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A map ϕ : [n] → Rd , i 7→ (xi1, . . . , xid) defines an orthogonal represen-

tation of G if for every {i, j} ∈ E(G),

ϕ(i)T ϕ(j) = xi1xj1 + · · ·+ xidxjd = 0.

• Introduced by Lovász in 1979.

• Intimately related to important combinatorial properties of

graphs.
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Cheaper Orthogonal Representation:

• Take vertex coloring of G with χ(G) colors.

• Associate to vertices with color i the vector ei ∈ R
χ(G).
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• α(G) = the maximum cardinality of independent set.
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Motivation

• Gk = (V k ,E(k)) the kth power of G = (V ,E):

Two different vertices (v1, . . . , vk), (w1, . . . ,wk) ∈ V k are connected

by an edge in E(k) if {vi,wi} ∈ E whenver vi 6= wi.

• α(Gk) = the maximum number of k-letter messages that cannot be

confused.

• The Shannon capacity of G (Shannon, 1956) is

Θ(G) = sup
k

k

√
α(Gk) = lim

k

k

√
α(Gk).

• Number of k-letter words that cannot be confused is at least α(G)k .

• α(G) ≤ Θ(G).

• Computational complexity of Θ(G) unknown, and the value of Θ(G)

is unknown for small graphs such as C7.



The theta function

The theta function of G (Lovász, 1979) is

ϑ(G) = min
(ui),c

max
i∈[n]

1

(cT ui)2
,

where the minimum is taken over all orthonormal representations

(ui : i ∈ V ) of G in Rd , all unit vectors c ∈ Rd and integers d ≥ 1.



The theta function

The theta function of G (Lovász, 1979) is

ϑ(G) = min
(ui),c

max
i∈[n]

1

(cT ui)2
,

where the minimum is taken over all orthonormal representations

(ui : i ∈ V ) of G in Rd , all unit vectors c ∈ Rd and integers d ≥ 1.

Properties

• ϑ(G) ≤ n (trivial representation).



The theta function

The theta function of G (Lovász, 1979) is

ϑ(G) = min
(ui),c

max
i∈[n]

1

(cT ui)2
,

where the minimum is taken over all orthonormal representations

(ui : i ∈ V ) of G in Rd , all unit vectors c ∈ Rd and integers d ≥ 1.

Properties

• ϑ(G) ≤ n (trivial representation).

• Θ(G) ≤ ϑ(G) for every G.



The theta function

The theta function of G (Lovász, 1979) is

ϑ(G) = min
(ui),c

max
i∈[n]

1

(cT ui)2
,

where the minimum is taken over all orthonormal representations

(ui : i ∈ V ) of G in Rd , all unit vectors c ∈ Rd and integers d ≥ 1.

Properties

• ϑ(G) ≤ n (trivial representation).

• Θ(G) ≤ ϑ(G) for every G.

• The theta function ϑ(G) is polynomial time computable.



The theta function

The theta function of G (Lovász, 1979) is

ϑ(G) = min
(ui),c

max
i∈[n]

1

(cT ui)2
,

where the minimum is taken over all orthonormal representations

(ui : i ∈ V ) of G in Rd , all unit vectors c ∈ Rd and integers d ≥ 1.

Properties

• ϑ(G) ≤ n (trivial representation).

• Θ(G) ≤ ϑ(G) for every G.

• The theta function ϑ(G) is polynomial time computable.

• Semidefinite program, theta-body.



The theta function

The theta function of G (Lovász, 1979) is

ϑ(G) = min
(ui),c

max
i∈[n]

1

(cT ui)2
,

where the minimum is taken over all orthonormal representations

(ui : i ∈ V ) of G in Rd , all unit vectors c ∈ Rd and integers d ≥ 1.

Properties

• ϑ(G) ≤ n (trivial representation).

• Θ(G) ≤ ϑ(G) for every G.

• The theta function ϑ(G) is polynomial time computable.

• Semidefinite program, theta-body.

• The theta function can be computed in terms of G as

ϑ(G) = max
(vi),c

∑

i∈[n]

(cT vi)
2,

where the maximum is taken over all orthonormal representations

(vi : i ∈ V ) of G and all unit vectors c ∈ Rd .
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Theorem (Lovász, 1986) For every graph G,

α(G) = ω(G) ≤ ϑ(G) ≤ χ(G),

where ω(G) is the size of the largest clique in G and χ(G) is the vertex-

chromatic number of G.

• It follows that α(G) = ω(G) ≤ Θ(G) ≤ ϑ(G) ≤ χ(G).

