Transfer-Matrix Methods Meet Ehrhart Theory joint with Alexander Engström, Aalto University

Freie Universität Berlin/Berlin Mathematical School

16th of January,2017

< □ > < 同 >

-

1 Motivation

- 2 Background and Notation
- 3 Special Cases
 The Transfer-Matrix Method
 Inside-Out Polytopes
- 4 Symmetry and the General Case
- 5 Concluding Remarks

<ロ> <同> <同> <同> < 同>

Concluding Remarks

FU Berlin/BMS

Outline

1 Motivation

2 Background and Notation

3 Special Cases

- The Transfer-Matrix Method
- Inside-Out Polytopes
- 4 Symmetry and the General Case
- 5 Concluding Remarks

< ロ > < 回 > < 回 >

Concluding Remarks

FU Berlin/BMS

Figure: A Cartesian graph product in the wild (Credit: Rutgers University)

<ロ> <同> <同> <同> < 同>

Concluding Remarks

FU Berlin/BMS

Outline

1 Motivation

2 Background and Notation

3 Special Cases

- The Transfer-Matrix Method
- Inside-Out Polytopes
- 4 Symmetry and the General Case
- 5 Concluding Remarks

■ A graph G is a pair (V, E), where V is the set of **nodes** and where E is the set of **edges**.

<ロ> <同> <同> <同> < 同>

FU Berlin/BMS

Motivation	Background and Notation	Special Cases 0000000000000000 000000000000000000	Symmetry and the General Case	Concluding Remarks

- A graph G is a pair (V, E), where V is the set of **nodes** or vertices and where E is the set of **edges**.
- We denote the path graph on *n* vertices by *P_n* and the cycle graph on *n* vertices by *C_n*.

Figure: C_4 and P_3

FU Berlin/BMS

- n Background and Notation Special Cases Symmetry and the General Case Concluding Remarks 00000000000000 00000000000000000
 - A graph G is a pair (V, E), where V is the set of **nodes** or vertices and where E is the set of **edges**.
 - We denote the path graph on n vertices by P_n and the cycle graph on n vertices by C_n.
 - A proper k-coloring of G is a map $c: V \longrightarrow \{1, 2, ..., k\}$ such that $c(v) \neq c(u)$ for all u, v with $\{u, v\} \in E$.

Figure: A proper 2-coloring and a non-proper 2-coloring

< ロ > < 同 > < 三 > < 三

FU Berlin/BMS

<ロ> <同> <同> <同> < 同>

• For a simple graph G, we define the counting function

$$\chi_{G}(k) := \#$$
proper k-colorings of G.

FU Berlin/BMS

Transfer-Matrix Methods Meet Ehrhart Theory

F. Kohl

・ロト ・回ト ・ 回ト ・

FU Berlin/BMS

• For a simple graph G, we define the counting function

 $\chi_{G}(k) := \#$ proper k-colorings of G.

χ_G is a polynomial of degree N = #V(G) with leading coefficient 1. χ_G is called the chromatic polynomial of G.

• For a simple graph G, we define the counting function

$$\chi_{G}(k) := \#$$
proper k-colorings of G.

FU Berlin/BMS

- χ_G is a polynomial of degree N = #V(G) with leading coefficient 1.
- *χ_G*(−1) counts the number of acyclic orientations of *G*. This is a special case of a reciprocity theorem for *χ_G*.

Motivation	Background and Notation	Special Cases 0000000000000000 000000000000000000	Symmetry and the General Case	Concluding Remarks

• For a simple graph G, we define the counting function

$$\chi_G(k) := \#$$
proper k-colorings of G.

- As it turns out, χ_G is a polynomial of degree N = #V(G) with leading coefficient 1.
- *χ_G*(−1) counts the number of acyclic orientations of *G*. This is a special case of a reciprocity theorem for *χ_G*.
- We are interested in the number of proper *k*-colorings of *G* × *P_n* or *G* × *C_n*, where *k* and *n* are variables.

(ロ) (回) (E) (E)

FU Berlin/BMS

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

FU Berlin/BMS

■ For graphs G₁ = (V₁, E₁) and G₂ = (V₂, E₂) the Cartesian product G₁ × G₂ is the graph with vertex set V₁ × V₂

The vertices (u_1, v_1) and (u_2, v_2) are connected by an edge if $(u_1 = u_2 \text{ and } \{v_1, v_2\} \in E_2)$ or if $(v_1 = v_2 \text{ and } \{u_1, u_2\} \in E_1)$.

Figure: $C_4 \times P_3$ and $P_3 \times P_6$.

F. Kohl

・ロト ・回ト ・ヨト

Concluding Remarks

FU Berlin/BMS

Question

Let G be any graph and let n and k be positive integers. How many proper k-colorings of $G \times P_n$ are there?

Concluding Remarks

FU Berlin/BMS

Question

Let G be any graph and let n and k be positive integers. How many proper k-colorings of $G \times P_n$ are there?

Question

What is the asymptotic behavior of the number of proper *k*-colorings of $G \times C_n$ as $k, n \to \infty$?

F. Kohl

Special Cases

Symmetry and the General Case

- ∢ ≣ →

FU Berlin/BMS

Concluding Remarks

Outline

2 Background and Notation

3 Special Cases

- The Transfer-Matrix Method
- Inside-Out Polytopes
- 4 Symmetry and the General Case

5 Concluding Remarks

<ロ> <同> <同> <同> < 同>

FU Berlin/BMS

There are two special cases:

- k is fixed and n is not ⇒ Transfer-Matrix Method, see e. g.
 [8].
- *n* is fixed and *k* is not \implies Inside-Out Polytopes, see [1].

<ロ> <同> <同> <同> < 同>

FU Berlin/BMS

The Transfer-Matrix Method

The Transfer-Matrix Method:

 The transfer-matrix method is classically used to count walks on (weighted di-)graphs.

・ロト ・回ト ・ 回ト ・

FU Berlin/BMS

The Transfer-Matrix Method

The Transfer-Matrix Method:

- The transfer-matrix method is classically used to count walks on (weighted di-)graphs.
- Let $(A_{i,j})_{i,j}$ be the adjacency matrix of a graph (V, E), i. e., $A_{i,j} = 1$ if $\{v_i, v_j\} \in E$ and 0 otherwise.

The Transfer-Matrix Method:

- The transfer-matrix method is classically used to count walks on (weighted di-)graphs.
- Let $(A_{i,j})_{i,j}$ be the adjacency matrix of a graph (V, E), i. e., $A_{i,j} = 1$ if $\{v_i, v_j\} \in E$ and 0 otherwise.

Example

If $G = C_3$, then

$$A = egin{pmatrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{pmatrix}$$

FU Berlin/BMS

F. Kohl

The Transfer-Matrix Method:

- The transfer-matrix method is classically used to count walks on (weighted di-)graphs.
- Let $(A_{i,j})_{i,j}$ be the adjacency matrix of a graph (V, E), i. e., $A_{i,j} = 1$ if $\{v_i, v_j\} \in E$ and 0 otherwise.

Transfer-Matrix Theorem

For a nonnegative integer n, $(A^n)_{i,j}$ counts the number of walks of length n from v_i to v_j .

・ロト ・回ト ・ 回ト ・

F. Kohl

Special Cases

Symmetry and the General Case

Concluding Remarks

FU Berlin/BMS

The Transfer-Matrix Method

The Transfer-Matrix Method:

Transfer-Matrix Theorem

For a nonnegative integer n, $(A^n)_{i,j}$ counts the number of walks of length n from v_i to v_j .

Example continued

If
$$G = C_3$$
, then

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
and

$$A^2 = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

Concluding Remarks

FU Berlin/BMS

The Transfer-Matrix Method

We want to count the number of proper k-colorings of G × P_n for fixed k. To use the transfer-matrix method, we establish a connection between walks of length n and colorings of G × P_n.

Image: Image:

FU Berlin/BMS

The Transfer-Matrix Method

- We want to count the number of proper k-colorings of G × P_n for fixed k. To use the transfer-matrix method, we establish a connection between walks of length n and colorings of G × P_n.
- We associate a *new* graph M_G to G.

FU Berlin/BMS

The Transfer-Matrix Method

- We want to count the number of proper k-colorings of $G \times P_n$ for *fixed* k.
- We now associate a *new* graph M_G to G.

Special Cases

The vertices of M_G are labeled by the proper k-colorings of G. Two vertices are connected by an edge if they form a proper coloring of G × P₂.

Example

Let k be 3 and let $G = P_3$. Then M_G looks like:

Special Cases

Symmetry and the General Case

Concluding Remarks

The Transfer-Matrix Method

F. Kohl

► E ∽ ९ € FU Berlin/BMS

メロト メロト メヨト メ

Concluding Remarks

FU Berlin/BMS

The Transfer-Matrix Method

• Proper k-colorings of $G \times P_{n+1}$ are now in bijection with walks of length n in M_G .

<ロ> <同> <同> <同> < 同>

The Transfer-Matrix Method

- Proper k-colorings of $G \times P_{n+1}$ are now in bijection with walks of length n in M_G .
- We can use the adjacency matrix of M_G to count exactly these walks!

・ロト ・回ト ・ 回ト ・

FU Berlin/BMS

The Transfer-Matrix Method

- Proper k-colorings of $G \times P_{n+1}$ are now in bijection with walks of length n in M_G .
- We can use the adjacency matrix A_{M_G} of M_G to count exactly these walks!
- Similarly, the number of closed walks (= the number of colorings of G × C_{n+1}) is counted by the trace of Aⁿ_{Mc}.

The Transfer-Matrix Method

Proper k-colorings of $G \times P_{n+1}$ are now in bijection with walks of length n in M_G .

Special Cases

- We can use the adjacency matrix A_{M_G} of M_G to count exactly these walks!
- Similarly, the number of closed walks (= the number of colorings of G × C_{n+1}) is counted by the trace of Aⁿ_{Mc}
- Asymptotically, the trace is dominated by λⁿ⁻¹_{max}, where λ_{max} is the biggest eigenvalue, which is real and positive by the Frobenius-Perron theorem.

<ロ> <同> <同> <同> < 同>

FU Berlin/BMS

The Transfer-Matrix Method

	121	131	141	212	232	242	313	323	343	414	424	÷	123	124	132	134	142	143	213	214	231	234	241	243	312	314	321	324	341	342	12	8	121	123	131	132
21	0	0	0	1	1	1	1	0	1	1	0	1	6	0	0	•	0	•	1	1	0	1	0	1	1	1	0	0	0	1	÷.	i.	0	0	0	1
31	ŏ	ň	ň	î.	ô.	÷.	÷	ĭ	÷.	î.	ĭ	ñ	ň	ň	ň	ň	ň	ň	÷.	÷.	ň	â	ň	÷.	÷.	÷.	ň	ĭ	ň	÷.	÷.	÷.	ň	ĭ	ň	â
41	ŏ	ň	ň	÷.	ň	â	÷	÷.	â	÷.	÷.	ň	ň	ň	ň	ň	ň	ň	÷.	÷	ň	ň	ň	â	÷	÷.	ň	÷.	ň	ñ.	÷.	÷.	ň	÷.	ň	ň
12	1	1	1	â	â	ň	â	÷	ň	5	÷	÷	1	1	ň	ĭ	ň	ĭ	÷.	â	ň	â	ň	ň	â	ā.	ĭ	÷	ň	ň	â	ñ.	1	÷	1	â
32	÷	â	÷	ň	ň	ň	ĭ	÷	÷	ň	÷	ň.	ĥ.	÷	ň	â	ň	÷	ň	ň	ň	ň	ň	ň	ň	ň	÷	÷	÷	ň	ň	ň	÷	÷	â.	ň
12	÷.	ň	â.	ň	ň	ň	÷	÷	â	÷.	÷	ň	ĥ.	î.	ň	ĭ	ň	â	ň	ň	ň	ň	ň	ň	ň	÷.	÷	÷	â	ň	ň	÷.	÷	÷.	ň	ň
13	- î	÷.	ĭ	ň	ĭ	ĭ	â	ñ	ň	ñ	÷.	÷.	ĥ.	÷.	ň	÷	ĭ	ň	ň	ň	ĭ	ň	ĭ	ň	ň	ñ	â	ñ	ň	ň	ň	ñ.	÷.	ñ	÷.	ĭ
23	ō	÷.	÷.	ĭ	÷.	÷.	ŏ	ŏ	ŏ	ĭ	ô.	î.	ň	ô.	÷.	÷.	÷.	ŏ	ŏ	ĭ	÷.	÷.	÷.	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ĭ	ŏ	â	ŏ	î.	÷
43	ĭ	î.	ō	î.	î.	ō	ŏ	ŏ	ŏ	î.	ĭ	î.	ŏ	ĭ	î.	î.	ō	ŏ	ŏ	î.	î.	î	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	î.	ŏ	ĭ	ŏ	î.	î
14	-ī	ĩ.	ĩ.	ō	ĩ.	ĩ	ŏ	ĩ.	i.	ō	ō	ō	ĭ	õ	ĩ.	ō	ĩ	i.	ŏ	ō	ĩ.	ō	-ĭ	ĩ.	ŏ	ŏ	i.	ŏ	i.	i.	ō	ŏ	ō	ŏ	ō	ō
24	ō	ĩ.	ī.	i.	ĩ.	ī.	i.	ō	ĩ.	ō	ō.	ō	ō	ō	ī.	ō	ī.	ĩ.	i.	ō.	ī.	ō	ī	ī.	i.	ō	ō	ō	ĩ.	ī.	ō.	ō	ō	ō	ō	ō
34	ĩ	ō	ī	ĩ	ō	ī	ĩ	ĩ	ĩ	õ	ō	ō	ī	ō	ō	ō	ī	ĩ	ī	ō	ō	ō	ĩ	ī	ĩ	õ	ī.	ō	ĩ	ī	ō	ō	õ	ō	ō	ō
23	0	0	0	1	1	1	0	0	0	1	0	1	0	0	0	0	0	0	0	1	1	1	1	0	1	1	0	0	1	1	1	0	0	0	1	1
24	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	1	1	1	0	0	0	1	1	1	1	0	0	1	1
32	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	1	1	0	0	1	1	0	1	1	1	1	0	0	1	1	1	0	0
34	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	1	0	1	1	1	1	1	1	0	0
42	0	0	0	0	0	0	1	1	0	1	1	1	0	0	0	0	0	0	1	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1	1	0
43	0	0	0	1	1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	1	1	1	0	0	1	1	1	1	0	0	1	0	1	0	1	1
13	1	1	1	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	1	0	1	1
14	1	1	1	0	0	0	0	1	1	0	0	0	1	0	1	0	1	1	0	0	0	0	0	0	0	0	1	0	1	1	0	0	1	1	1	1
31	0	0	0	0	0	0	1	1	1	1	1	0	1	1	0	0	1	1	0	0	0	0	0	0	1	1	0	1	0	1	1	1	0	1	0	0
34	1	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	1	0	1	0	1	1	1	1	1	1	0	0
41	0	0	0	0	0	0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	1	0	0	1	1	0	1	0	1
43	1	1	0	0	0	0	0	0	0	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	1	0	1	0	1	1
12	1	1	1	0	0	0	0	0	0	0	1	1	1	1	0	1	0	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	0
14	1	1	1	0	1	1	0	0	0	0	0	0	1	0	1	0	1	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1
21	0	0	0	1	1	1	0	0	0	1	0	1	0	0	1	1	1	1	1	1	0	1	0	1	0	0	0	0	0	0	1	1	0	0	0	1
24	0	1	1	1	1	1	0	0	0	0	0	0	0	0	1	0	1	1	1	0	1	0	1	1	0	0	0	0	0	0	1	1	0	0	1	1
41	0	0	0	1	1	0	0	0	0	1	1	1	1	1	1	1	0	0	1	1	0	1	0	0	0	0	0	0	0	0	1	1	0	1	0	1
42	1	1	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	1	1	1	1	0
12	1	1	1	0	0	0	0	1	1	0	0	0	1	1	0	1	0	1	0	0	1	1	1	1	0	0	1	1	1	0	0	0	0	0	0	0
13	1	1	1	0	1	1	0	0	0	0	0	0	0	1	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0	0
21	0	0	0	1	1	1	1	0	1	0	0	0	0	0	1	1	1	1	1	1	0	1	0	1	1	1	0	0	0	1	0	0	0	0	0	0
23	0	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	0	0	1	1	1	1	0	1	1	0	0	1	1	0	0	0	0	0	0
31	0	0	0	1	0	1	1	1	1	0	0	0	1	1	0	0	1	1	1	1	0	0	0	1	1	1	0	1	0	1	0	0	0	0	0	0
32	1	0	1	0	0	0	1	-1	1	0	0	0	1	1	0	0	0	1	1	1	0	0	1	-1	0	1	1	-1	1	0	0	0	0	0	0	0

Figure: The adjacency matrix for M_{P_3} for 4 colors

Image: A math a math

FU Berlin/BMS

The Transfer-Matrix Method

Conclusions

- The size of the matrix depends on *k* ⇒ we can't directly use this technique for *k* not fixed.
- The size of the matrix is big, so even for fixed k this is computationally challenging.
- We will use symmetry to obtain a new matrix whose size does not depend on k and whose biggest eigenvalue is λ_{max}.

Special Cases

Symmetry and the General Case

<ロ> <同> <同> <同> < 同>

Concluding Remarks

FU Berlin/BMS

Inside-Out Polytopes

Inside-Out Polytopes:

• If *n* is fixed and *k* is a variable, the number of proper colorings of $G \times P_n$ is counted by the chromatic polynomial $\chi(k)$.

Special Cases

Symmetry and the General Case

Image: A math a math

Concluding Remarks

FU Berlin/BMS

Inside-Out Polytopes

Inside-Out Polytopes:

- If n is fixed and k is a variable, then the number of proper colorings of G × P_n is counted by the chromatic polynomial χ(k).
- This has a beautiful interpretation in terms of Ehrhart theory and inside-out polytopes.

Inside-Out Polytopes:

- If *n* is fixed and *k* is a variable, then the number of proper colorings of *G* × *P_n* is counted by the chromatic polynomial.
- This has a beautiful interpretation in terms of Ehrhart theory and inside-out polytopes, see [1].

FU Berlin/BMS

Example

Let $G = P_2$. Then the k-colorings are given by $\{(x, y): x, y \in [k] \text{ and } x \neq y\}.$

F. Kohl

Motivation	Background	Notation	S

Special Cases

Symmetry and the General Case

Concluding Remarks

FU Berlin/BMS

Inside-Out Polytopes

Figure: Integer points inside dashed triangles correspond to proper k-colorings of P_2 .

F. Kohl

- This works in general!
- If *G* is a graph with vertex set *V* = {*x*₁,...,*x*_n}, then we get an **inside-out polytope** by taking

$$P_G := [0,1]^n \setminus \left(\bigcup H_{i,j}\right),$$

where we get a forbidden hyperplane $H_{i,j}$ if $\{x_i, x_j\} \in E$. We also denote this by (P, \mathcal{H}) , where \mathcal{H} is a collection of the hyperplanes.

F. Kohl

■ If *G* is a graph with vertex set *V* = {*x*₁,...,*x_n*}, then we get an **inside-out polytope** by taking

$$P_G := [0,1]^n \setminus \left(\bigcup H_{i,j}\right),$$

< ロ > < 回 > < 回 > <</p>

FU Berlin/BMS

where we get a forbidden hyperplane $H_{i,j}$ if $\{x_i, x_j\} \in E$.

• Counting proper colorings \leftrightarrow counting integer points. \implies Enter Ehrhart theory.

Special Cases

Symmetry and the General Case

・ロト ・回ト ・ 回ト ・

Concluding Remarks

FU Berlin/BMS

Inside-Out Polytopes

• If P is a lattice polytope, one can define the counting function

$$E_P(t) := \#\left(tP \cap \mathbb{Z}^d\right),$$

which is called the *Ehrhart function* of *P*.

Image: A math a math

FU Berlin/BMS

Inside-Out Polytopes

If P is a lattice d-polytope, one can define the counting function

$$E_P(t) := \#\left(tP \cap \mathbb{Z}^d\right),$$

which is called the Ehrhart polynomial of P.

Ehrhart famously proved that this is a polynomial of degree d with leading coefficient vol(P), see [3].

Motivation	Background and Notation	Special Cases	Symmetry and the General Case	Concluding Remark
Inside-Out Pol	lytopes			

Theorem

Let P be a d-dimensional rational polytope. Then

$$E_{P}(-t) = (-1)^{d} E_{P^{\circ}}(t)$$
(1)

FU Berlin/BMS

where $E_{P^{\circ}}(t)$ counts the number of integer points in the interior of tP.

Special Cases

Symmetry and the General Case

Concluding Remarks

Inside-Out Polytopes

Example

Let
$$P = [0,1]^2$$
. Then $E_P(t) = (t+1)^2$, and $E(2) = 9$ and $E(-2) = (-1)^2 \cdot 1$.

Figure: $2P = [0, 2]^2$.

▶ ≣ ৵ঀ৻ FU Berlin/BMS

< ロ > < 回 > < 回 > < 回 > < 回 >

F. Kohl

Special Cases

Symmetry and the General Case

Inside-Out Polytopes

Beck and Zaslavsky apply reciprocity to every piece and they thus get [1, Theorem 4.1]:

Theorem

Reciprocity works for inside-out polytopes, but you need to account for multiplicities of the integer points on the hyperplanes.

$$(0, k+1) = (0, 0) +$$

Image: A math a math

Inside-Out Polytopes

• The reason why the previous results are interesting for us is [1, Theorem 5.1]:

Theorem

For a graph G and the inside-out polytope P_G , we have

$$E_{P_{G}^{\circ}}(t) = \chi_{G}(t-1).$$
 (2)

イロト イヨト イヨト イ

FU Berlin/BMS

Transfer-Matrix Methods Meet Ehrhart Theory

 Motivation
 Background and Notation
 Special Cases
 Symmetry and the General Case
 Concluding Remarks

 Inside-Out Polytopes
 Inside-Out Polytopes
 Inside Case
 Insid Case
 Insid Case
 <

$$\Xi_{P_G^\circ}(t) = \chi_G(t-1). \tag{3}$$

Image: A math a math

FU Berlin/BMS

This theorem together with the reciprocity result gives us a geometric proof of Stanley's recipocity theorem!

Special Cases

Symmetry and the General Case

Concluding Remarks

FU Berlin/BMS

Inside-Out Polytopes

Theorem

For a graph G and the inside-out polytope P_G , we have

$$\Xi_{P_G^\circ}(t) = \chi_G(t-1). \tag{4}$$

Image: A math a math

- This theorem together with the reciprocity result gives us a geometric proof of Stanley's recipocity theorem!
- Now let's combine this geometric setup with the transfer-matrix method!

Special Cases

Symmetry and the General Case

・ロト ・日下 ・ 日下

Concluding Remarks

Outline

1 Motivation

2 Background and Notation

3 Special Cases

- The Transfer-Matrix Method
- Inside-Out Polytopes

4 Symmetry and the General Case

5 Concluding Remarks

・ロト ・日下 ・ 日下

Concluding Remarks

FU Berlin/BMS

Example revisited

Let $G = P_3$. We want to count the number of proper k-colorings of $G \times P_n$, where n and k are variables.

Figure: The adjacency matrix for M_{P_3} for 4 colors

F. Kohl

Image: A math a math

FU Berlin/BMS

Example revisited

Let $G = P_3$. We want to count the number of proper k-colorings of $G \times P_n$, where n and k are variables.

There are essentially two cases:

- v_1 and v_3 have the same color (orbit 1)
- v₁ and v₃ have different colors (orbit 2)

So let's define a matrix that encodes exactly this information. This matrix will be a 2×2 matrix.

 a_{1,1} counts the number of proper k-colorings of G × P₂, where the first copy of G is colored by a representative of orbit 1 and the second has to be in orbit 1.

< □ > < 同 >

Transfer-Matrix Methods Meet Ehrhart Theory

■ *a*_{1,2} counts the number of proper *k*-colorings of *G* × *P*₂, where the first copy of *G* is colored by a representative of orbit 1 and the second has to be in orbit 2.

< □ > < 同 >

Transfer-Matrix Methods Meet Ehrhart Theory

■ *a*_{2,1} counts the number of proper *k*-colorings of *G* × *P*₂, where the first copy of *G* is colored by a representative of orbit 2 and the second has to be in orbit 1.

< □ > < 同 >

Transfer-Matrix Methods Meet Ehrhart Theory

■ *a*_{2,2} counts the number of proper *k*-colorings of *G* × *P*₂, where the first copy of *G* is colored by a representative of orbit 2 and the second has to be in orbit 2.

< □ > < 同 >

Transfer-Matrix Methods Meet Ehrhart Theory

This gives us that

$$A = \begin{pmatrix} k^2 - 3k + 3 & k^3 - 6k^2 + 13k - 10 \\ k^2 - 4k + 5 & k^3 - 6k^2 + 14k - 13 \end{pmatrix}$$

for $k \geq 3$.

• For k = 4, this simplifies to

$$A = \left(\begin{array}{cc} 7 & 10\\ 5 & 11 \end{array}\right).$$

FU Berlin/BMS

・ロト ・回ト ・ヨト

F. Kohl

Image: A math and A

FU Berlin/BMS

For a general graph, there are two types of symmetries:

- **1** relabeling of the colors
- **2** graph automorphisms of G

-

FU Berlin/BMS

Concluding Remarks

Example

Let $G = P_4$. Using a relabeling of colors we get 5 cases.

Figure: Representatives of the 5 orbits.

Concluding Remarks

Example

Let $G = P_4$. Then only using a relabeling of colors gives us 5 cases. Also using graph symmetry gives us 4 orbits instead.

Transfer-Matrix Methods Meet Ehrhart Theory

Image: Image:

-

FU Berlin/BMS

There are two types of symmetries:

- 1 relabeling of the colors
- **2** graph automorphisms of G

Using these types of symmetry, we can define such a "compactified" matrix *A* for any graph. *A* also has the same biggest eigenvalue as the original adjacency matrix.

There are two types of symmetries:

- 1 relabeling of the colors
- **2** graph automorphisms of G

Using these types of symmetry, we can define such a

"compactified" matrix A for any graph. A also has the same biggest eigenvalue as the original adjacency matrix.

Theorem

The (i, j)-entry of A^n counts the number of colorings of $G \times P_{n+1}$, where the first G is fixed by a representative of orbit o_i and the last G is colored by an element of orbit o_j .

Image: A math a math

FU Berlin/BMS

<ロ> <同> <同> <同> < 同>

Concluding Remarks

Example continued

Let $G = P_3$. Recall that

$$A = \begin{pmatrix} k^2 - 3k + 3 & k^3 - 6k^2 + 13k - 10 \\ k^2 - 4k + 5 & k^3 - 6k^2 + 14k - 13 \end{pmatrix}.$$

Then $(A^2)_{1,1} = k^5 - 9k^4 + 36k^3 - 77k^2 + 87k - 41$ counts the number of colorings of

FU Berlin/BMS

Transfer-Matrix Methods Meet Ehrhart Theory

Special Cases

Symmetry and the General Case

・ロト ・回 ・ ・ ヨト

Concluding Remarks

Example continued

Let $G = P_3$. Recall that

$$A = \begin{pmatrix} k^2 - 3k + 3 & k^3 - 6k^2 + 13k - 10 \\ k^2 - 4k + 5 & k^3 - 6k^2 + 14k - 13 \end{pmatrix}.$$

Then $(A^5)_{1,1}$ counts the number of colorings of

FU Berlin/BMS

Transfer-Matrix Methods Meet Ehrhart Theory

FU Berlin/BMS

Corollary

Let $G \times P_{n+1}$ and A be as above. Then

$$\chi_{G \times P_{n+1}}(k) = (w_1(k), \dots, w_p(k))A^n \mathbf{1},$$
(5)

where we set $w_i(k)$ is the size of orbit *i* and $\mathbf{1} := (1, \ldots, 1)^t$.

This means that A contains all the information needed to get the chromatic polynomial for every n.

Concluding Remarks

Example continued

The chromatic polynomial of $P_3 \times P_3$ is

$$\chi(k) = (w_1, w_2) \begin{pmatrix} k^2 - 3k + 3 & k^3 - 6k^2 + 13k - 10 \\ k^2 - 4k + 5 & k^3 - 6k^2 + 14k - 13 \end{pmatrix}^{3-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

where $w_1 = k(k-1)$ and $w_2 = k(k-1)(k-2)$.

Figure: $P_3 \times P_3$

FU Berlin/BMS

・ロッ ・回 ・ ・ ヨッ ・

F. Kohl

Concluding Remarks

Example continued

The chromatic polynomial of $P_3 \times P_4$ is

$$\chi(k) = (w_1, w_2) \begin{pmatrix} k^2 - 3k + 3 & k^3 - 6k^2 + 13k - 10 \\ k^2 - 4k + 5 & k^3 - 6k^2 + 14k - 13 \end{pmatrix}^{4-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

where $w_1 = k(k-1)$ and $w_2 = k(k-1)(k-2)$.

Figure: $P_3 \times P_4$

FU Berlin/BMS

・ロッ ・回 ・ ・ ヨッ ・

F. Kohl

Concluding Remarks

Example continued

The chromatic polynomial of $P_3 \times P_5$ is

$$\chi(k) = (w_1, w_2) \begin{pmatrix} k^2 - 3k + 3 & k^3 - 6k^2 + 13k - 10 \\ k^2 - 4k + 5 & k^3 - 6k^2 + 14k - 13 \end{pmatrix}^{5-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

where $w_1 = k(k-1)$ and $w_2 = k(k-1)(k-2)$.

Figure: $P_3 \times P_5$

FU Berlin/BMS

・ロッ ・回 ・ ・ ヨッ ・

F. Kohl

Concluding Remarks

Example continued

The chromatic polynomial of $P_3 \times P_6$ is

$$\chi(k) = (w_1, w_2) \begin{pmatrix} k^2 - 3k + 3 & k^3 - 6k^2 + 13k - 10 \\ k^2 - 4k + 5 & k^3 - 6k^2 + 14k - 13 \end{pmatrix}^{6-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

where $w_1 = k(k-1)$ and $w_2 = k(k-1)(k-2)$.

Figure: $P_3 \times P_6$

FU Berlin/BMS

・ロッ ・回 ・ ・ ヨッ ・

F. Kohl

FU Berlin/BMS

Proposition

Let λ_{\max} be the biggest eigenvalue of A (and thus of the adjacency matrix A_{M_G}). Then

$$\delta(A) \le \lambda_{\max} \le \Delta(A),\tag{6}$$

・ロト ・回ト ・ 回ト ・

where $\delta(A)$ and $\Delta(A)$ are polynomials of degree N and their two highest coefficients agree. We also have a combinatorial interpretation for these coefficients.

・ロン ・回 と ・ ヨン・

FU Berlin/BMS

Example continued

Let $G = P_3$. The biggest eigenvalue λ_{max} of A satisfies the inequalities

$$k^3 - 5k^2 + 10k - 8 \le \lambda_{\max} \le k^3 - 5k^2 + 10k - 7.$$

The asymptotic behavior of the proper k-colorings of $P_3 \times C_{n+1}$ is dominated by λ_{\max}^n .

Concluding Remarks

Theorem

The row sums of A^n satisfy a restricted reciprocity theorem for $k \ge N$.

<ロ ト < 回 ト < 言 ト < 言 ト 言 の Q (~) FU Berlin/BMS

FU Berlin/BMS

Transfer-Matrix Methods Meet Ehrhart Theory

<ロ> <同> <同> <同> < 同>

Concluding Remarks

FU Berlin/BMS

Outline

1 Motivation

2 Background and Notation

3 Special Cases

- The Transfer-Matrix Method
- Inside-Out Polytopes
- 4 Symmetry and the General Case

5 Concluding Remarks

FU Berlin/BMS

If we do not use graph automorphisms, we can count the number of orbits with a deletion-contraction process. This led to several (new?) recursions for Bell numbers.
< □ > < 同 >

FU Berlin/BMS

- If we do not use graph automorphisms, we can count the number of orbits with a deletion-contraction process.
- Geometrically, the orbit-decomposition corresponds to a further subdivision of the inside-out polytope.

F. Kohl

Transfer-Matrix Methods Meet Ehrhart Theory

Motivation	Background and Notation	Special Cases 00000000000000000000000000000000000	Symmetry and the General Case	Concluding Remarks

- If we do not use graph automorphisms, we can count the number of orbits with a deletion-contraction process.
- Geometrically, the orbit-decomposition corresponds to a further subdivision of the inside-out polytopes.
- The same philosophy can be applied to many more objects, e.g., Discrete Markov Processes, and what we call Stacked Posets.

- If we do not use graph automorphisms, we can count the number of orbits with a deletion-contraction process.
- Geometrically, the orbit-decomposition corresponds to a further subdivision of the inside-out polytopes.
- The same philosophy can be applied to many more objects, e.g., Discrete Markov Processes, and what we call Stacked Posets.
- The underlying geometry of inside-out polytopes is behind all of the theorems and proofs.

< □ > < 同 >

Symmetry and the General Case

Concluding Remarks

Thanks for your attention!

ィロトィアトィミトィミト き 少へ(FU Berlin/BMS

Transfer-Matrix Methods Meet Ehrhart Theory

F. Kohl

Motivation	Background	and Notation
------------	------------	--------------

Special Cases

< □ > < 同 >

- Matthias Beck and Thomas Zaslavsky, Inside-out polytopes. