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Let G = ([n], E) and d > 1 an integer and G the complement of G.
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Amap ¢ : [n] = R%, i — (x;1,...,X;q) defines an orthogonal represen-
tation of G if for every {i, j} € E(G),

o(i) () = XX + -+ + XigXjg = 0.

e Introduced by Lovész in 1979.

e Intimately related to important combinatorial properties of
graphs.
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How to construct an orthogonal representation

Easiest and the most expensive orthogonal representation for a graph
G on the vertices [7]:

e Choosed =nand ¢ :i— e; € R".
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Cheaper Orthogonal Representation:
e Take vertex coloring of G with x(G) colors.

e Associate to vertices with color i the vector e; € RX(0),
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Motivation

e G¥ = (VK E(k)) the k™ power of G = (V, E):
Two different vertices (v1, ..., v¢), (Wi, ..., w;) € VK are connected
by an edge in E(k) if {v;, w;} € E whenver v; # w;.

e a(G*) = the maximum number of k-letter messages that cannot be
confused.

e The Shannon capacity of G (Shannon, 1956) is
O(G) = sup /a(GF) = likm \/ o (GF).
k
e Number of k-letter words that cannot be confused is at least a(G)*.
e a(G) <O(G).
e Computational complexity of ©(G) unknown, and the value of ©(G)
is unknown for small graphs such as G;.
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The theta function

The theta function of G (Lovasz, 1979) is
#(G) = min max ———,
(©) (u).c ie[n] (cTu;)?
where the minimum is taken over all orthonormal representations
(u; : i € V) of G in R4, all unit vectors ¢ € R? and integers d > 1.

[ Properties
e J(G) < n (trivial representation).
e O(G) < Y(G) for every G.
e The theta function ¥(G) is polynomial time computable.
e Semidefinite program, theta-body.

e The theta function can be computed in terms of G as
9(G) = max > (v,

(vi),c !
ie[n]
where the maximum is taken over all orthonormal representations

(v; : i € V) of G and all unit vectors ¢ € R¥.
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The sandwich theorem

Theorem (Lovasz, 1986) For every graph G,
a(G) = w(G) < I(G) < x(G),

where w(G) is the size of the largest clique in G and x(G) is the vertex-
chromatic number of G.

e It follows that o(G) = w(G) < O(G) < J(G) < x(G).

¢ w(G) and x(G) are NP-hard to compute but 9(G) is computable in
polynomial time.

e In general, the above inequalities are strict. If w(G) = x(G), the
graph G is called perfect. For example, this is the case for chordal
graphs and for bipartite graphs and their complements.
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Example (Lovasz, 1979) Let G = G be the pentagon. Notice that
G = G. Then w(Gs) = 2 and x(Gs) = 3. Hence 2 < O(Gs) < 3.

However, o(C?) > 5, since 11, 23,35, 54, 42 are five messages that cannot be
confused mutally, thus ©(Gs) > /5.

To show that this bound is tight, let {u, . . ., us } be the following orthonormal
representation of the pentagon:

2k

5k:—7

U = (cos -, sin~y cos o, sinysindy), cosy= 5

1
%7

and ¢ = (1,0, 0). This yields 9(Gs) < /5. Hence
0(Gs) = 9(Gs) = V5.
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general-position orthogonal representation in R if and only if it is
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We study some algebraic properties of the ideals Lg for any graph
G and over an arbitrary field K.

For d = 1, the ideal L is a squarefree monomial ideal called the
edge ideal of G.

We consider the case d = 2. For simplicity we rename the variables
Xi1, Xjz as X;, y; and consider

Lg = (xixj + yiy; : {i,j} € E(G))
as an ideal in the polynomial ring T = K[x1, ..., Xp, Y1, - - -, Vn-

Binomial ideals well studied and we can use some of their theory.
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Letd = 2, v/—1 € K and G be a bipartite graph. Then L; may be
identified with the binomial edge ideal ] of G.

G
X1X2 + 1)2,
1 2 3 4 Lg = | x2x3 + 035,
X3X4 + ¥3Va
)
X1 X2 X3 X4 1Yz = ke,
"y o om < Jo= | Xoys — Vox3,
X3Ys — Y3Xs

The primary decomposition of binomial edge ideals has been recently
studied. It is also known that they are radical ideals.

Caveat ! This identification does not hold for K = R.
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Radicality of L

Theorem (HMMW)
@ Ifchar(K) # 2, then Lg is a radical ideal.

® Letchar(K) = 2. Then Lg is a radical ideal if and only if G is
bipartite.

Idea of the proof. For the first part, we assume that v/—1 € K. Apply-
ing the linear change of coordinates f such that for all i

fxi) =xi—y: and  f(yi) = vV=1(xi + yi),
we transform L into the ideal

g = (xiyj + xy: : {8/} € E(G)).
The generators of I1 are those 2-permanents of the matrix |3 =}/ |
whose column indices correspond to edges of G. Therefore, we call
I1; the permanental edge ideal of G. Note: Replacing the 2-permanents
above by 2-minors, one obtains the binomial edge ideal of G.
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e Known: Ifin<(I) is Cohen-Macaulay, Gorenstein, complete
intersection then so is I.

Proposition Let I be a graded ideal in a polynomial ring and sup-
pose thatin<(I) is radical. Then I is radical.

e We prove that, if char(K) # 2, II; has a squarefree initial ideal with
respect to the lexicographic order induced by x; > --- = x, = y1 =

e Hence in<(Il¢) is a radical ideal. This implies that Il is a radical
ideal.

o This proves that L is a radical ideal if char(K) # 2 and /-1 € K.

e The claim follows. O
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Question Assume char(K) = 0 and fix d > 1. When is L a radical
ideal ?

e Experimental data suggests that this could be true in general.
e FALSE! Counterexample for d = 3.

e True in the limit if d — oo. (ongoing work with Aldo Conca)



A Grobner basis of 11

Let G = ([n],E)and i,j € [n], i # j.



A Grobner basis of I1;

Let G = ([n], E) and i,j € [n], i # j. A path of length r in G from i to
Jisasequence m;; : [ = i, I1,..., I, = jof pairwise distinct vertices
such that {i, iz, } € E for all k. We say that 7;; is admissibleif i < j
and foreach k =1,...,r — 1, one has either iy < ior i > j.



A Grobner basis of I1;

Let G = ([n], E) and i,j € [n], i # j. A path of length r in G from i to

Jisasequence m;; : [ = i, I1,..., I, = jof pairwise distinct vertices
such that {i, iz, } € E for all k. We say that 7;; is admissibleif i < j
and foreach k =1,...,r — 1, one has either iy < ior i > j.




A Grobner basis of I1;

Let G = ([n], E) and i,j € [n], i # j. A path of length r in G from i to

Jisasequence m;; : [ = i, I1,..., I, = jof pairwise distinct vertices
such that {i, iz, } € E for all k. We say that 7;; is admissibleif i < j
and foreach k =1,...,r — 1, one has either iy < ior i > j.




A Grobner basis of I1;

Let G = ([n], E) and i,j € [n], i # j. A path of length r in G from i to
Jisasequence m;; : [ = i, I1,..., I, = jof pairwise distinct vertices
such that {i, iz, } € E for all k. We say that 7;; is admissibleif i < j
and foreach k =1,...,r — 1, one has either iy < ior i > j.

