P}^e$ is a set of *d*-points in general position for general \mathbb{P}^e . Since $d \ge e+1$, take a subset $\Gamma' = \{p_1, p_1, \ldots, p_{e+1}\} \subset \Gamma \subset \mathbb{P}^e$. $h^0(\mathcal{I}_X(2))\leq h^0(\mathcal{I}_{\Gamma}(2))\leq h^0(\mathcal{I}_{\Gamma'}(2))=\binom{e+2}{2}$ $\binom{+2}{2} - (e+1) = \binom{e+1}{2}$ $_{2}^{+1}$).

 \triangleright Inner projection method is more powerful.

Theorem [Basic Inequality] (Han-K, 2015)

 $\beta_{i,1}(X) \leq \beta_{i,1}(X_q) + \beta_{i-1,1}(X_q) + \binom{e}{i}$ $_{i}^{e}$, $i \geq 1$.

• The equality holds for $i \leq p$ if X satisfies property $N_{2,p}$.

イロト イ押ト イヨト イヨト

\triangleright Castelnuovo's simple proof.

 $\Gamma = X \cap \mathbb{P}^e$ is a set of *d*-points in general position for general \mathbb{P}^e . Since $d \ge e+1$, take a subset $\Gamma' = \{p_1, p_1, \ldots, p_{e+1}\} \subset \Gamma \subset \mathbb{P}^e$. $h^0(\mathcal{I}_X(2))\leq h^0(\mathcal{I}_{\Gamma}(2))\leq h^0(\mathcal{I}_{\Gamma'}(2))=\binom{e+2}{2}$ $\binom{+2}{2} - (e+1) = \binom{e+1}{2}$ $_{2}^{+1}$).

 \blacktriangleright Inner projection method is more powerful.

Theorem [Basic Inequality] (Han-K, 2015)

 $\beta_{i,1}(X) \leq \beta_{i,1}(X_q) + \beta_{i-1,1}(X_q) + \binom{e}{i}$ $_{i}^{e}$, $i \geq 1$.

• The equality holds for $i \leq p$ if X satisfies property $N_{2, p}$.

イロト イ押ト イヨト イヨト

\triangleright Castelnuovo's simple proof.

 $\Gamma = X \cap \mathbb{P}^e$ is a set of *d*-points in general position for general \mathbb{P}^e . Since $d \ge e+1$, take a subset $\Gamma' = \{p_1, p_1, \ldots, p_{e+1}\} \subset \Gamma \subset \mathbb{P}^e$. $h^0(\mathcal{I}_X(2))\leq h^0(\mathcal{I}_{\Gamma}(2))\leq h^0(\mathcal{I}_{\Gamma'}(2))=\binom{e+2}{2}$ $\binom{+2}{2} - (e+1) = \binom{e+1}{2}$ $_{2}^{+1}$).

 \triangleright Inner projection method is more powerful.

Theorem [Basic Inequality] (Han-K, 2015)

- $\beta_{i,1}(X) \leq \beta_{i,1}(X_q) + \beta_{i-1,1}(X_q) + \binom{e}{i}$ $_{i}^{e}$, *i* \geq 1.
- The equality holds for $i \leq p$ if X satisfies property $N_{2, p}$.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Natural Philosophy: More quadrics *X* has, higher linear syzygies of quadrics can go further !

- [Green, 1984] If $\beta_{p,1} \neq 0$, then $h^0(\mathcal{I}_X(2)) \geq \binom{p+1}{2}$ $\binom{+1}{2} = \frac{(p+1)p}{2}$ $\frac{1}{2}$;
- [Han-K, 2012] If X satisfies property $N_{2,0}$, then $h^0(\mathcal{I}_X(2)) \geq \binom{e+1}{2}$ ${+1 \choose 2} - {e+1-\rho \choose 2}$ $\binom{1-p}{2} = \frac{(2e+1-p)p}{2}$ $\frac{1-\rho/\rho}{2}$.
- [Han-K, 2015] Using the above basic inequality under inner projection, we have the following:

 $X \subset \mathbb{P}^{n+\epsilon}$: irreducible, reduced (not necessarily smooth).

$$
\beta_{i,1}(X) \leq i \binom{e+1}{i+1}, \ i \geq 1
$$

Furthermore, $\beta_{i,1}(X) = i \left(\frac{e+1}{i+1} \right)$ $\binom{e+1}{i+1}$ for some 1 \leq *i* \leq *e* if and only if *X* is a VMD iff *X* is a 2-regular ACM variety.

 Ω

イロト イ押 トイラ トイラトー

Natural Philosophy: More quadrics *X* has, higher linear syzygies of quadrics can go further !

- [Green, 1984] If $\beta_{p,1} \neq 0$, then $h^0(\mathcal{I}_X(2)) \geq \binom{p+1}{2}$ $\binom{+1}{2} = \frac{(p+1)p}{2}$ $\frac{1}{2}$;
- [Han-K, 2012] If X satisfies property $N_{2,0}$, then $h^0(\mathcal{I}_X(2)) \geq \binom{e+1}{2}$ ${+1 \choose 2} - {e+1-\rho \choose 2}$ $\binom{1-p}{2} = \frac{(2e+1-p)p}{2}$ $\frac{1-\rho/\rho}{2}$.
- [Han-K, 2015] Using the above basic inequality under inner projection, we have the following:

 $X \subset \mathbb{P}^{n+\epsilon}$: irreducible, reduced (not necessarily smooth).

$$
\beta_{i,1}(X) \leq i \binom{e+1}{i+1}, \ i \geq 1
$$

Furthermore, $\beta_{i,1}(X) = i \left(\frac{e+1}{i+1} \right)$ $\binom{e+1}{i+1}$ for some 1 \leq *i* \leq *e* if and only if *X* is a VMD iff *X* is a 2-regular ACM variety.

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Natural Philosophy: More quadrics *X* has, higher linear syzygies of quadrics can go further !

- [Green, 1984] If $\beta_{p,1} \neq 0$, then $h^0(\mathcal{I}_X(2)) \geq \binom{p+1}{2}$ $\binom{+1}{2} = \frac{(p+1)p}{2}$ $\frac{1}{2}$;
- [Han-K, 2012] If X satisfies property $N_{2, p}$, then $h^0(\mathcal{I}_X(2)) \geq \binom{e+1}{2}$ ${e+1 \choose 2} - \bigl(e+1-\rho \over 2\bigr)$ $\binom{1-p}{2} = \frac{(2e+1-p)p}{2}$ $\frac{(-p)p}{2}$.
- [Han-K, 2015] Using the above basic inequality under inner projection, we have the following:

 $X \subset \mathbb{P}^{n+\epsilon}$: irreducible, reduced (not necessarily smooth).

$$
\beta_{i,1}(X) \leq i \binom{e+1}{i+1}, \ \ i \geq 1
$$

Furthermore, $\beta_{i,1}(X) = i \left(\frac{e+1}{i+1} \right)$ $\binom{e+1}{i+1}$ for some 1 \leq *i* \leq *e* if and only if *X* is a VMD iff *X* is a 2-regular ACM variety.

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$
- [Green, 1984] If $\beta_{p,1} \neq 0$, then $h^0(\mathcal{I}_X(2)) \geq \binom{p+1}{2}$ $\binom{+1}{2} = \frac{(p+1)p}{2}$ $\frac{1}{2}$;
- [Han-K, 2012] If X satisfies property $N_{2, p}$, then $h^0(\mathcal{I}_X(2)) \geq \binom{e+1}{2}$ ${e+1 \choose 2} - \bigl(e+1-\rho \over 2\bigr)$ $\binom{1-p}{2} = \frac{(2e+1-p)p}{2}$ $\frac{(-p)p}{2}$.
- [Han-K, 2015] Using the above basic inequality under inner projection, we have the following:

 $X \subset \mathbb{P}^{n+\epsilon}$: irreducible, reduced (not necessarily smooth).

$$
\beta_{i,1}(X) \leq i\binom{e+1}{i+1}, \ \ i \geq 1
$$

Furthermore, $\beta_{i,1}(X) = i \left(\frac{e+1}{i+1} \right)$ $\binom{e+1}{i+1}$ for some 1 \leq *i* \leq *e* if and only if *X* is a VMD iff *X* is a 2-regular ACM variety.

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

- [Green, 1984] If $\beta_{p,1} \neq 0$, then $h^0(\mathcal{I}_X(2)) \geq \binom{p+1}{2}$ $\binom{+1}{2} = \frac{(p+1)p}{2}$ $\frac{1}{2}$;
- [Han-K, 2012] If X satisfies property $N_{2,0}$, then $h^0(\mathcal{I}_X(2)) \geq \binom{e+1}{2}$ ${e+1 \choose 2} - \bigl(e+1-\rho \over 2\bigr)$ $\binom{1-p}{2} = \frac{(2e+1-p)p}{2}$ $\frac{(-p)p}{2}$.
- [Han-K, 2015] Using the above basic inequality under inner projection, we have the following:

 $X \subset \mathbb{P}^{n+\epsilon}$: irreducible, reduced (not necessarily smooth).

$$
\beta_{i,1}(X) \leq i\binom{e+1}{i+1}, \ \ i \geq 1
$$

Furthermore, $\beta_{i,1}(X) = i \left(\frac{e+1}{i+1} \right)$ $\binom{e+1}{i+1}$ for some 1 \leq *i* \leq *e* if and only if *X* is a VMD iff *X* is a 2-regular ACM variety.