• ω(G) and χ(G) are NP-hard to compute but ϑ(G) is computable in

polynomial time.

• In general, the above inequalities are strict. If ω(G) = χ(G), the

graph G is called perfect . For example, this is the case for chordal

graphs and for bipartite graphs and their complements.
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Example (Lovász, 1979) Let G = C5 be the pentagon. Notice that

G = G. Then ω(C5) = 2 and χ(C5) = 3. Hence 2 ≤ Θ(C5) ≤ 3.

However, α(C2
5 ) ≥ 5, since 11, 23,35,54, 42 are five messages that cannot be

confused mutally, thus Θ(C5) ≥
√

5.

To show that this bound is tight, let {u1, . . . ,u5}be the following orthonormal

representation of the pentagon:

uk = (cos γ, sinγ cos δk , sinγ sin δk) , cos γ =
1

4
√

5
, δk =

2πk

5
,

and c = (1,0, 0). This yields ϑ(C5) ≤
√

5. Hence

Θ(C5) = ϑ(C5) =
√

5.
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• We study some algebraic properties of the ideals LG for any graph

G and over an arbitrary field K .

• For d = 1, the ideal LG is a squarefree monomial ideal called the

edge ideal of G.

• We consider the case d = 2. For simplicity we rename the variables

xi1, xi2 as xi , yi and consider

LG = (xixj + yiyj : {i, j} ∈ E(G))

as an ideal in the polynomial ring T = K [x1, . . . , xn, y1, . . . , yn].

• Binomial ideals well studied and we can use some of their theory.
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studied. It is also known that they are radical ideals.

Caveat ! This identification does not hold for K = R.
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Caveat ! This identification does not hold for K = R.
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Theorem (HMMW)

1 If char(K ) 6= 2, then LG is a radical ideal.

2 Let char(K ) = 2. Then LG is a radical ideal if and only if G is

bipartite.

Idea of the proof. For the first part, we assume that
√
−1 ∈ K . Apply-

ing the linear change of coordinates f such that for all i

f (xi) = xi − yi and f (yi) =
√
−1(xi + yi),

we transform LG into the ideal

ΠG = (xiyj + xj yi : {i, j} ∈ E(G)).

The generators of ΠG are those 2-permanents of the matrix
[

x1 ··· xn
y1 ··· yn

]

whose column indices correspond to edges of G. Therefore, we call

ΠG the permanental edge ideal of G. Note: Replacing the 2-permanents

above by 2-minors, one obtains the binomial edge ideal of G.
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• We prove that, if char(K ) 6= 2, ΠG has a squarefree initial ideal with

respect to the lexicographic order induced by x1 � · · · � xn � y1 �
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• Hence in�(ΠG) is a radical ideal. This implies that ΠG is a radical

ideal.

• This proves that LG is a radical ideal if char(K ) 6= 2 and
√
−1 ∈ K .

• The claim follows. �
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Question Assume char(K ) = 0 and fix d ≥ 1. When is LG a radical

ideal ?

• Experimental data suggests that this could be true in general.

• FALSE ! Counterexample for d = 3.

• True in the limit if d → ∞. (ongoing work with Aldo Conca)
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A Gröbner basis of ΠG

Let G = ([n],E) and i, j ∈ [n], i 6= j. A path of length r in G from i to

j is a sequence πij : i = i0, i1, . . . , ir = j of pairwise distinct vertices

such that {ik , ik+1} ∈ E for all k. We say that πij is admissible if i < j

and for each k = 1, . . . , r − 1, one has either ik < i or ik > j.
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i = 3
7 5 = j
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If πij is admissible, we attach to it the monomial

uπij
=

∏

ik>j

xik

∏

ik<i

yik
.



Theorem (HMMW) Let G be a graph on [n] and assume that

char(K ) 6= 2. Then, with respect to the lexicographic order on T =

K [xi , yi] induced by x1 > · · · > xn > y1 > · · · > yn, the following

elements form a Gröbner basis of the ideal ΠG :

1 uπij
bij , where πij is an odd admissible path and bij = xiyj + xjyi,

2 uπij
gij , where πij is an even admissible path and gij = xiyj − xjyi,

3 lcm(uπij
,uσij

)yixj , where πij is an odd and σij is an even admissible

path,

4

{
yb

∏
h∈W xh if b < h for every h ∈ W

xb

∏
h∈W yh if b > h for every h ∈ W

,

where W = V (πij) ∪ V (σij)∪ V (τab) \ {b}, πij is an odd and σij is an

even admissible path from i to j, τab is a path with endpoints a and

b, such that a is the only vertex of τab that belongs to V (πij)∪V (σij).