If ;; is admissible, we attach to it the monomial

Ury = H i H Vi

i >j i<i



Theorem (HMMW) Let G be a graph on [n] and assume that
char(K) # 2. Then, with respect to the lexicographic order on T =
K[x;,yi] induced by x1 > --- > X, > » > --- > Y¥n, the following
elements form a Grobner basis of the ideal I1;:
® i, by, where;; is an odd admissible path and bi; = x;y; + X;yi,
® u,gij, wherem;; is an even admissible path and g; = x;y; — X;i,
® lem(uy,, uy,)yixj, where m;; is an odd and oy is an even admissible
path,
Yo llpew Xn ifb < hforeveryhe W
{xb [hew ¥n ifb> hforeveryh e w’
where W = V(7;;) U V(o) U V() \ {b}, 7 is an odd and o; is an
even admissible path from i to j, 7, is a path with endpoints a and
b, such that a is the only vertex of T, that belongs to V (m;;) U V(0y;).




[ Theorem (HMMW) Let G be a graph on [n] and assume that
char(K) # 2. Then, with respect to the lexicographic order on T =
K[x;,yi] induced by x1 > --- > X, > » > --- > Y¥n, the following
elements form a Grobner basis of the ideal I1;:
® i, by, where;; is an odd admissible path and bi; = x;y; + X;yi,
® u,gij, wherem;; is an even admissible path and g; = x;y; — X;i,
® lem(uy,, uy,)yixj, where m;; is an odd and oy is an even admissible
path,
Yo llpew Xn ifb < hforeveryhe W
{xb [hew ¥n ifb> hforeveryh e w’
where W = V(7;;) U V(o) U V() \ {b}, 7 is an odd and o; is an
even admissible path from i to j, 7, is a path with endpoints a and
b, such that a is the only vertex of T, that belongs to V (m;;) U V(0y;).

The proofis an application of Buchberger’s Algorithm.
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Primary decomposition of L; for /—1 ¢ K

From now on we assume /—1 ¢ K. This is the case for K = R.
Let H be an arbitrary connected graph on [n].

o If H is not bipartite, then we denote by H the complete graph K,
on [n].

e If H is bipartite on V; U V,, |V1| = m, | V2| = n — m, then we denote
by H the complete bipartite graph K, ,—, on [n] with respect to
the same bipartition.

@&

5



Primary decomposition of L; for /—1 ¢ K

From now on we assume /—1 ¢ K. This is the case for K = R.
Let H be an arbitrary connected graph on [n].

o If H is not bipartite, then we denote by H the complete graph K,
on [n].

e If H is bipartite on V; U V,, |V1| = m, | V2| = n — m, then we denote
by H the complete bipartite graph K, ,—, on [n] with respect to
the same bipartition.

2

K5 I<2,3
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where Gi, ..., Gs) are the connected components of Gy, s and
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QS(G) = ({xid/i}ie&[?;l:---:[” )a

Ge(s)
where Gi, ..., Gs) are the connected components of Gy, s and
(xixj+yiyj, XiYj— XjYi, Xp+ Vi : 1?;254) if Ge=K,
I~ =
Gy

1 . . 1<i<m,m+1<j<n e
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Proposition (HMMW) Letv/—1 ¢ K. Then Qs(G) is a prime ideal
forall S C [n] andht Qs(G) = |S| + n— b(S), where b(S) is the number
of bipartite connected components of G\ s-

[ Theorem (HMMW) Let G be a graph on[n] and+/—1 ¢ K. Then
Lg= () Qs(G)

Sc[n]

is a (in general redundant) primary decomposition of Lg.




r Corollary Let G be a graph on [n], and let /-1 ¢ K. Then
dim(T/Lg) = max{n — [S| + b(S) : S C [n]}.

In particular, dim(T/Lg) > n + b, where b is the number of bipar-
tite connected components of G. Moreover, if L is unmixed, then
dim(T/Lg) = n+ b.
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Minimal prime ideals of L; for v—1 ¢ K

Let G be a graph on [n]. Then a vertex i € [n] is said to be a cut point
of G if G\ ¢4 has more connected components than G.

1 5

2 6

We call a vertex i € [n] a bipartition point of G if G\ (;; has more
bipartite connected components than G.

Let M(G) be the set of all sets S C [n] such that each i € Sis either a
cut point or a bipartition point of the graph G, s)u{;;}- In particular,
@ e M(G).

Theorem (HMMW) LetG beagraphon(n],/—1 € K andS C [n].
Then Qs(G) is a minimal prime ideal of L¢ if and only if S € M(G).
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Example Let G be the graph
2

1
Then a minimal primary decomposition of Lg is

LG = Q@(G) =
(X2 + Y132, X1X3 + Y113, X1Xa + YiVa, XoX3 + Vo), XoXa + VoY, X3Xa + V3V,
X1)2 — X2Y1, X1Y3 — X3Y1, X1Ya — Xa)1, X2)3 — X3)2, X2)a — Xa)2, X3Ys — X4)3,

5+, 5%+ 35,4 + 15,4 +33)




Example Let G be the graph
2

S~

1.

Then a minimal primary decomposition of L is

L = Qz(G) N Q3 (G) =
(x1X2 + Y1), X1X3 + Y1)3, X1 X4 + Y1 V4, XoX3 + Vo3, XoXa + YoYa, X3X4 + V3Ya,
X1)2 — X2Y1, X1Y3 — X3Y1, X1Ya — Xa)1, X2)3 — X3)2, X2)a — Xa)2, X3Ys — X4)3,
R PR RN I 1))
N (X1, Y1, X2X3 + Yo Y3, X3Xa + V3Va, Xo)a — Xa)2)




Example Let G be the graph

2o

3 4

~

1
Then a minimal primary decomposition of L is

Lg = Qa(6) N Q1 (G) N Q23(G) =
(x1X2 + Y1), X1X3 + Y1)3, X1 X4 + Y1 V4, XoX3 + Vo3, XoXa + YoYa, X3X4 + V3Ya,
X1)2 — X2Y1, X1Y3 — X3Y1, X1Ya — Xa)1, X2)3 — X3)2, X2)a — Xa)2, X3Ys — X4)3,
R PR RN I 1))
N (X1, Y1, X2X3 + YoY3, X3Xa + V3Va, X2)a — Xa)2)
N (X2, Y2, X1X3 + V1 V3, X3Xa + V3Va, X1)a — Xa)1)




Example Let G be the graph
2

1
Then a minimal primary decomposition of L is

Ls = Qz(G) N Q13(G) N Q3 (G) N Q53(G) =
(x1X2 + Y1), X1X3 + Y1)3, X1 X4 + Y1 V4, XoX3 + Vo3, XoXa + YoYa, X3X4 + V3Ya,
X1)2 — X2Y1, X1Y3 — X3Y1, X1Ya — Xa)1, X2)3 — X3)2, X2)a — Xa)2, X3Ys — X4)3,
R PR RN I 1))
N (X1, Y1, X2X3 + YoY3, X3Xa + V3Va, X2)a — Xa)2)
N (X2, Y2, X1X3 + 1 V3, X3Xa + V3Va, X1)a — Xa)1)
N (X3, 13, X1 X2 + J1)2).
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char(K) = 0. Then the ideal L is prime if and only if G is a disjoint
union of edges and isolated vertices.
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char(K) = 0. Then the ideal L is prime if and only if G is a disjoint
union of edges and isolated vertices.

Corollary Let K be a field such that char(K) # 1,2 mod 4 or
char(K) = 0. Then the ideal L is prime if and only if G is (n — 2)-
connected. In this case, L is a complete intersection.
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Question Let d > 1, K be an arbitrary field and G an (n — d)-
connected graph on [n]. Is L prime and a complete intersection ?

e Experimental data suggests that this could be true in general.
e FALSE: for primality. Counterexample for d = 4.

e Itis true that L is prime and a complete intersection for d — oc.
(Ongoing work with Aldo Conca)
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Applications to Minors

e G = ([n], E) graph.

e X; generic symmetric matrix with x;; = 0if {7, j} € E.

Corollary (ongoing work with A. Conca) For any graph G
the ideal of 3x3-minors of X is radical. It is prime if and only if G is
(n — 2)-connected.




The END!
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