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

- [Green, 1984] If $\beta_{p,1} \neq 0$, then $h^0(\mathcal{I}_X(2)) \geq \binom{p+1}{2}$ $\binom{+1}{2} = \frac{(p+1)p}{2}$ $\frac{1}{2}$;
- [Han-K, 2012] If X satisfies property $N_{2,0}$, then $h^0(\mathcal{I}_X(2)) \geq \binom{e+1}{2}$ ${e+1 \choose 2} - \bigl(e+1-\rho \over 2\bigr)$ $\binom{1-p}{2} = \frac{(2e+1-p)p}{2}$ $\frac{(-p)p}{2}$.
- [Han-K, 2015] Using the above basic inequality under inner projection, we have the following:

 $X \subset \mathbb{P}^{n+\epsilon}$: irreducible, reduced (not necessarily smooth).

$$
\beta_{i,1}(X)\leq i\binom{e+1}{i+1},\ i\geq 1
$$

Furthermore, $\beta_{i,1}(X) = i \left(\frac{e+1}{i+1} \right)$ $\binom{e+1}{i+1}$ for some 1 \leq *i* \leq *e* if and only if *X* is a VMD iff *X* is a 2-regular ACM variety.

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

- [Green, 1984] If $\beta_{p,1} \neq 0$, then $h^0(\mathcal{I}_X(2)) \geq \binom{p+1}{2}$ $\binom{+1}{2} = \frac{(p+1)p}{2}$ $\frac{1}{2}$;
- [Han-K, 2012] If X satisfies property $N_{2,0}$, then $h^0(\mathcal{I}_X(2)) \geq \binom{e+1}{2}$ ${e+1 \choose 2} - \bigl(e+1-\rho \over 2\bigr)$ $\binom{1-p}{2} = \frac{(2e+1-p)p}{2}$ $\frac{(-p)p}{2}$.
- [Han-K, 2015] Using the above basic inequality under inner projection, we have the following:

 $X \subset \mathbb{P}^{n+\epsilon}$: irreducible, reduced (not necessarily smooth).

$$
\beta_{i,1}(X)\leq i\binom{e+1}{i+1},\ i\geq 1
$$

Furthermore, $\beta_{i,1}(X) = i \binom{e+1}{i+1}$ $\binom{e+1}{i+1}$ for some 1 \leq *i* \leq *e* if and only if *X* is a VMD iff *X* is a 2-regular ACM variety.

 Ω

イロト イ押 トイヨ トイヨ トーヨー

We also characterize Fano varieties as follows:

Theorem [Han-K, 2015] Unless *X* is a variety of minimal degree, then we have

$$
\beta_{i,1}(X) \leq i \binom{e+1}{i+1} - \binom{e}{i-1} \quad \text{for all } 1 \leq i \leq e,
$$

and in particular,

X is del Pezzo iff $\beta_{i,1}(X) = i \binom{e+1}{i+1}$ e+1) — (,*e*
i+1⁾ — (,*i f*^{−1}</sup> *f*or some 1 ≤ *i* ≤ *e* − 1 **Corollary** There is no projective variety with the Betti number

$$
i\binom{e+1}{i+1}-\binom{e}{i-1}<\beta_{i,1}(X)
$$

 Ω

イロト イ押ト イヨト イヨ

We also characterize Fano varieties as follows: **Theorem** [Han-K, 2015] Unless *X* is a variety of minimal degree, then we have

$$
\beta_{i,1}(X)\leq i\binom{e+1}{i+1}-\binom{e}{i-1}\quad\text{for all }1\leq i\leq e\,,
$$

and in particular,

X is del Pezzo iff $\beta_{i,1}(X) = i \binom{e+1}{i+1}$ e+1) — (,*e*
i+1⁾ — (,*i f*^{−1}</sup> *f*or some 1 ≤ *i* ≤ *e* − 1 **Corollary** There is no projective variety with the Betti number

$$
i\binom{e+1}{i+1}-\binom{e}{i-1}<\beta_{i,1}(X)
$$

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

We also characterize Fano varieties as follows: **Theorem** [Han-K, 2015] Unless *X* is a variety of minimal degree, then we have

$$
\beta_{i,1}(X)\leq i\binom{e+1}{i+1}-\binom{e}{i-1}\quad\text{for all }1\leq i\leq e\,,
$$

and in particular,

X is del Pezzo iff $\beta_{i,1}(X) = i \binom{e+1}{i+1}$ e+1) – (*i*– *f*^{−1}</sup> for some 1 ≤ *i* ≤ *e* − 1

Corollary There is no projective variety with the Betti number

$$
i\binom{e+1}{i+1} - \binom{e}{i-1} < \beta_{i,1}(X) < i\binom{e+1}{i+1}
$$

 Ω

イロト イ押 トイヨ トイヨ トーヨ

We also characterize Fano varieties as follows: **Theorem** [Han-K, 2015] Unless *X* is a variety of minimal degree, then we have

$$
\beta_{i,1}(X)\leq i\binom{e+1}{i+1}-\binom{e}{i-1}\quad\text{for all }1\leq i\leq e\,,
$$

and in particular,

X is del Pezzo iff $\beta_{i,1}(X) = i \binom{e+1}{i+1}$ e+1) – (*i*– *f*^{−1}</sup> for some 1 ≤ *i* ≤ *e* − 1 **Corollary** There is no projective variety with the Betti number

$$
i\binom{e+1}{i+1}-\binom{e}{i-1}<\beta_{i,1}(X)
$$

 Ω

イロト イ押ト イヨト イヨト ニヨ

The structure of Betti Tables.