Theorem (HMMW) Let G be a graph on [n] and assume that

char(K ) 6= 2. Then, with respect to the lexicographic order on T =

K [xi , yi] induced by x1 > · · · > xn > y1 > · · · > yn, the following

elements form a Gröbner basis of the ideal ΠG :

1 uπij
bij , where πij is an odd admissible path and bij = xiyj + xjyi,

2 uπij
gij , where πij is an even admissible path and gij = xiyj − xjyi,

3 lcm(uπij
,uσij

)yixj , where πij is an odd and σij is an even admissible

path,

4

{
yb

∏
h∈W xh if b < h for every h ∈ W

xb

∏
h∈W yh if b > h for every h ∈ W

,

where W = V (πij) ∪ V (σij)∪ V (τab) \ {b}, πij is an odd and σij is an

even admissible path from i to j, τab is a path with endpoints a and

b, such that a is the only vertex of τab that belongs to V (πij)∪V (σij).

The proof is an application of Buchberger’s Algorithm.
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Let H be an arbitrary connected graph on [n].

• If H is not bipartite, then we denote by H̃ the complete graph Kn
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• If H is bipartite on V1 ∪ V2, |V1| = m, |V2| = n − m, then we denote

by H̃ the complete bipartite graph Km,n−m on [n] with respect to

the same bipartition.
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Proposition (HMMW) Let
√
−1 /∈ K . Then QS(G) is a prime ideal

for all S ⊂ [n] and ht QS(G) = |S|+n−b(S), where b(S) is the number

of bipartite connected components of G[n]\S.

Theorem (HMMW) Let G be a graph on [n] and
√
−1 /∈ K . Then

LG =
⋂

S⊂[n]

QS(G)

is a (in general redundant) primary decomposition of LG .



Corollary Let G be a graph on [n], and let
√
−1 /∈ K . Then

dim(T/LG) = max{n − |S|+ b(S) : S ⊂ [n]}.
In particular, dim(T/LG) ≥ n + b, where b is the number of bipar-

tite connected components of G. Moreover, if LG is unmixed, then

dim(T/LG) = n + b.
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We call a vertex i ∈ [n] a bipartition point of G if G[n]\{i} has more

bipartite connected components than G.

Let M(G) be the set of all sets S ⊂ [n] such that each i ∈ S is either a

cut point or a bipartition point of the graph G([n]\S)∪{i}. In particular,

∅ ∈ M(G).

Theorem (HMMW) Let G be a graph on [n],
√
−1 ∈ K and S ⊂ [n].

Then QS(G) is a minimal prime ideal of LG if and only if S ∈ M(G).
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Then a minimal primary decomposition of LG is

LG = Q∅(G) ∩ Q{1}(G) ∩ Q{2}(G) ∩ Q{3}(G) =

(x1x2 + y1y2, x1x3 + y1y3, x1x4 + y1y4, x2x3 + y2y3, x2x4 + y2y4, x3x4 + y3y4,

x1y2 − x2y1, x1y3 − x3y1, x1y4 − x4y1, x2y3 − x3y2, x2y4 − x4y2, x3y4 − x4y3,

x2
1 + y2

1 , x2
2 + y2

2 , x2
3 + y2

3 , x2
4 + y2

4 )

∩ (x1, y1, x2x3 + y2y3, x3x4 + y3y4, x2y4 − x4y2)

∩ (x2, y2, x1x3 + y1y3, x3x4 + y3y4, x1y4 − x4y1)

∩ (x3, y3, x1x2 + y1y2).
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Corollary Let K be a field such that char(K ) 6≡ 1, 2 mod 4 or

char(K ) = 0. Then the ideal LG is prime if and only if G is a disjoint

union of edges and isolated vertices.

Corollary Let K be a field such that char(K ) 6≡ 1, 2 mod 4 or

char(K ) = 0. Then the ideal LG is prime if and only if G is (n − 2)-

connected. In this case, LG is a complete intersection.
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Question Let d ≥ 1, K be an arbitrary field and G an (n − d)-

connected graph on [n]. Is LG prime and a complete intersection ?

• Experimental data suggests that this could be true in general.

• FALSE: for primality. Counterexample for d = 4.

• It is true that LG is prime and a complete intersection for d → ∞.

(Ongoing work with Aldo Conca)
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Applications to Minors

• G = ([n],E) graph.

• XG generic symmetric matrix with xij = 0 if {i, j} ∈ E .

Corollary (ongoing work with A. Conca) For any graph G

the ideal of 3x3-minors of XG is radical. It is prime if and only if G is

(n − 2)-connected.



The END!
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