

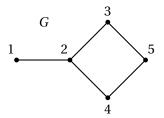
The ideal of orthogonal representations of a graph

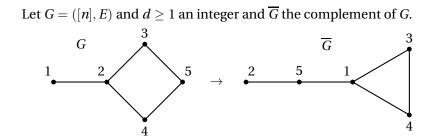
Volkmar Welker

joint work with J. Herzog, S. Saeedi Madani, A. Macchia

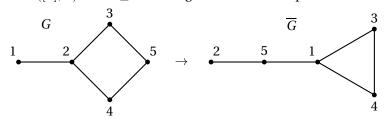
Kyoto - August 5, 2016

Let G = ([n], E) and $d \ge 1$ an integer and \overline{G} the complement of G.





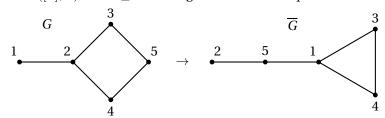
Let G = ([n], E) and $d \ge 1$ an integer and \overline{G} the complement of G.



A map $\varphi : [n] \to \mathbb{R}^d$, $i \mapsto (x_{i1}, \dots, x_{id})$ defines an *orthogonal representation* of *G* if for every $\{i, j\} \in E(\overline{G})$,

$$\varphi(i)^T\varphi(j)=x_{i1}x_{j1}+\cdots+x_{id}x_{jd}=0.$$

Let G = ([n], E) and $d \ge 1$ an integer and \overline{G} the complement of G.

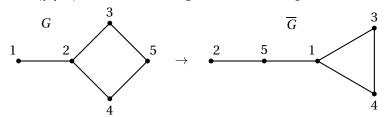


A map $\varphi : [n] \to \mathbb{R}^d$, $i \mapsto (x_{i1}, \dots, x_{id})$ defines an *orthogonal representation* of *G* if for every $\{i, j\} \in E(\overline{G})$,

$$\varphi(i)^T\varphi(j)=x_{i1}x_{j1}+\cdots+x_{id}x_{jd}=0.$$

• Introduced by Lovász in 1979.

Let G = ([n], E) and $d \ge 1$ an integer and \overline{G} the complement of G.



A map $\varphi : [n] \to \mathbb{R}^d$, $i \mapsto (x_{i1}, \dots, x_{id})$ defines an *orthogonal representation* of *G* if for every $\{i, j\} \in E(\overline{G})$,

$$\varphi(i)^T\varphi(j)=x_{i1}x_{j1}+\cdots+x_{id}x_{jd}=0.$$

- Introduced by Lovász in 1979.
- Intimately related to important combinatorial properties of graphs.

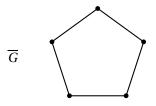
Easiest and the most expensive orthogonal representation for a graph G on the vertices [n]:

Easiest and the most expensive orthogonal representation for a graph G on the vertices [n]:

• Choose d = n and $\varphi : i \mapsto e_i \in \mathbb{R}^n$.

Easiest and the most expensive orthogonal representation for a graph G on the vertices [n]:

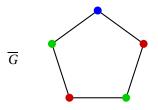
• Choose d = n and $\varphi : i \mapsto e_i \in \mathbb{R}^n$.



Cheaper Orthogonal Representation:

Easiest and the most expensive orthogonal representation for a graph G on the vertices [n]:

• Choose d = n and $\varphi : i \mapsto e_i \in \mathbb{R}^n$.

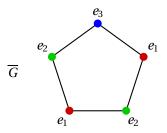


Cheaper Orthogonal Representation:

• Take vertex coloring of \overline{G} with $\chi(\overline{G})$ colors.

Easiest and the most expensive orthogonal representation for a graph G on the vertices [n]:

• Choose d = n and $\varphi : i \mapsto e_i \in \mathbb{R}^n$.



Cheaper Orthogonal Representation:

- Take vertex coloring of \overline{G} with $\chi(\overline{G})$ colors.
- Associate to vertices with color *i* the vector $e_i \in \mathbb{R}^{\chi(\overline{G})}$.

• Let G = (V, E) be a graph with vertices labelled by the letters in an alphabet *V*.

- Let G = (V, E) be a graph with vertices labelled by the letters in an alphabet *V*.
- Adjacency means that the letters can be confused.

•

- Let G = (V, E) be a graph with vertices labelled by the letters in an alphabet *V*.
- Adjacency means that the letters can be confused.

Maximum number of 1-letter messages which cannot be confused pairwise =

•

- Let G = (V, E) be a graph with vertices labelled by the letters in an alphabet *V*.
- Adjacency means that the letters can be confused.
 - Maximum number of 1-letter messages which cannot be confused pairwise $= \alpha(G)$
- $\alpha(G)$ = the maximum cardinality of independent set.

G^k = (V^k, E(k)) the kth power of G = (V, E): Two different vertices (v₁,..., v_k), (w₁,..., w_k) ∈ V^k are connected by an edge in E(k) if {v_i, w_i} ∈ E whenver v_i ≠ w_i.

- G^k = (V^k, E(k)) the kth power of G = (V, E): Two different vertices (v₁,..., v_k), (w₁,..., w_k) ∈ V^k are connected by an edge in E(k) if {v_i, w_i} ∈ E whenver v_i ≠ w_i.
- $\alpha(G^k)$ = the maximum number of *k*-letter messages that cannot be confused.

- G^k = (V^k, E(k)) the kth power of G = (V, E): Two different vertices (v₁,..., v_k), (w₁,..., w_k) ∈ V^k are connected by an edge in E(k) if {v_i, w_i} ∈ E whenver v_i ≠ w_i.
- $\alpha(G^k)$ = the maximum number of *k*-letter messages that cannot be confused.
- The *Shannon capacity* of *G* (Shannon, 1956) is

$$\Theta(G) = \sup_k \sqrt[k]{\alpha(G^k)} = \lim_k \sqrt[k]{\alpha(G^k)}.$$

- G^k = (V^k, E(k)) the kth power of G = (V, E): Two different vertices (v₁,..., v_k), (w₁,..., w_k) ∈ V^k are connected by an edge in E(k) if {v_i, w_i} ∈ E whenver v_i ≠ w_i.
- $\alpha(G^k)$ = the maximum number of *k*-letter messages that cannot be confused.
- The *Shannon capacity* of *G* (Shannon, 1956) is

$$\Theta(G) = \sup_k \sqrt[k]{\alpha(G^k)} = \lim_k \sqrt[k]{\alpha(G^k)}.$$

• Number of *k*-letter words that cannot be confused is at least $\alpha(G)^k$.

- G^k = (V^k, E(k)) the kth power of G = (V, E): Two different vertices (v₁,..., v_k), (w₁,..., w_k) ∈ V^k are connected by an edge in E(k) if {v_i, w_i} ∈ E whenver v_i ≠ w_i.
- $\alpha(G^k)$ = the maximum number of *k*-letter messages that cannot be confused.
- The *Shannon capacity* of *G* (Shannon, 1956) is

$$\Theta(G) = \sup_k \sqrt[k]{\alpha(G^k)} = \lim_k \sqrt[k]{\alpha(G^k)}.$$

- Number of *k*-letter words that cannot be confused is at least $\alpha(G)^k$.
- $\alpha(G) \leq \Theta(G)$.

- G^k = (V^k, E(k)) the kth power of G = (V, E): Two different vertices (v₁,..., v_k), (w₁,..., w_k) ∈ V^k are connected by an edge in E(k) if {v_i, w_i} ∈ E whenver v_i ≠ w_i.
- $\alpha(G^k)$ = the maximum number of *k*-letter messages that cannot be confused.
- The *Shannon capacity* of *G* (Shannon, 1956) is

$$\Theta(G) = \sup_k \sqrt[k]{\alpha(G^k)} = \lim_k \sqrt[k]{\alpha(G^k)}.$$

- Number of *k*-letter words that cannot be confused is at least $\alpha(G)^k$.
- $\alpha(G) \leq \Theta(G)$.

- G^k = (V^k, E(k)) the kth power of G = (V, E): Two different vertices (v₁,..., v_k), (w₁,..., w_k) ∈ V^k are connected by an edge in E(k) if {v_i, w_i} ∈ E whenver v_i ≠ w_i.
- $\alpha(G^k)$ = the maximum number of *k*-letter messages that cannot be confused.
- The *Shannon capacity* of *G* (Shannon, 1956) is

$$\Theta(G) = \sup_k \sqrt[k]{\alpha(G^k)} = \lim_k \sqrt[k]{\alpha(G^k)}.$$

- Number of *k*-letter words that cannot be confused is at least $\alpha(G)^k$.
- $\alpha(G) \leq \Theta(G)$.
- Computational complexity of $\Theta(G)$ unknown, and the value of $\Theta(G)$ is unknown for small graphs such as C_7 .

The *theta function* of G (Lovász, 1979) is

$$\vartheta(G) = \min_{(u_i), c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all ortho**normal** representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

The *theta function* of G (Lovász, 1979) is

$$\vartheta(G) = \min_{(u_i), c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all ortho**normal** representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

Properties

• $\vartheta(G) \leq n$ (trivial representation).

The *theta function* of G (Lovász, 1979) is

$$\vartheta(G) = \min_{(u_i), c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all ortho**normal** representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

Properties

- $\vartheta(G) \leq n$ (trivial representation).
- $\Theta(G) \leq \vartheta(G)$ for every *G*.

The *theta function* of G (Lovász, 1979) is

$$\vartheta(G) = \min_{(u_i), c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all ortho**normal** representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

Properties

- $\vartheta(G) \leq n$ (trivial representation).
- $\Theta(G) \leq \vartheta(G)$ for every *G*.
- The theta function $\vartheta(G)$ is polynomial time computable.

The *theta function* of G (Lovász, 1979) is

$$\vartheta(G) = \min_{(u_i), c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all ortho**normal** representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

Properties

- $\vartheta(G) \leq n$ (trivial representation).
- $\Theta(G) \leq \vartheta(G)$ for every *G*.
- The theta function $\vartheta(G)$ is polynomial time computable.
- Semidefinite program, theta-body.

The *theta function* of G (Lovász, 1979) is

$$\vartheta(G) = \min_{(u_i), c} \max_{i \in [n]} \frac{1}{(c^T u_i)^2},$$

where the minimum is taken over all ortho**normal** representations $(u_i : i \in V)$ of G in \mathbb{R}^d , all unit vectors $c \in \mathbb{R}^d$ and integers $d \ge 1$.

Properties

- $\vartheta(G) \leq n$ (trivial representation).
- $\Theta(G) \leq \vartheta(G)$ for every *G*.
- The theta function $\vartheta(G)$ is polynomial time computable.
- Semidefinite program, theta-body.
- The theta function can be computed in terms of \overline{G} as

$$\vartheta(G) = \max_{(v_i),c} \sum_{i \in [n]} (c^T v_i)^2,$$

where the maximum is taken over all ortho**normal** representations $(v_i : i \in V)$ of \overline{G} and all unit vectors $c \in \mathbb{R}^d$.

Theorem (Lovász, 1986) For every graph G,

$$\alpha(G) = \omega(\overline{G}) \le \vartheta(G) \le \chi(\overline{G}),$$

where $\omega(\overline{G})$ is the size of the largest clique in \overline{G} and $\chi(\overline{G})$ is the vertexchromatic number of \overline{G} .

Theorem (Lovász, 1986) For every graph G,

$$\alpha(G) = \omega(\overline{G}) \le \vartheta(G) \le \chi(\overline{G}),$$

where $\omega(\overline{G})$ is the size of the largest clique in \overline{G} and $\chi(\overline{G})$ is the vertexchromatic number of \overline{G} .

• It follows that $\alpha(G) = \omega(\overline{G}) \le \Theta(G) \le \vartheta(G) \le \chi(\overline{G})$.

Theorem (Lovász, 1986) For every graph G,

$$\alpha(G) = \omega(\overline{G}) \le \vartheta(G) \le \chi(\overline{G}),$$

where $\omega(\overline{G})$ is the size of the largest clique in \overline{G} and $\chi(\overline{G})$ is the vertexchromatic number of \overline{G} .

- It follows that $\alpha(G) = \omega(\overline{G}) \le \Theta(G) \le \vartheta(G) \le \chi(\overline{G})$.
- $\omega(\overline{G})$ and $\chi(\overline{G})$ are *NP*-hard to compute but $\vartheta(G)$ is computable in polynomial time.

Theorem (Lovász, 1986) For every graph G,

$$\alpha(G) = \omega(\overline{G}) \le \vartheta(G) \le \chi(\overline{G}),$$

where $\omega(\overline{G})$ is the size of the largest clique in \overline{G} and $\chi(\overline{G})$ is the vertexchromatic number of \overline{G} .

- It follows that $\alpha(G) = \omega(\overline{G}) \le \Theta(G) \le \vartheta(G) \le \chi(\overline{G})$.
- $\omega(\overline{G})$ and $\chi(\overline{G})$ are *NP*-hard to compute but $\vartheta(G)$ is computable in polynomial time.
- In general, the above inequalities are strict. If $\omega(G) = \chi(G)$, the graph *G* is called *perfect*. For example, this is the case for chordal graphs and for bipartite graphs and their complements.

Example (Lovász, 1979) Let $G = C_5$ be the pentagon. Notice that $G = \overline{G}$. Then $\omega(C_5) = 2$ and $\chi(C_5) = 3$.

Example (Lovász, 1979) Let $G = C_5$ be the pentagon. Notice that $G = \overline{G}$. Then $\omega(C_5) = 2$ and $\chi(C_5) = 3$. Hence $2 \le \Theta(C_5) \le 3$.

Example (Lovász, 1979) Let $G = C_5$ be the pentagon. Notice that $G = \overline{G}$. Then $\omega(C_5) = 2$ and $\chi(C_5) = 3$. Hence $2 \le \Theta(C_5) \le 3$. However, $\alpha(C_5^2) \ge 5$, since 11, 23, 35, 54, 42 are five messages that cannot be confused mutally, thus $\Theta(C_5) > \sqrt{5}$. **Example (Lovász, 1979)** Let $G = C_5$ be the pentagon. Notice that $G = \overline{G}$. Then $\omega(C_5) = 2$ and $\chi(C_5) = 3$. Hence $2 \le \Theta(C_5) \le 3$. However, $\alpha(C_5^2) \ge 5$, since 11, 23, 35, 54, 42 are five messages that cannot be confused mutally, thus $\Theta(C_5) \ge \sqrt{5}$. To show that this bound is tight, let $\{u_1, \ldots, u_5\}$ be the following orthonormal

representation of the pentagon:

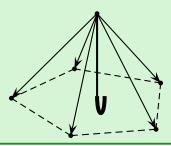
Example (Lovász, 1979) Let $G = C_5$ be the pentagon. Notice that $G = \overline{G}$. Then $\omega(C_5) = 2$ and $\chi(C_5) = 3$. Hence $2 \le \Theta(C_5) \le 3$. However, $\alpha(C_5^2) \ge 5$, since 11, 23, 35, 54, 42 are five messages that cannot be confused mutally, thus $\Theta(C_5) \ge \sqrt{5}$. To show that this bound is tight, let $\{u_1, \ldots, u_5\}$ be the following orthonormal

representation of the pentagon:

 $u_k = (\cos\gamma, \sin\gamma\cos\delta_k, \sin\gamma\sin\delta_k), \quad \cos\gamma = \frac{1}{\sqrt[4]{5}}, \quad \delta_k = \frac{2\pi k}{5},$ and c = (1, 0, 0). **Example (Lovász, 1979)** Let $G = C_5$ be the pentagon. Notice that $G = \overline{G}$. Then $\omega(C_5) = 2$ and $\chi(C_5) = 3$. Hence $2 \le \Theta(C_5) \le 3$. However, $\alpha(C_5^2) \ge 5$, since 11, 23, 35, 54, 42 are five messages that cannot be confused mutally, thus $\Theta(C_5) \ge \sqrt{5}$. To show that this bound is tight, let $\{u_1, \ldots, u_5\}$ be the following orthonormal

representation of the pentagon:

 $u_k = (\cos\gamma, \sin\gamma\cos\delta_k, \sin\gamma\sin\delta_k), \quad \cos\gamma = \frac{1}{\sqrt[4]{5}}, \quad \delta_k = \frac{2\pi k}{5},$ and c = (1, 0, 0).



Example (Lovász, 1979) Let $G = C_5$ be the pentagon. Notice that $G = \overline{G}$. Then $\omega(C_5) = 2$ and $\chi(C_5) = 3$. Hence $2 \le \Theta(C_5) \le 3$. However, $\alpha(C_5^2) \ge 5$, since 11, 23, 35, 54, 42 are five messages that cannot be confused mutally, thus $\Theta(C_5) \ge \sqrt{5}$. To show that this bound is tight, let $\{u_1, \ldots, u_5\}$ be the following orthonormal

representation of the pentagon:

 $u_k = (\cos \gamma, \sin \gamma \cos \delta_k, \sin \gamma \sin \delta_k), \quad \cos \gamma = \frac{1}{\sqrt[4]{5}}, \quad \delta_k = \frac{2\pi k}{5},$ and c = (1, 0, 0). This yields $\vartheta(C_5) \leq \sqrt{5}$. Hence $\Theta(C_5) = \vartheta(C_5) = \sqrt{5}.$

From an algebraic point of view, the set of all orthogonal representations of a graph *G* is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

 $L_{\overline{G}} = (x_{i1}x_{j1} + \dots + x_{id}x_{jd} : \{i, j\} \in E(\overline{G}))$

in the polynomial ring $\mathbb{R}[x_{ik} : i = 1, ..., n, k = 1, ..., d]$. We call $L_{\overline{G}}$ *Lovász-Saks-Schrijver ideal* of *G*.

From an algebraic point of view, the set of all orthogonal representations of a graph *G* is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

 $L_{\overline{G}} = (x_{i1}x_{j1} + \dots + x_{id}x_{jd} : \{i, j\} \in E(\overline{G}))$

in the polynomial ring $\mathbb{R}[x_{ik} : i = 1, ..., n, k = 1, ..., d]$. We call $L_{\overline{G}}$ *Lovász-Saks-Schrijver ideal* of *G*.

• Many degenerate representations (e.g. some vertices are represented by the zero vector).

From an algebraic point of view, the set of all orthogonal representations of a graph *G* is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

 $L_{\overline{G}} = (x_{i1}x_{j1} + \dots + x_{id}x_{jd} : \{i, j\} \in E(\overline{G}))$

in the polynomial ring $\mathbb{R}[x_{ik} : i = 1, ..., n, k = 1, ..., d]$. We call $L_{\overline{G}}$ *Lovász-Saks-Schrijver ideal* of *G*.

- Many degenerate representations (e.g. some vertices are represented by the zero vector).
- Consider *general-position* orthogonal representations, in which any *d* vectors are linearly independent.

From an algebraic point of view, the set of all orthogonal representations of a graph *G* is the vanishing set in $\mathbb{R}^{n \times d}$ of the ideal

 $L_{\overline{G}} = (x_{i1}x_{j1} + \dots + x_{id}x_{jd} : \{i, j\} \in E(\overline{G}))$

in the polynomial ring $\mathbb{R}[x_{ik} : i = 1, ..., n, k = 1, ..., d]$. We call $L_{\overline{G}}$ *Lovász-Saks-Schrijver ideal* of *G*.

- Many degenerate representations (e.g. some vertices are represented by the zero vector).
- Consider *general-position* orthogonal representations, in which any *d* vectors are linearly independent.

Theorem (Lovász, Saks, Schrijver, 1989) A graph G has a general-position orthogonal representation in \mathbb{R}^d if and only if it is (n-d)-connected.

Theorem (Lovász, Saks, Schrijver, 1989)

• Give a parametrization of the variety.

- Give a parametrization of the variety.
- Not very efficient and transparent.

- Give a parametrization of the variety.
- Not very efficient and transparent.

• In what follows sometimes we will switch G and \overline{G} .

- In what follows sometimes we will switch G and \overline{G} .
- We study some algebraic properties of the ideals L_G for any graph G and over an arbitrary field K.

- In what follows sometimes we will switch G and \overline{G} .
- We study some algebraic properties of the ideals L_G for any graph G and over an arbitrary field K.
- For d = 1, the ideal L_G is a squarefree monomial ideal called the *edge ideal* of *G*.

- In what follows sometimes we will switch G and \overline{G} .
- We study some algebraic properties of the ideals L_G for any graph G and over an arbitrary field K.
- For *d* = 1, the ideal *L*_{*G*} is a squarefree monomial ideal called the *edge ideal* of *G*.
- We consider the case d = 2. For simplicity we rename the variables x_{i1}, x_{i2} as x_i, y_i

- In what follows sometimes we will switch G and \overline{G} .
- We study some algebraic properties of the ideals *L*_{*G*} for any graph *G* and over an arbitrary field *K*.
- For *d* = 1, the ideal *L*_{*G*} is a squarefree monomial ideal called the *edge ideal* of *G*.
- We consider the case d = 2. For simplicity we rename the variables x_{i1}, x_{i2} as x_i, y_i and consider

 $L_{\overline{G}} = (x_i x_j + y_i y_j : \{i, j\} \in E(\overline{G}))$

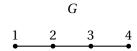
as an ideal in the polynomial ring $T = K[x_1, \ldots, x_n, y_1, \ldots, y_n]$.

- In what follows sometimes we will switch G and \overline{G} .
- We study some algebraic properties of the ideals *L*_{*G*} for any graph *G* and over an arbitrary field *K*.
- For *d* = 1, the ideal *L*_{*G*} is a squarefree monomial ideal called the *edge ideal* of *G*.
- We consider the case d = 2. For simplicity we rename the variables x_{i1}, x_{i2} as x_i, y_i and consider

 $L_{\overline{G}} = (x_i x_j + y_i y_j : \{i, j\} \in E(\overline{G}))$

as an ideal in the polynomial ring $T = K[x_1, \ldots, x_n, y_1, \ldots, y_n]$.

• Binomial ideals well studied and we can use some of their theory.



$$\begin{array}{cccc} G \\ 1 & 2 & 3 & 4 \\ \bullet & \bullet & \bullet \end{array} \qquad \qquad L_G = \begin{pmatrix} x_1 x_2 + y_1 y_2, \\ x_2 x_3 + y_2 y_3, \\ x_3 x_4 + y_3 y_4 \end{pmatrix}$$

$$\begin{array}{cccc} G \\ 1 & 2 & 3 & 4 \\ \bullet & \bullet & \bullet \\ \end{array} \qquad \qquad L_G = \begin{pmatrix} x_1 x_2 + y_1 y_2, \\ x_2 x_3 + y_2 y_3, \\ x_3 x_4 + y_3 y_4 \end{pmatrix} \\ \uparrow \\ J_G = \begin{pmatrix} x_1 y_2 - y_1 x_2, \\ x_2 y_3 - y_2 x_3, \\ x_3 y_4 - y_3 x_4 \end{pmatrix} \end{array}$$

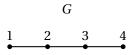
Let d = 2, $\sqrt{-1} \in K$ and *G* be a bipartite graph. Then L_G may be identified with the *binomial edge ideal* J_G of *G*.

The primary decomposition of binomial edge ideals has been recently studied. It is also known that they are radical ideals.

Let d = 2, $\sqrt{-1} \in K$ and *G* be a bipartite graph. Then L_G may be identified with the *binomial edge ideal* J_G of *G*.

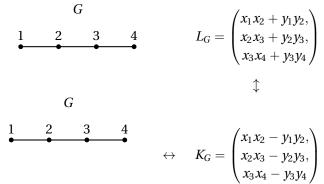
The primary decomposition of binomial edge ideals has been recently studied. It is also known that they are radical ideals.

Caveat ! This identification does not hold for $K = \mathbb{R}$.

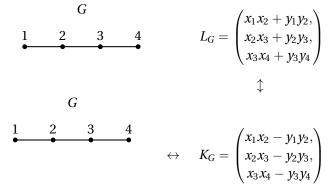


$$\begin{array}{cccc} G \\ 1 & 2 & 3 & 4 \\ \bullet & \bullet & \bullet \end{array} \qquad \qquad L_G = \begin{pmatrix} x_1 x_2 + y_1 y_2, \\ x_2 x_3 + y_2 y_3, \\ x_3 x_4 + y_3 y_4 \end{pmatrix}$$

$$K_G = \begin{pmatrix} x_1 x_2 - y_1 y_2, \\ x_2 x_3 - y_2 y_3, \\ x_3 x_4 - y_3 y_4 \end{pmatrix}$$



Let d = 2, $\sqrt{-1} \in K$, Then L_G may be identified with the *parity binomial edge ideal* K_G of *G* were introduced by Kahle, Sarmiento and Windisch after this work came out.



Caveat ! This identification does not hold for $K = \mathbb{R}$.

Theorem (HMMW)

1 If $char(K) \neq 2$, then L_G is a radical ideal.

Theorem (HMMW)

1 If $char(K) \neq 2$, then L_G is a radical ideal.

2 Let char(K) = 2. Then L_G is a radical ideal if and only if G is bipartite.

Theorem (HMMW)

1 If $char(K) \neq 2$, then L_G is a radical ideal.

2 Let char(K) = 2. Then L_G is a radical ideal if and only if G is bipartite.

Idea of the proof. For the first part, we assume that $\sqrt{-1} \in K$.

Radicality of *L*_{*G*}

Theorem (HMMW)

- 1 If $char(K) \neq 2$, then L_G is a radical ideal.
- **2** Let char(K) = 2. Then L_G is a radical ideal if and only if G is bipartite.

Idea of the proof. For the first part, we assume that $\sqrt{-1} \in K$. Applying the linear change of coordinates *f* such that for all *i*

$$f(x_i) = x_i - y_i$$
 and $f(y_i) = \sqrt{-1}(x_i + y_i),$

we transform L_G into the ideal

 $\Pi_G = (x_i y_j + x_j y_i : \{i, j\} \in E(G)).$

Radicality of *L*_{*G*}

Theorem (HMMW)

- 1 If $char(K) \neq 2$, then L_G is a radical ideal.
- **2** Let char(K) = 2. Then L_G is a radical ideal if and only if G is bipartite.

Idea of the proof. For the first part, we assume that $\sqrt{-1} \in K$. Applying the linear change of coordinates *f* such that for all *i*

$$f(x_i) = x_i - y_i$$
 and $f(y_i) = \sqrt{-1}(x_i + y_i),$

we transform L_G into the ideal

$$\Pi_G = (x_i y_j + x_j y_i : \{i, j\} \in E(G)).$$

The generators of Π_G are those 2-permanents of the matrix $\begin{bmatrix} x_1 & \cdots & x_n \\ y_1 & \cdots & y_n \end{bmatrix}$ whose column indices correspond to edges of *G*. Therefore, we call Π_G the *permanental edge ideal* of *G*.

Radicality of *L*_{*G*}

Theorem (HMMW)

- 1 If $char(K) \neq 2$, then L_G is a radical ideal.
- **2** Let char(K) = 2. Then L_G is a radical ideal if and only if G is bipartite.

Idea of the proof. For the first part, we assume that $\sqrt{-1} \in K$. Applying the linear change of coordinates *f* such that for all *i*

$$f(x_i) = x_i - y_i$$
 and $f(y_i) = \sqrt{-1}(x_i + y_i),$

we transform L_G into the ideal

$$\Pi_G = (x_i y_j + x_j y_i : \{i, j\} \in E(G)).$$

The generators of Π_G are those 2-permanents of the matrix $\begin{bmatrix} x_1 & \cdots & x_n \\ y_1 & \cdots & y_n \end{bmatrix}$ whose column indices correspond to edges of *G*. Therefore, we call Π_G the *permanental edge ideal* of *G*. **Note:** Replacing the 2-permanents above by 2-minors, one obtains the binomial edge ideal of *G*.

• By \leq we denote a *term order*

- By \leq we denote a *term order*
- *f* polynomial then the *initial term* of *f* is denoted by $in_{\leq}(f)$

- By \leq we denote a *term order*
- *f* polynomial then the *initial term* of *f* is denoted by $in_{\leq}(f)$
- For an ideal *I* the *initial ideal* is denoted by $in_{\leq}(I)$.

- By \leq we denote a *term order*
- *f* polynomial then the *initial term* of *f* is denoted by $in_{\leq}(f)$
- For an ideal *I* the *initial ideal* is denoted by $in_{\leq}(I)$.

• Known: If $in_{\preceq}(I)$ is Cohen-Macaulay, Gorenstein, complete intersection then so is I.

Proposition Let I be a graded ideal in a polynomial ring and suppose that $in_{\leq}(I)$ is radical. Then I is radical.

• We prove that, if $char(K) \neq 2$, Π_G has a squarefree initial ideal with respect to the lexicographic order induced by $x_1 \succeq \cdots \succeq x_n \succeq y_1 \succeq \cdots \succeq y_n$.

- We prove that, if $char(K) \neq 2$, Π_G has a squarefree initial ideal with respect to the lexicographic order induced by $x_1 \succeq \cdots \succeq x_n \succeq y_1 \succeq \cdots \succeq y_n$.
- Hence $in_{\leq}(\Pi_G)$ is a radical ideal. This implies that Π_G is a radical ideal.

- We prove that, if $char(K) \neq 2$, Π_G has a squarefree initial ideal with respect to the lexicographic order induced by $x_1 \succeq \cdots \succeq x_n \succeq y_1 \succeq \cdots \succeq y_n$.
- Hence $in_{\leq}(\Pi_G)$ is a radical ideal. This implies that Π_G is a radical ideal.
- This proves that L_G is a radical ideal if $char(K) \neq 2$ and $\sqrt{-1} \in K$.

- We prove that, if $char(K) \neq 2$, Π_G has a squarefree initial ideal with respect to the lexicographic order induced by $x_1 \succeq \cdots \succeq x_n \succeq y_1 \succeq \cdots \succeq y_n$.
- Hence $in_{\leq}(\Pi_G)$ is a radical ideal. This implies that Π_G is a radical ideal.
- This proves that L_G is a radical ideal if $char(K) \neq 2$ and $\sqrt{-1} \in K$.
- The claim follows.

• Experimental data suggests that this could be true in general.

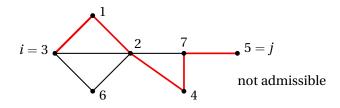
- Experimental data suggests that this could be true in general.
- **FALSE !** Counterexample for d = 3.

- Experimental data suggests that this could be true in general.
- **FALSE !** Counterexample for d = 3.
- True in the limit if $d \rightarrow \infty$. (ongoing work with Aldo Conca)

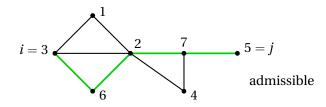
Let G = ([n], E) and $i, j \in [n]$, $i \neq j$.

Let G = ([n], E) and $i, j \in [n], i \neq j$. A *path* of length *r* in *G* from *i* to *j* is a sequence $\pi_{ij} : i = i_0, i_1, \dots, i_r = j$ of pairwise distinct vertices such that $\{i_k, i_{k+1}\} \in E$ for all *k*. We say that π_{ij} is *admissible* if i < j and for each $k = 1, \dots, r - 1$, one has either $i_k < i$ or $i_k > j$.

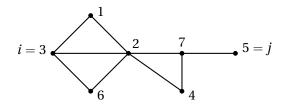
Let G = ([n], E) and $i, j \in [n], i \neq j$. A *path* of length *r* in *G* from *i* to *j* is a sequence $\pi_{ij} : i = i_0, i_1, \dots, i_r = j$ of pairwise distinct vertices such that $\{i_k, i_{k+1}\} \in E$ for all *k*. We say that π_{ij} is *admissible* if i < j and for each $k = 1, \dots, r - 1$, one has either $i_k < i$ or $i_k > j$.



Let G = ([n], E) and $i, j \in [n], i \neq j$. A *path* of length *r* in *G* from *i* to *j* is a sequence $\pi_{ij} : i = i_0, i_1, \dots, i_r = j$ of pairwise distinct vertices such that $\{i_k, i_{k+1}\} \in E$ for all *k*. We say that π_{ij} is *admissible* if i < j and for each $k = 1, \dots, r - 1$, one has either $i_k < i$ or $i_k > j$.



Let G = ([n], E) and $i, j \in [n]$, $i \neq j$. A *path* of length r in G from i to j is a sequence $\pi_{ij} : i = i_0, i_1, \dots, i_r = j$ of pairwise distinct vertices such that $\{i_k, i_{k+1}\} \in E$ for all k. We say that π_{ij} is *admissible* if i < j and for each $k = 1, \dots, r - 1$, one has either $i_k < i$ or $i_k > j$.



If π_{ii} is admissible, we attach to it the monomial

$$u_{\pi_{ij}} = \prod_{i_k > j} x_{i_k} \prod_{i_k < i} y_{i_k}.$$

Theorem (HMMW) Let *G* be a graph on [*n*] and assume that $char(K) \neq 2$. Then, with respect to the lexicographic order on $T = K[x_i, y_i]$ induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$, the following elements form a Gröbner basis of the ideal Π_G :

1 $u_{\pi_{ij}}b_{ij}$, where π_{ij} is an odd admissible path and $b_{ij} = x_i y_j + x_j y_i$,

2 $u_{\pi_{ij}}g_{ij}$, where π_{ij} is an even admissible path and $g_{ij} = x_i y_j - x_j y_i$,

3 lcm $(u_{\pi_{ij}}, u_{\sigma_{ij}})y_i x_j$, where π_{ij} is an odd and σ_{ij} is an even admissible *path*,

where $W = V(\pi_{ij}) \cup V(\sigma_{ij}) \cup V(\tau_{ab}) \setminus \{b\}$, π_{ij} is an odd and σ_{ij} is an even admissible path from *i* to *j*, τ_{ab} is a path with endpoints *a* and *b*, such that *a* is the only vertex of τ_{ab} that belongs to $V(\pi_{ij}) \cup V(\sigma_{ij})$.

Theorem (HMMW) Let *G* be a graph on [*n*] and assume that $char(K) \neq 2$. Then, with respect to the lexicographic order on $T = K[x_i, y_i]$ induced by $x_1 > \cdots > x_n > y_1 > \cdots > y_n$, the following elements form a Gröbner basis of the ideal Π_G :

1 $u_{\pi_{ij}}b_{ij}$, where π_{ij} is an odd admissible path and $b_{ij} = x_i y_j + x_j y_i$,

2 $u_{\pi_{ij}}g_{ij}$, where π_{ij} is an even admissible path and $g_{ij} = x_iy_j - x_jy_i$,

3 lcm $(u_{\pi_{ij}}, u_{\sigma_{ij}})y_i x_j$, where π_{ij} is an odd and σ_{ij} is an even admissible *path*,

where $W = V(\pi_{ij}) \cup V(\sigma_{ij}) \cup V(\tau_{ab}) \setminus \{b\}$, π_{ij} is an odd and σ_{ij} is an even admissible path from *i* to *j*, τ_{ab} is a path with endpoints *a* and *b*, such that *a* is the only vertex of τ_{ab} that belongs to $V(\pi_{ij}) \cup V(\sigma_{ij})$.

The proof is an application of Buchberger's Algorithm.

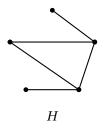
From now on we assume $\sqrt{-1} \notin K$.

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K = \mathbb{R}$.

From now on we assume $\sqrt{-1} \notin K$. This is the case for $K = \mathbb{R}$. Let *H* be an arbitrary connected graph on [n].

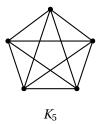
From now on we assume $\sqrt{-1} \notin K$. This is the case for $K = \mathbb{R}$. Let *H* be an arbitrary connected graph on [n].

• If *H* is not bipartite, then we denote by \tilde{H} the complete graph K_n on [n].



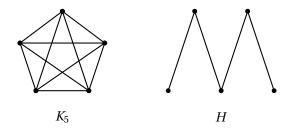
From now on we assume $\sqrt{-1} \notin K$. This is the case for $K = \mathbb{R}$. Let *H* be an arbitrary connected graph on [n].

• If *H* is not bipartite, then we denote by \tilde{H} the complete graph K_n on [n].



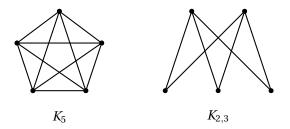
From now on we assume $\sqrt{-1} \notin K$. This is the case for $K = \mathbb{R}$. Let *H* be an arbitrary connected graph on [n].

- If *H* is not bipartite, then we denote by \tilde{H} the complete graph K_n on [n].
- If *H* is bipartite on $V_1 \cup V_2$, $|V_1| = m$, $|V_2| = n m$, then we denote by \tilde{H} the complete bipartite graph $K_{m,n-m}$ on [n] with respect to the same bipartition.



From now on we assume $\sqrt{-1} \notin K$. This is the case for $K = \mathbb{R}$. Let *H* be an arbitrary connected graph on [n].

- If *H* is not bipartite, then we denote by \tilde{H} the complete graph K_n on [n].
- If *H* is bipartite on $V_1 \cup V_2$, $|V_1| = m$, $|V_2| = n m$, then we denote by \tilde{H} the complete bipartite graph $K_{m,n-m}$ on [n] with respect to the same bipartition.



Let *G* be a finite graph on [n].

Let *G* be a finite graph on [*n*]. For any $S \subset [n]$ we set $Q_S(G) = \left(\{x_i, y_i\}_{i \in S}, I_{\widetilde{G}_1}, \dots, I_{\widetilde{G}_{c(S)}} \right),$

$$Q_S(G) = \left(\{x_i, y_i\}_{i \in S}, I_{\widetilde{G}_1}, \dots, I_{\widetilde{G}_{c(S)}}\right),$$

where $G_1, \ldots, G_{c(S)}$ are the connected components of $G_{[n]\setminus S}$ and

$$Q_{\mathcal{S}}(G) = \left(\{x_i, y_i\}_{i \in \mathcal{S}}, I_{\widetilde{G}_1}, \dots, I_{\widetilde{G}_{c(\mathcal{S})}}\right),$$

where $G_1, \ldots, G_{c(S)}$ are the connected components of $G_{[n]\setminus S}$ and

$$I_{\widetilde{G}_k} = \begin{cases} \left(x_i x_j + y_i y_j, x_i y_j - x_j y_i, x_h^2 + y_h^2 : \frac{1 \le i < j \le \ell}{1 \le h \le \ell} \right) & \text{if } \widetilde{G}_k = K_\ell \end{cases}$$

$$Q_{\mathcal{S}}(G) = \left(\{x_i, y_i\}_{i \in \mathcal{S}}, I_{\widetilde{G}_1}, \dots, I_{\widetilde{G}_{c(S)}}\right),$$

where $G_1, \ldots, G_{c(S)}$ are the connected components of $G_{[n]\setminus S}$ and

$$I_{\widetilde{G}_{k}} = \begin{cases} \left(x_{i}x_{j} + y_{i}y_{j}, x_{i}y_{j} - x_{j}y_{i}, x_{h}^{2} + y_{h}^{2} : \frac{1 \le i < j \le \ell}{1 \le h \le \ell}\right) & \text{if } \widetilde{G}_{k} = K_{\ell} \\ \left(x_{i}x_{j} + y_{i}y_{j}, x_{r}y_{s} - x_{s}y_{r} : \frac{1 \le i \le m, m+1 \le j \le n}{1 \le r < s \le m \text{ or } m+1 \le r < s \le n}\right) & \text{if } \widetilde{G}_{k} = K_{m,\ell-m} \end{cases}$$

$$Q_{\mathcal{S}}(G) = \left(\{x_i, y_i\}_{i \in \mathcal{S}}, I_{\widetilde{G}_1}, \dots, I_{\widetilde{G}_{c(S)}}\right),$$

where $G_1, \ldots, G_{c(S)}$ are the connected components of $G_{[n]\setminus S}$ and

$$I_{\widetilde{G}_{k}} = \begin{cases} \left(x_{i}x_{j} + y_{i}y_{j}, x_{i}y_{j} - x_{j}y_{i}, x_{h}^{2} + y_{h}^{2} : \frac{1 \le i < j \le \ell}{1 \le h \le \ell}\right) & \text{if } \widetilde{G}_{k} = K_{\ell} \\ \left(x_{i}x_{j} + y_{i}y_{j}, x_{r}y_{s} - x_{s}y_{r} : \frac{1 \le i \le m, m+1 \le j \le n}{1 \le r < s \le m \text{ or } m+1 \le r < s \le n}\right) & \text{if } \widetilde{G}_{k} = K_{m,\ell-m} \end{cases}$$

Proposition (HMMW) Let $\sqrt{-1} \notin K$. Then $Q_S(G)$ is a prime ideal for all $S \subset [n]$ and ht $Q_S(G) = |S| + n - b(S)$, where b(S) is the number of bipartite connected components of $G_{[n]\setminus S}$.

$$Q_{\mathcal{S}}(G) = \left(\{x_i, y_i\}_{i \in \mathcal{S}}, I_{\widetilde{G}_1}, \dots, I_{\widetilde{G}_{c(S)}}\right),$$

where $G_1, \ldots, G_{c(S)}$ are the connected components of $G_{[n]\setminus S}$ and

$$I_{\widetilde{G}_{k}} = \begin{cases} \left(x_{i}x_{j} + y_{i}y_{j}, x_{i}y_{j} - x_{j}y_{i}, x_{h}^{2} + y_{h}^{2} : \frac{1 \le i < j \le \ell}{1 \le h \le \ell}\right) & \text{if } \widetilde{G}_{k} = K_{\ell} \\ \left(x_{i}x_{j} + y_{i}y_{j}, x_{r}y_{s} - x_{s}y_{r} : \frac{1 \le i \le m, m+1 \le j \le n}{1 \le r < s \le m \text{ or } m+1 \le r < s \le n}\right) & \text{if } \widetilde{G}_{k} = K_{m,\ell-m} \end{cases}$$

Proposition (HMMW) Let $\sqrt{-1} \notin K$. Then $Q_S(G)$ is a prime ideal for all $S \subset [n]$ and ht $Q_S(G) = |S| + n - b(S)$, where b(S) is the number of bipartite connected components of $G_{[n]\setminus S}$.

Theorem (HMMW) Let G be a graph on [n] and $\sqrt{-1} \notin K$. Then $L_G = \bigcap_{S \subset [n]} Q_S(G)$

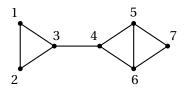
is a (in general redundant) primary decomposition of L_G .

Corollary Let G be a graph on [n], and let $\sqrt{-1} \notin K$. Then $\dim(T/L_G) = \max\{n - |S| + b(S) : S \subset [n]\}.$ In particular, $\dim(T/L_G) \ge n + b$, where b is the number of bipartite connected components of G. Moreover, if L_G is unmixed, then $\dim(T/L_G) = n + b.$

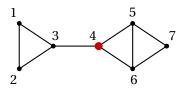
Let G be a graph on [n].

Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.

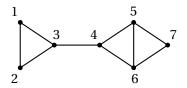
Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.



Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.

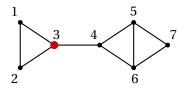


Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.



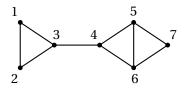
We call a vertex $i \in [n]$ a *bipartition point* of *G* if $G_{[n] \setminus \{i\}}$ has more bipartite connected components than *G*.

Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.



We call a vertex $i \in [n]$ a *bipartition point* of *G* if $G_{[n] \setminus \{i\}}$ has more bipartite connected components than *G*.

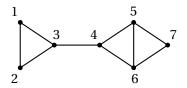
Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.



We call a vertex $i \in [n]$ a *bipartition point* of *G* if $G_{[n] \setminus \{i\}}$ has more bipartite connected components than *G*.

Let $\mathcal{M}(G)$ be the set of all sets $S \subset [n]$ such that each $i \in S$ is either a cut point or a bipartition point of the graph $G_{([n]\setminus S)\cup\{i\}}$. In particular, $\emptyset \in \mathcal{M}(G)$.

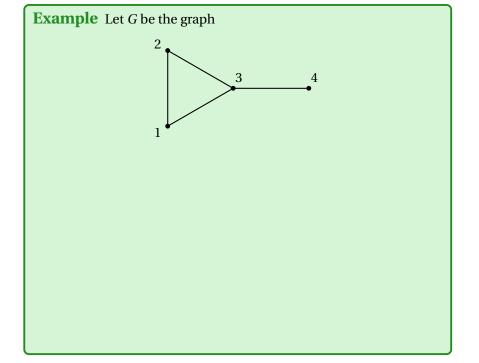
Let *G* be a graph on [*n*]. Then a vertex $i \in [n]$ is said to be a *cut point* of *G* if $G_{[n] \setminus \{i\}}$ has more connected components than *G*.

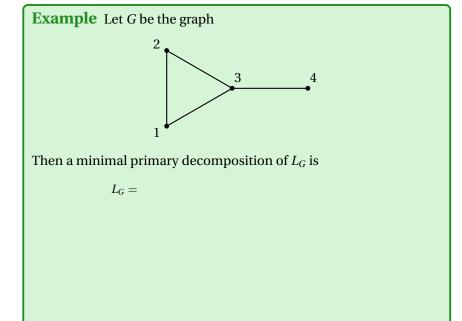


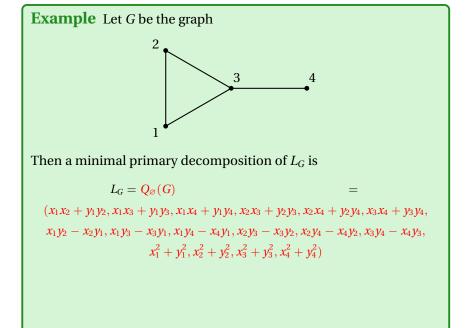
We call a vertex $i \in [n]$ a *bipartition point* of *G* if $G_{[n] \setminus \{i\}}$ has more bipartite connected components than *G*.

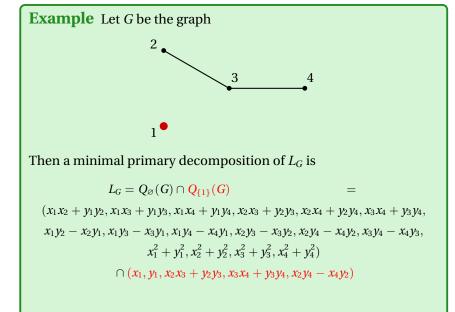
Let $\mathcal{M}(G)$ be the set of all sets $S \subset [n]$ such that each $i \in S$ is either a cut point or a bipartition point of the graph $G_{([n]\setminus S)\cup\{i\}}$. In particular, $\emptyset \in \mathcal{M}(G)$.

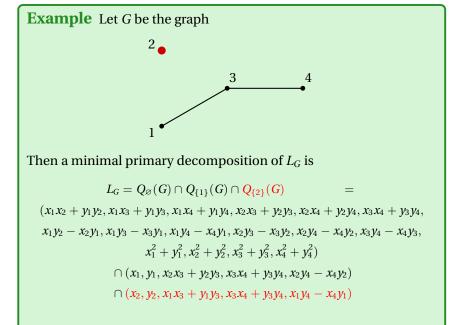
Theorem (HMMW) Let G be a graph on [n], $\sqrt{-1} \in K$ and $S \subset [n]$. Then $Q_S(G)$ is a minimal prime ideal of L_G if and only if $S \in \mathcal{M}(G)$.

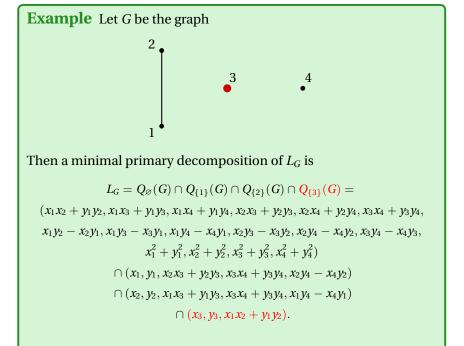












Corollary Let *K* be a field such that $char(K) \not\equiv 1, 2 \mod 4$ or char(K) = 0. Then the ideal L_G is prime if and only if *G* is a disjoint union of edges and isolated vertices.

Corollary Let *K* be a field such that $char(K) \neq 1,2 \mod 4$ or char(K) = 0. Then the ideal L_G is prime if and only if *G* is a disjoint union of edges and isolated vertices.

Corollary Let K be a field such that $char(K) \neq 1, 2 \mod 4$ or char(K) = 0. Then the ideal $L_{\overline{G}}$ is prime if and only if G is (n-2)-connected. In this case, $L_{\overline{G}}$ is a complete intersection.

• Experimental data suggests that this could be true in general.

- Experimental data suggests that this could be true in general.
- **FALSE:** for primality. Counterexample for d = 4.

- Experimental data suggests that this could be true in general.
- **FALSE:** for primality. Counterexample for d = 4.
- It is true that $L_{\overline{G}}$ is prime and a complete intersection for $d \to \infty$. (Ongoing work with Aldo Conca)

• G = ([n], E) graph.

- G = ([n], E) graph.
- X_G generic symmetric matrix with $x_{ij} = 0$ if $\{i, j\} \in E$.

- G = ([n], E) graph.
- X_G generic symmetric matrix with $x_{ij} = 0$ if $\{i, j\} \in E$.

- G = ([n], E) graph.
- X_G generic symmetric matrix with $x_{ij} = 0$ if $\{i, j\} \in E$.

Corollary (ongoing work with A. Conca) For any graph G the ideal of 3x3-minors of X_G is radical. It is prime if and only if G is (n-2)-connected.

The END!