We are intereested in the firsr linear strand starting from cubic equations assuming that *X* has no quadrics:

 β_1 ₂(*X*), β_2 ₂(*X*), ..., $\beta_{e2}(X)$, ...

- How many cubics are required for $\beta_{p,2}(X) \neq 0$ for $1 \leq p \leq e$?;
- $K_{p,2}$ Theorem, i.e. $\beta_{p,2}(X) = 0$ for $p > e$?;
- Upper bounds for $\beta_{p,2}(X)$ for $1 \leq p \leq e$?;
- what are the simplest Betti table and the next simplest Betti tables?

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

The structure of Betti Tables.

We are intereested in the firsr linear strand starting from cubic equations assuming that *X* has no quadrics:

β_1 ₂(*X*), β_2 ₂(*X*), ..., $\beta_{e2}(X)$, ...

- How many cubics are required for $\beta_{p,2}(X) \neq 0$ for $1 \leq p \leq e$?;
- $K_{p,2}$ Theorem, i.e. $\beta_{p,2}(X) = 0$ for $p > e$?;
- Upper bounds for $\beta_{p,2}(X)$ for $1 \leq p \leq e$?;
- what are the simplest Betti table and the next simplest Betti tables?

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

The structure of Betti Tables.

We are intereested in the firsr linear strand starting from cubic equations assuming that *X* has no quadrics:

$$
\beta_{1,2}(X), \beta_{2,2}(X), \ldots, \beta_{e,2}(X), \ldots
$$

- How many cubics are required for $\beta_{p,2}(X) \neq 0$ for $1 \leq p \leq e$?;
- $K_{p,2}$ Theorem, i.e. $\beta_{p,2}(X) = 0$ for $p > e$?;
- Upper bounds for $\beta_{p,2}(X)$ for $1 \leq p \leq e$?;
- what are the simplest Betti table and the next simplest Betti tables?

 $(0.5, 0.6)$ $(0.5, 0.7)$

The structure of Betti Tables.

We are intereested in the firsr linear strand starting from cubic equations assuming that *X* has no quadrics:

$$
\beta_{1,2}(X),\beta_{2,2}(X),\ldots,\beta_{e,2}(X),\ldots.
$$

We have many parallel problems as in the quadratic world.

- How many cubics are required for $\beta_{p,2}(X) \neq 0$ for $1 \leq p \leq e$?;
- $K_{p,2}$ Theorem, i.e. $\beta_{p,2}(X) = 0$ for $p > e$?;
- Upper bounds for $\beta_{p,2}(X)$ for $1 \leq p \leq e$?;
- what are the simplest Betti table and the next simplest Betti tables?

イロト イ押 トイラ トイラトー

The structure of Betti Tables.

We are intereested in the firsr linear strand starting from cubic equations assuming that *X* has no quadrics:

$$
\beta_{1,2}(X),\beta_{2,2}(X),\ldots,\beta_{e,2}(X),\ldots.
$$

We have many parallel problems as in the quadratic world.

- How many cubics are required for $\beta_{p,2}(X) \neq 0$ for $1 \leq p \leq e$?;
- $K_{n,2}$ Theorem, i.e. $\beta_{p,2}(X) = 0$ for $p > e$?;
- Upper bounds for $\beta_{p,2}(X)$ for $1 \leq p \leq e$?;
- what are the simplest Betti table and the next simplest Betti tables?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

The structure of Betti Tables.

We are intereested in the firsr linear strand starting from cubic equations assuming that *X* has no quadrics:

$$
\beta_{1,2}(X),\beta_{2,2}(X),\ldots,\beta_{e,2}(X),\ldots.
$$

We have many parallel problems as in the quadratic world.

- How many cubics are required for $\beta_{p,2}(X) \neq 0$ for $1 \leq p \leq e$?;
- $K_{p,2}$ Theorem, i.e. $\beta_{p,2}(X) = 0$ for $p > e$?;
- Upper bounds for $\beta_{p,2}(X)$ for $1 \le p \le e$?;
- what are the simplest Betti table and the next simplest Betti tables?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

The structure of Betti Tables.

We are intereested in the firsr linear strand starting from cubic equations assuming that *X* has no quadrics:

$$
\beta_{1,2}(X),\beta_{2,2}(X),\ldots,\beta_{e,2}(X),\ldots.
$$

We have many parallel problems as in the quadratic world.

- How many cubics are required for $\beta_{p,2}(X) \neq 0$ for $1 \leq p \leq e$?;
- $K_{p,2}$ Theorem, i.e. $\beta_{p,2}(X) = 0$ for $p > e$?;
- Upper bounds for $\beta_{p,2}(X)$ for $1 \leq p \leq e$?;
- what are the simplest Betti table and the next simplest Betti tables?

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

The structure of Betti Tables.

We are intereested in the firsr linear strand starting from cubic equations assuming that *X* has no quadrics:

$$
\beta_{1,2}(X),\beta_{2,2}(X),\ldots,\beta_{e,2}(X),\ldots.
$$

We have many parallel problems as in the quadratic world.

- How many cubics are required for $\beta_{p,2}(X) \neq 0$ for $1 \leq p \leq e$?;
- $K_{n,2}$ Theorem, i.e. $\beta_{p,2}(X) = 0$ for $p > e$?;
- Upper bounds for $\beta_{p,2}(X)$ for $1 \leq p \leq e$?;
- what are the simplest Betti table and the next simplest Betti tables?

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

The structure of Betti Tables.

We are intereested in the firsr linear strand starting from cubic equations assuming that *X* has no quadrics:

$$
\beta_{1,2}(X),\beta_{2,2}(X),\ldots,\beta_{e,2}(X),\ldots.
$$

We have many parallel problems as in the quadratic world.

- How many cubics are required for $\beta_{p,2}(X) \neq 0$ for $1 \leq p \leq e$?;
- $K_{n,2}$ Theorem, i.e. $\beta_{p,2}(X) = 0$ for $p > e$?;
- Upper bounds for $\beta_{p,2}(X)$ for $1 \leq p \leq e$?;
- what are the simplest Betti table and the next simplest Betti tables?

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Notion of ND(2)

An irreducible variety $X^n\subset\mathbb P^{n+\theta}$ is called a ND (m) (i.e., nondegenerate in degree *m*) variety if for a general Λ of dimension *e*, (*IX*∩Λ)*^m* = 0.

- ND(1) \Leftrightarrow nondegenerate \Leftrightarrow not contained in any hyperplane.
- \bullet ND(2) \Leftrightarrow nondegenerate in degree 2 \Leftrightarrow not contained in any quadric after linear sections.
- The Betti table of ND $(d-1)$ variety X in \mathbb{P}^{n+e} :

Sijong Kwak (KAIST, Korea) [Characterization of ACM varieties with](#page-0-0) *d*-linear and August 03, 2016 26 / 31

Notion of ND(2)

An irreducible variety $X^n\subset\mathbb P^{n+\theta}$ is called a ND (m) (i.e., nondegenerate in degree *m*) variety if for a general Λ of dimension *e*, (*IX*∩Λ)*^m* = 0.

- ND(1) \Leftrightarrow nondegenerate \Leftrightarrow not contained in any hyperplane.
- ND(2) \Leftrightarrow nondegenerate in degree 2 \Leftrightarrow not contained in any quadric after linear sections.
- The Betti table of ND $(d-1)$ variety X in \mathbb{P}^{n+e} :

 Ω

イロト イ押ト イヨト イヨト ニヨ

Notion of ND(2)

An irreducible variety $X^n\subset\mathbb P^{n+\theta}$ is called a ND (m) (i.e., nondegenerate in degree *m*) variety if for a general Λ of dimension *e*, (*IX*∩Λ)*^m* = 0.

- ND(1) \Leftrightarrow nondegenerate \Leftrightarrow not contained in any hyperplane.
- ND(2) \Leftrightarrow nondegenerate in degree 2 \Leftrightarrow not contained in any quadric after linear sections.
- The Betti table of ND $(d-1)$ variety X in \mathbb{P}^{n+e} :

Upper bound of $\beta_{p,2}(X)$ and $K_{p,2}$ Theorem

Theorem (Ahn, Han and K-, preprint)

 S uppose that $X^n \subset \mathbb{P}^{n+\mathbf{e}}$ is a ND(2) subscheme, defined over $K = \overline{K}$ *of char* $(K) = 0$. Then,

- $\binom{e+2}{2}$ $\binom{+2}{2} \leq$ deg(*X*) and $h^0(\mathcal{I}_X(3)) \leq \binom{e+2}{3}$ $_3^{+2}$.
- *In general,* $\beta_{p,2}(X) \leq {p+1 \choose 2}$ ${p+1 \choose 2}{p+2 \choose p+2}$ for $p \ge 1$.
- *For the extremal cases, the following are equivalent:*
	- (a) deg(X) = $\binom{e+2}{2}$;
	- (b) $h^0(\mathcal{I}_X(3)) = \binom{e+2}{3}$;
	- (c) \overline{O} *one of* $\beta_{p,2}(X)$ attains "=" for $1 \le p \le e$;
	- (d) *I^X has ACM* 3*-linear resolution.*

This also gives a natural $K_{p,2}$ theorem generalizing $K_{p,1}$ -theorem because $\beta_{p,2}(X) = 0$ for $p > e$.

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Upper bound of $\beta_{p,2}(X)$ and $K_{p,2}$ Theorem

Theorem (Ahn, Han and K-, preprint)

 S uppose that $X^n \subset \mathbb{P}^{n+\mathbf{e}}$ is a ND(2) subscheme, defined over $K = \overline{K}$ *of char* $(K) = 0$. Then,

- (e_{2}^{+2}) $\mathcal{L}_2^{+2}) \leq \mathsf{deg}(X)$ and $h^0(\mathcal{I}_X(3)) \leq \binom{e+2}{3}$ $_3^{+2}$).
- *In general,* $\beta_{p,2}(X) \leq {p+1 \choose 2}$ $\binom{p+1}{2}\binom{e+2}{p+2}$ for $p \ge 1$.
- *For the extremal cases, the following are equivalent:*
	- (a) deg(X) = $\binom{e+2}{2}$;
	- (b) $h^0(\mathcal{I}_X(3)) = \binom{e+2}{3}$;
	- (c) \overline{O} *one of* $\beta_{p,2}(X)$ attains "=" for $1 \le p \le e$;
	- (d) *I^X has ACM* 3*-linear resolution.*

This also gives a natural $K_{p,2}$ theorem generalizing $K_{p,1}$ -theorem because $\beta_{p,2}(X) = 0$ for $p > e$.

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Upper bound of $\beta_{p,2}(X)$ and $K_{p,2}$ Theorem

Theorem (Ahn, Han and K-, preprint)

 S uppose that $X^n \subset \mathbb{P}^{n+\mathbf{e}}$ is a ND(2) subscheme, defined over $K = \overline{K}$ *of char* $(K) = 0$. Then,

- (e_{2}^{+2}) $\mathcal{L}_2^{+2}) \leq \mathsf{deg}(X)$ and $h^0(\mathcal{I}_X(3)) \leq \binom{e+2}{3}$ $_3^{+2}$).
- *In general,* $\beta_{p,2}(X) \leq {p+1 \choose 2}$ $\binom{p+1}{2}\binom{e+2}{p+2}$ for $p \ge 1$.
- *For the extremal cases, the following are equivalent:*

(a) deg(X) =
$$
\binom{e+2}{2}
$$
;

(b)
$$
h^0(\mathcal{I}_X(3)) = \binom{e+2}{3}
$$
;

- (c) \overline{O} *one of* $\beta_{p,2}(X)$ attains "=" for $1 \le p \le e$;
- (d) *I^X has ACM* 3*-linear resolution.*

This also gives a natural $K_{p,2}$ theorem generalizing $K_{p,1}$ -theorem because $\beta_{p,2}(X) = 0$ for $p > e$.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Theorem [Ahn-Han-K] More generally, if $X \subset \mathbb{P}^{n+e}$ is a ND $(d-1)$ variety defined over *K* of char $(K) = 0$ then,

- *e*+*d*−1 $\binom{+d-1}{d-1}$ ≤ deg(*X*) and $h^0(\mathcal{I}_X(d))$ ≤ $\binom{e+d-1}{d}$ $\binom{a-1}{d}$;
- $\beta_{i,d-1}(X) \leq \binom{i+d-2}{d-1}$ *^{+d−2}*) (^{*e*+*d*−1}) for *i* ≥ 1. In particular, $\beta_{i,d-1}(X) = 0$ for $i > e$.
- For the extremal cases, the following are equivalent:

•
$$
\deg(X) = \left(\begin{matrix} e + d - 1 \\ d - 1 \end{matrix}\right);
$$

$$
\bullet \ \ h^0(\mathcal{I}_X(d)) = \left(\begin{smallmatrix} e+d-1 \\ d \end{smallmatrix} \right) \ ;
$$

- $\beta_{i,d-1}(X)$ attains the maximum for some 1 ≤ *i* ≤ *e*;
- *X* is ACM with *d*-linear resolution.

\triangleright For *d* \geq 2, $\beta_{i,d-1}(X) = 0$ for *i* $> e$ is a generalization of Green's $K_{p,1}$ -Theorem ($d = 2$).

 Ω

メロトメ 御 トメ 差 トメ 差 トー 差

Theorem [Ahn-Han-K] More generally, if $X \subset \mathbb{P}^{n+e}$ is a ND $(d-1)$ variety defined over *K* of char $(K) = 0$ then,

- *e*+*d*−1 $\binom{+d-1}{d-1}$ ≤ deg(*X*) and $h^0(\mathcal{I}_X(d))$ ≤ $\binom{e+d-1}{d}$ $\binom{a-1}{d}$;
- $\beta_{i,d-1}(X) \leq {i+d-2 \choose d-1}$ *^{+d−2}*) (^{*e*+*d*−1}) for *i* ≥ 1. In particular, $\beta_{i,d-1}(X) = 0$ for $i \geq e$.
- For the extremal cases, the following are equivalent:

•
$$
\deg(X) = \binom{e+d-1}{d-1}
$$
;

- $h^0(\mathcal{I}_X(d)) = \left(\begin{smallmatrix} e + d 1 \ d \end{smallmatrix}\right)$;
- $\beta_{i,d-1}(X)$ attains the maximum for some 1 ≤ *i* ≤ *e*;
- *X* is ACM with *d*-linear resolution.

 \triangleright For *d* > 2, $\beta_{i,d-1}(X) = 0$ for *i* > *e* is a generalization of Green's $K_{p,1}$ -Theorem ($d = 2$).

イロトメ 伊 メメ きょくぼう 一番

 QQQ

Theorem [Ahn-Han-K] More generally, if $X \subset \mathbb{P}^{n+e}$ is a ND $(d-1)$ variety defined over *K* of char $(K) = 0$ then,

- *e*+*d*−1 $\binom{+d-1}{d-1}$ ≤ deg(*X*) and $h^0(\mathcal{I}_X(d))$ ≤ $\binom{e+d-1}{d}$ $\binom{a-1}{d}$;
- $\beta_{i,d-1}(X) \leq {i+d-2 \choose d-1}$ *^{+d−2}*) (^{*e*+*d*−1}) for *i* ≥ 1. In particular, $\beta_{i,d-1}(X) = 0$ for $i \geq e$.
- For the extremal cases, the following are equivalent:
	- deg(*X*) = $\binom{e+d-1}{d-1}$;
	- $h^0(\mathcal{I}_X(d)) = \binom{e+d-1}{d}$;
	- $\beta_{i,d-1}(X)$ attains the maximum for some $1 \leq i \leq e$;
	- *X* is ACM with *d*-linear resolution.

\triangleright For *d* > 2, $\beta_{i,d-1}(X) = 0$ for *i* > *e* is a generalization of Green's $K_{p,1}$ -Theorem ($d = 2$).

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Theorem [Ahn-Han-K] More generally, if $X \subset \mathbb{P}^{n+e}$ is a ND $(d-1)$ variety defined over *K* of char $(K) = 0$ then,

- *e*+*d*−1 $\binom{+d-1}{d-1}$ ≤ deg(*X*) and $h^0(\mathcal{I}_X(d))$ ≤ $\binom{e+d-1}{d}$ $\binom{a-1}{d}$;
- $\beta_{i,d-1}(X) \leq {i+d-2 \choose d-1}$ *^{+d−2}*) (^{*e*+*d*−1}) for *i* ≥ 1. In particular, $\beta_{i,d-1}(X) = 0$ for $i \geq e$.
- For the extremal cases, the following are equivalent:
	- deg(*X*) = $\binom{e+d-1}{d-1}$;
	- $h^0(\mathcal{I}_X(d)) = \binom{e+d-1}{d}$;
	- $\beta_{i,d-1}(X)$ attains the maximum for some $1 \leq i \leq e$;
	- *X* is ACM with *d*-linear resolution.

Remark

► For
$$
d \ge 2
$$
, $\beta_{i,d-1}(X) = 0$ for $i > e$ is a generalization of Green's $K_{p,1}$ -Theorem ($d = 2$).

D.

 Ω

(ロトイ部)→(差)→(差)→

Let $m = (x_0, x_1, \ldots, x_{e-1})$ be the irrelevant maximal ideal in $\Lambda = \mathbb{P}^{e-1}.$ The graded Betti number of a ND(*d* − 1)-variety is less than or equal to that of the *m^d* , i.e.

$$
\beta_{p,d-1}(X) \leq \beta_{p,d-1}(R/m^d) = \binom{e+d-1}{p+d-1}\binom{p+d-2}{d-1} \text{ for } p \geq 1
$$

by using the generic initial ideal theory developed by M. Green, Bayer-Stillman and Eliahou-Kervaire theorem.

イロト イ押 トイラト イラト

Let $m = (x_0, x_1, \ldots, x_{e-1})$ be the irrelevant maximal ideal in $\Lambda = \mathbb{P}^{e-1}.$ The graded Betti number of a $ND(d-1)$ -variety is less than or equal to that of the *m^d* , i.e.

$$
\beta_{p,d-1}(X) \leq \beta_{p,d-1}(R/m^d) = \binom{e+d-1}{p+d-1}\binom{p+d-2}{d-1} \text{ for } p \geq 1
$$

by using the generic initial ideal theory developed by M. Green, Bayer-Stillman and Eliahou-Kervaire theorem.

イロト イ押 トイラト イラト

Let $m = (x_0, x_1, \ldots, x_{e-1})$ be the irrelevant maximal ideal in $\Lambda = \mathbb{P}^{e-1}.$ The graded Betti number of a $ND(d-1)$ -variety is less than or equal to that of the *m^d* , i.e.

$$
\beta_{p,d-1}(X) \leq \beta_{p,d-1}(R/m^d) = {e+d-1 \choose p+d-1}{p+d-2 \choose d-1} \text{ for } p \geq 1
$$

by using the generic initial ideal theory developed by M. Green, Bayer-Stillman and Eliahou-Kervaire theorem.

イロトス 何 トス ヨ トス ヨ トー ヨ

- (a) **Generic initial ideal** Consider $\text{in}_{\tau}(g(I))$. For a general change g, $\sin_\tau(g(I))$ is constant. We will call this the *generic initial ideal of I* w.r.t τ *Gin*_{τ}(*I*)
- (b) Other ingredients
	- Use degree reverse lexicographic order;
	- Cancellation principle;
	- Eliahou-Kervaire theorem;
	- $Gin(\overline{I}) = \frac{(Gin(I), x_n)}{(x_n)} = Gin(I)|_{x_n \to 0};$
	- \int_{0}^{∞} *Gin*(\overline{I}) = $\bigcup_{k=0}^{\infty}$ *Gin*(\overline{I}) : x_{n-1}^{k} = \int *Gin*(I)|_{x_n->0})|_{x_{n-1}->1.}
- (c) **Strategy** Find maximal possible Borel fixed set which contains *Gin*(I_X)₃!

(ロ) (*同*) (ヨ) (ヨ)

- For all ND(2)-varieties, deg(X) $\geq \binom{e+2}{2}$ $\binom{+2}{2}$ and 3-linear ACM varieties are called 'minimal degree varieties of the second kind'.
- **Problem**: What is a geometric properties /or classification of 'minimal degree varieties of the second kind'?

- 3-minors of 4 \times 4 generic symmetric matrix (i.e. $\text{Sec}(\nu_2(\mathbb{P}^3))\subset \mathbb{P}^9);$
- 3-minors of $3 \times (e + 2)$ sufficiently generic matrices (e.g. Sec(*RNS*));
- Sec(*v*₃(\mathbb{P}^2));
- $\mathrm{Sec}(\mathbb{P}^2\times \mathbb{P}^1\times \mathbb{P}^1);$
- Non-trivial 3-linear ACM smooth varieties are interesting! (L. Ein)
- Are they all the secant varieties of varieties of small degree? (M. Mella.)

(ロトイ部)→(差)→(差)→

- For all ND(2)-varieties, deg(X) $\geq \binom{e+2}{2}$ $\binom{+2}{2}$ and 3-linear ACM varieties are called 'minimal degree varieties of the second kind'.
- **Problem**: What is a geometric properties /or classification of 'minimal degree varieties of the second kind'?

- 3-minors of 4 \times 4 generic symmetric matrix (i.e. $\text{Sec}(\nu_2(\mathbb{P}^3))\subset \mathbb{P}^9);$
- 3-minors of $3 \times (e + 2)$ sufficiently generic matrices (e.g. Sec(*RNS*));
- Sec(*v*₃(\mathbb{P}^2));
- $\mathrm{Sec}(\mathbb{P}^2\times \mathbb{P}^1\times \mathbb{P}^1);$
- Non-trivial 3-linear ACM smooth varieties are interesting! (L. Ein)
- Are they all the secant varieties of varieties of small degree? (M. Mella.)

イロト イ押 トイラ トイラトー

 \equiv

- For all ND(2)-varieties, deg(X) $\geq \binom{e+2}{2}$ $\binom{+2}{2}$ and 3-linear ACM varieties are called 'minimal degree varieties of the second kind'.
- **Problem**: What is a geometric properties /or classification of 'minimal degree varieties of the second kind'?

- 3-minors of 4 \times 4 generic symmetric matrix (i.e. $\text{Sec}(\mathsf{v}_2(\mathbb{P}^3))\subset \mathbb{P}^9);$
- 3-minors of $3 \times (e + 2)$ sufficiently generic matrices (e.g. Sec(*RNS*));
- Sec(*v*₃(\mathbb{P}^2));
- $\mathrm{Sec}(\mathbb{P}^2\times \mathbb{P}^1\times \mathbb{P}^1);$
- Non-trivial 3-linear ACM smooth varieties are interesting! (L. Ein)
- Are they all the secant varieties of varieties of small degree? (M. Mella.)

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

- For all ND(2)-varieties, deg(X) $\geq \binom{e+2}{2}$ $\binom{+2}{2}$ and 3-linear ACM varieties are called 'minimal degree varieties of the second kind'.
- **Problem**: What is a geometric properties /or classification of 'minimal degree varieties of the second kind'?

- 3-minors of 4 \times 4 generic symmetric matrix (i.e. $\text{Sec}(\mathsf{v}_2(\mathbb{P}^3))\subset \mathbb{P}^9);$
- 3-minors of $3 \times (e + 2)$ sufficiently generic matrices (e.g. Sec(*RNS*));
- Sec($v_3(\mathbb{P}^2)$);
- $\mathrm{Sec}(\mathbb{P}^2\times \mathbb{P}^1\times \mathbb{P}^1);$
- Non-trivial 3-linear ACM smooth varieties are interesting! (L. Ein)
- Are they all the secant varieties of varieties of small degree? (M. Mella.)

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

- For all ND(2)-varieties, deg(X) $\geq \binom{e+2}{2}$ $\binom{+2}{2}$ and 3-linear ACM varieties are called 'minimal degree varieties of the second kind'.
- **Problem**: What is a geometric properties /or classification of 'minimal degree varieties of the second kind'?

- 3-minors of 4 \times 4 generic symmetric matrix (i.e. $\text{Sec}(\mathsf{v}_2(\mathbb{P}^3))\subset \mathbb{P}^9);$
- 3-minors of $3 \times (e + 2)$ sufficiently generic matrices (e.g. Sec(*RNS*));
- Sec($v_3(\mathbb{P}^2)$);
- $\mathrm{Sec}(\mathbb{P}^2\times \mathbb{P}^1\times \mathbb{P}^1);$
- Non-trivial 3-linear ACM smooth varieties are interesting! (L. Ein)

イロト イ押 トイヨ トイヨ トーヨー

 Ω

Are they all the secant varieties of varieties of small degree? (M. Mella.)