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Figure: A Cartesian graph product in the wild (Credit: Rutgers
University)
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A graph G is a pair (V ,E ), where V is the set of nodes and
where E is the set of edges.
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A graph G is a pair (V ,E ), where V is the set of nodes or
vertices and where E is the set of edges.

We denote the path graph on n vertices by Pn and the cycle
graph on n vertices by Cn.

Figure: C4 and P3
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A graph G is a pair (V ,E ), where V is the set of nodes or
vertices and where E is the set of edges.

We denote the path graph on n vertices by Pn and the cycle
graph on n vertices by Cn.

A proper k-coloring of G is a map c : V −→ {1, 2, . . . , k}
such that c(v) 6= c(u) for all u, v with {u, v} ∈ E .
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1

1

1

2

Figure: A proper 2-coloring and a non-proper 2-coloring
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For a simple graph G , we define the counting function

χG (k) := #proper k-colorings of G .
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For a simple graph G , we define the counting function

χG (k) := #proper k-colorings of G .

χG is a polynomial of degree N = #V (G ) with leading
coefficient 1. χG is called the chromatic polynomial of G .

F. Kohl FU Berlin/BMS

Transfer-Matrix Methods Meet Ehrhart Theory



Motivation Background and Notation Special Cases Symmetry and the General Case Concluding Remarks

For a simple graph G , we define the counting function

χG (k) := #proper k-colorings of G .

χG is a polynomial of degree N = #V (G ) with leading
coefficient 1.

χG (−1) counts the number of acyclic orientations of G .
This is a special case of a reciprocity theorem for χG .
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For a simple graph G , we define the counting function

χG (k) := #proper k-colorings of G .

As it turns out, χG is a polynomial of degree N = #V (G )
with leading coefficient 1.

χG (−1) counts the number of acyclic orientations of G .
This is a special case of a reciprocity theorem for χG .

We are interested in the number of proper k-colorings of
G × Pn or G × Cn, where k and n are variables.
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For graphs G1 = (V1,E1) and G2 = (V2,E2) the Cartesian
product G1 × G2 is the graph with vertex set V1 × V2

The vertices (u1, v1) and (u2, v2) are connected by an edge if
(u1 = u2 and {v1, v2} ∈ E2) or if (v1 = v2 and {u1, u2} ∈ E1).

Figure: C4 × P3 and P3 × P6.
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Question

Let G be any graph and let n and k be positive integers. How
many proper k-colorings of G × Pn are there?
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Question

Let G be any graph and let n and k be positive integers. How
many proper k-colorings of G × Pn are there?

Question

What is the asymptotic behavior of the number of proper
k-colorings of G × Cn as k , n→∞?

F. Kohl FU Berlin/BMS

Transfer-Matrix Methods Meet Ehrhart Theory



Motivation Background and Notation Special Cases Symmetry and the General Case Concluding Remarks

Outline

1 Motivation

2 Background and Notation

3 Special Cases
The Transfer-Matrix Method
Inside-Out Polytopes

4 Symmetry and the General Case

5 Concluding Remarks

F. Kohl FU Berlin/BMS

Transfer-Matrix Methods Meet Ehrhart Theory



Motivation Background and Notation Special Cases Symmetry and the General Case Concluding Remarks

There are two special cases:

k is fixed and n is not =⇒ Transfer-Matrix Method, see e. g.
[8].

n is fixed and k is not =⇒ Inside-Out Polytopes, see [1].
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The Transfer-Matrix Method

The Transfer-Matrix Method:

The transfer-matrix method is classically used to count walks
on (weighted di-)graphs.
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The Transfer-Matrix Method

The Transfer-Matrix Method:

The transfer-matrix method is classically used to count walks
on (weighted di-)graphs.

Let (Ai ,j)i ,j be the adjacency matrix of a graph (V ,E ), i. e.,
Ai ,j = 1 if {vi , vj} ∈ E and 0 otherwise.
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The Transfer-Matrix Method

The Transfer-Matrix Method:

The transfer-matrix method is classically used to count walks
on (weighted di-)graphs.

Let (Ai ,j)i ,j be the adjacency matrix of a graph (V ,E ), i. e.,
Ai ,j = 1 if {vi , vj} ∈ E and 0 otherwise.

Example

If G = C3, then

A =

0 1 1
1 0 1
1 1 0
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The Transfer-Matrix Method

The Transfer-Matrix Method:

The transfer-matrix method is classically used to count walks
on (weighted di-)graphs.

Let (Ai ,j)i ,j be the adjacency matrix of a graph (V ,E ), i. e.,
Ai ,j = 1 if {vi , vj} ∈ E and 0 otherwise.

Transfer-Matrix Theorem

For a nonnegative integer n, (An)i ,j counts the number of walks of
length n from vi to vj .
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The Transfer-Matrix Method

The Transfer-Matrix Method:

Transfer-Matrix Theorem

For a nonnegative integer n, (An)i ,j counts the number of walks of
length n from vi to vj .

Example continued

If G = C3, then

A =

0 1 1
1 0 1
1 1 0


and

A2 =

2 1 1
1 2 1
1 1 2

 .
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The Transfer-Matrix Method

We want to count the number of proper k-colorings of G ×Pn

for fixed k . To use the transfer-matrix method, we establish a
connection between walks of length n and colorings of G ×Pn.
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The Transfer-Matrix Method

We want to count the number of proper k-colorings of G ×Pn

for fixed k . To use the transfer-matrix method, we establish a
connection between walks of length n and colorings of G ×Pn.

We associate a new graph MG to G .
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The Transfer-Matrix Method

We want to count the number of proper k-colorings of G ×Pn

for fixed k .

We now associate a new graph MG to G .

The vertices of MG are labeled by the proper k-colorings of G .
Two vertices are connected by an edge if they form a proper
coloring of G × P2.

Example

Let k be 3 and let G = P3. Then MG looks like:
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The Transfer-Matrix Method

(1,2,1)

(1,3,1)

(2,1,2)

(2,3,2)

(3,1,3)

(3,2,3)

(1,2,3)

(1,3,2)

(2,1,3)

(2,3,1)

(3,1,2)

(3,2,1)
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The Transfer-Matrix Method

Proper k-colorings of G × Pn+1 are now in bijection with
walks of length n in MG .

F. Kohl FU Berlin/BMS
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The Transfer-Matrix Method

Proper k-colorings of G × Pn+1 are now in bijection with
walks of length n in MG .

We can use the adjacency matrix of MG to count exactly
these walks!

F. Kohl FU Berlin/BMS

Transfer-Matrix Methods Meet Ehrhart Theory



Motivation Background and Notation Special Cases Symmetry and the General Case Concluding Remarks

The Transfer-Matrix Method

Proper k-colorings of G × Pn+1 are now in bijection with
walks of length n in MG .

We can use the adjacency matrix AMG
of MG to count exactly

these walks!

Similarly, the number of closed walks (= the number of
colorings of G × Cn+1) is counted by the trace of An

MG
.
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The Transfer-Matrix Method

Proper k-colorings of G × Pn+1 are now in bijection with
walks of length n in MG .

We can use the adjacency matrix AMG
of MG to count exactly

these walks!

Similarly, the number of closed walks (= the number of
colorings of G × Cn+1) is counted by the trace of An

MG

Asymptotically, the trace is dominated by λn−1
max , where λmax is

the biggest eigenvalue, which is real and positive by the
Frobenius-Perron theorem.
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The Transfer-Matrix Method

Figure: The adjacency matrix for MP3 for 4 colors
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The Transfer-Matrix Method

Conclusions

The size of the matrix depends on k =⇒ we can’t directly use
this technique for k not fixed.

The size of the matrix is big, so even for fixed k this is
computationally challenging.

We will use symmetry to obtain a new matrix whose size does
not depend on k and whose biggest eigenvalue is λmax.

F. Kohl FU Berlin/BMS
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Inside-Out Polytopes

Inside-Out Polytopes:

If n is fixed and k is a variable, the number of proper colorings
of G × Pn is counted by the chromatic polynomial χ(k).
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Inside-Out Polytopes

Inside-Out Polytopes:

If n is fixed and k is a variable, then the number of proper
colorings of G × Pn is counted by the chromatic polynomial
χ(k).

This has a beautiful interpretation in terms of Ehrhart theory
and inside-out polytopes.
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Inside-Out Polytopes

Inside-Out Polytopes:

If n is fixed and k is a variable, then the number of proper
colorings of G × Pn is counted by the chromatic polynomial.

This has a beautiful interpretation in terms of Ehrhart theory
and inside-out polytopes, see [1].

Example

Let G = P2. Then the k-colorings are given by
{(x , y) : x , y ∈ [k] and x 6= y}.

F. Kohl FU Berlin/BMS
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Inside-Out Polytopes

y

x
(0, 0) (k + 1, 0)

(0, k + 1)

(1, k)

(k , 1)

bijection

x

y

Figure: Integer points inside dashed triangles correspond to proper
k-colorings of P2.
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Inside-Out Polytopes

This works in general!

If G is a graph with vertex set V = {x1, . . . , xn}, then we get
an inside-out polytope by taking

PG := [0, 1]n \
(⋃

Hi ,j

)
,

where we get a forbidden hyperplane Hi ,j if {xi , xj} ∈ E . We
also denote this by (P,H), where H is a collection of the
hyperplanes.

F. Kohl FU Berlin/BMS
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Inside-Out Polytopes

If G is a graph with vertex set V = {x1, . . . , xn}, then we get
an inside-out polytope by taking

PG := [0, 1]n \
(⋃

Hi ,j

)
,

where we get a forbidden hyperplane Hi ,j if {xi , xj} ∈ E .

Counting proper colorings ↔ counting integer points.
=⇒ Enter Ehrhart theory.

F. Kohl FU Berlin/BMS
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Inside-Out Polytopes

If P is a lattice polytope, one can define the counting function

EP(t) := #
(
tP ∩ Zd

)
,

which is called the Ehrhart function of P.

F. Kohl FU Berlin/BMS
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Inside-Out Polytopes

If P is a lattice d-polytope, one can define the counting
function

EP(t) := #
(
tP ∩ Zd

)
,

which is called the Ehrhart polynomial of P.

Ehrhart famously proved that this is a polynomial of degree d
with leading coefficient vol(P) , see [3].
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Inside-Out Polytopes

Theorem

Let P be a d-dimensional rational polytope. Then

EP(−t) = (−1)dEP◦(t) (1)

where EP◦(t) counts the number of integer points in the interior of
tP.

F. Kohl FU Berlin/BMS
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Inside-Out Polytopes

Example

Let P = [0, 1]2. Then EP(t) = (t + 1)2, and E (2) = 9 and
E (−2) = (−1)2 · 1.

(0, 0)

(2, 2)

Figure: 2P = [0, 2]2.
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Inside-Out Polytopes

Beck and Zaslavsky apply reciprocity to every piece and they
thus get [1, Theorem 4.1]:

Theorem

Reciprocity works for inside-out polytopes, but you need to
account for multiplicities of the integer points on the hyperplanes.

y

x
(0, 0) (k + 1, 0)

(0, k + 1)

(1, k)

(k , 1)

Figure: Integer points in dashed triangles correspond to proper
k-colorings of P2.
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Inside-Out Polytopes

The reason why the previous results are interesting for us is
[1, Theorem 5.1]:

Theorem

For a graph G and the inside-out polytope PG , we have

EP◦
G

(t) = χG (t − 1). (2)

F. Kohl FU Berlin/BMS
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Inside-Out Polytopes

Theorem

For a graph G and the inside-out polytope PG , we have

EP◦
G

(t) = χG (t − 1). (3)

This theorem together with the reciprocity result gives us a
geometric proof of Stanley’s recipocity theorem!

F. Kohl FU Berlin/BMS
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Inside-Out Polytopes

Theorem

For a graph G and the inside-out polytope PG , we have

EP◦
G

(t) = χG (t − 1). (4)

This theorem together with the reciprocity result gives us a
geometric proof of Stanley’s recipocity theorem!

Now let’s combine this geometric setup with the
transfer-matrix method!

F. Kohl FU Berlin/BMS
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Example revisited

Let G = P3. We want to count the number of proper k-colorings
of G × Pn, where n and k are variables.

Figure: The adjacency matrix for MP3 for 4 colors
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Example revisited

Let G = P3. We want to count the number of proper k-colorings
of G × Pn, where n and k are variables.

There are essentially two cases:

v1 and v3 have the same color (orbit 1)

v1 and v3 have different colors (orbit 2)

So let’s define a matrix that encodes exactly this information. This
matrix will be a 2× 2 matrix.

F. Kohl FU Berlin/BMS
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Let A ∈ R2×2, where

a1,1 counts the number of proper k-colorings of G × P2,
where the first copy of G is colored by a representative of
orbit 1 and the second has to be in orbit 1.

1

2

1
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Let A ∈ R2×2, where

a1,2 counts the number of proper k-colorings of G × P2,
where the first copy of G is colored by a representative of
orbit 1 and the second has to be in orbit 2.

1

2

1
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Let A ∈ R2×2, where

a2,1 counts the number of proper k-colorings of G × P2,
where the first copy of G is colored by a representative of
orbit 2 and the second has to be in orbit 1.

1

2

3
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Let A ∈ R2×2, where

a2,2 counts the number of proper k-colorings of G × P2,
where the first copy of G is colored by a representative of
orbit 2 and the second has to be in orbit 2.

1

2

3

F. Kohl FU Berlin/BMS
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This gives us that

A =

(
k2 − 3k + 3 k3 − 6k2 + 13k − 10
k2 − 4k + 5 k3 − 6k2 + 14k − 13

)
for k ≥ 3.

For k = 4, this simplifies to

A =

(
7 10
5 11

)
.

F. Kohl FU Berlin/BMS
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For a general graph, there are two types of symmetries:

1 relabeling of the colors

2 graph automorphisms of G

F. Kohl FU Berlin/BMS

Transfer-Matrix Methods Meet Ehrhart Theory



Motivation Background and Notation Special Cases Symmetry and the General Case Concluding Remarks

Example

Let G = P4. Using a relabeling of colors we get 5 cases.

1

2

3

4

1

2

1

3

3

1

2

1

1

2

3

1

1

2

1

2

Figure: Representatives of the 5 orbits.
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Example

Let G = P4. Then only using a relabeling of colors gives us 5
cases. Also using graph symmetry gives us 4 orbits instead.

1

2

3

4

1

2

1

3

1

2

3

1

1

2

1

2
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There are two types of symmetries:

1 relabeling of the colors

2 graph automorphisms of G

Using these types of symmetry, we can define such a
”compactified” matrix A for any graph. A also has the same
biggest eigenvalue as the original adjacency matrix.

F. Kohl FU Berlin/BMS
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There are two types of symmetries:

1 relabeling of the colors

2 graph automorphisms of G

Using these types of symmetry, we can define such a
”compactified” matrix A for any graph. A also has the same
biggest eigenvalue as the original adjacency matrix.

Theorem

The (i , j)-entry of An counts the number of colorings of G × Pn+1,
where the first G is fixed by a representative of orbit oi and the
last G is colored by an element of orbit oj .

F. Kohl FU Berlin/BMS
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Example continued

Let G = P3. Recall that

A =

(
k2 − 3k + 3 k3 − 6k2 + 13k − 10
k2 − 4k + 5 k3 − 6k2 + 14k − 13

)
.

Then (A2)1,1 = k5 − 9k4 + 36k3 − 77k2 + 87k − 41 counts the
number of colorings of

1

2

1

F. Kohl FU Berlin/BMS
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Example continued

Let G = P3. Recall that

A =

(
k2 − 3k + 3 k3 − 6k2 + 13k − 10
k2 − 4k + 5 k3 − 6k2 + 14k − 13

)
.

Then (A5)1,1 counts the number of colorings of

1

2

1

F. Kohl FU Berlin/BMS
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Corollary

Let G × Pn+1 and A be as above. Then

χG×Pn+1(k) = (w1(k), . . . ,wp(k))An1, (5)

where we set wi (k) is the size of orbit i and 1 := (1, . . . , 1)t .

This means that A contains all the information needed to get the
chromatic polynomial for every n.

F. Kohl FU Berlin/BMS
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Example continued

The chromatic polynomial of P3 × P3 is

χ(k) = (w1,w2)

(
k2 − 3k + 3 k3 − 6k2 + 13k − 10
k2 − 4k + 5 k3 − 6k2 + 14k − 13

)3−1(
1
1

)
,

where w1 = k(k − 1) and w2 = k(k − 1)(k − 2).

Figure: P3 × P3

F. Kohl FU Berlin/BMS
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Example continued

The chromatic polynomial of P3 × P4 is

χ(k) = (w1,w2)

(
k2 − 3k + 3 k3 − 6k2 + 13k − 10
k2 − 4k + 5 k3 − 6k2 + 14k − 13

)4−1(
1
1

)
,

where w1 = k(k − 1) and w2 = k(k − 1)(k − 2).

Figure: P3 × P4

F. Kohl FU Berlin/BMS
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Example continued

The chromatic polynomial of P3 × P5 is

χ(k) = (w1,w2)

(
k2 − 3k + 3 k3 − 6k2 + 13k − 10
k2 − 4k + 5 k3 − 6k2 + 14k − 13

)5−1(
1
1

)
,

where w1 = k(k − 1) and w2 = k(k − 1)(k − 2).

Figure: P3 × P5

F. Kohl FU Berlin/BMS
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Example continued

The chromatic polynomial of P3 × P6 is

χ(k) = (w1,w2)

(
k2 − 3k + 3 k3 − 6k2 + 13k − 10
k2 − 4k + 5 k3 − 6k2 + 14k − 13

)6−1(
1
1

)
,

where w1 = k(k − 1) and w2 = k(k − 1)(k − 2).

Figure: P3 × P6
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Proposition

Let λmax be the biggest eigenvalue of A (and thus of the adjacency
matrix AMG

). Then

δ(A) ≤ λmax ≤ ∆(A), (6)

where δ(A) and ∆(A) are polynomials of degree N and their two
highest coefficients agree. We also have a combinatorial
interpretation for these coefficients.
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Example continued

Let G = P3. The biggest eigenvalue λmax of A satisfies the
inequalities

k3 − 5k2 + 10k − 8 ≤ λmax ≤ k3 − 5k2 + 10k − 7.

The asymptotic behavior of the proper k-colorings of P3 × Cn+1 is
dominated by λnmax.
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Theorem

The row sums of An satisfy a restricted reciprocity theorem for
k ≥ N.
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Figure: All (1, 2, 3)-restricted, compatible pairs of acyclic orientations
and (not necessary proper) colorings of P3 × P2.
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If we do not use graph automorphisms, we can count the
number of orbits with a deletion-contraction process. This led
to several (new?) recursions for Bell numbers.
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If we do not use graph automorphisms, we can count the
number of orbits with a deletion-contraction process.

Geometrically, the orbit-decomposition corresponds to a
further subdivision of the inside-out polytope.
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If we do not use graph automorphisms, we can count the
number of orbits with a deletion-contraction process.

Geometrically, the orbit-decomposition corresponds to a
further subdivision of the inside-out polytopes.

The same philosophy can be applied to many more objects,
e.g., Discrete Markov Processes, and what we call Stacked
Posets.
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If we do not use graph automorphisms, we can count the
number of orbits with a deletion-contraction process.

Geometrically, the orbit-decomposition corresponds to a
further subdivision of the inside-out polytopes.

The same philosophy can be applied to many more objects,
e.g., Discrete Markov Processes, and what we call Stacked
Posets.

The underlying geometry of inside-out polytopes is behind all
of the theorems and proofs.
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Thanks for your attention!
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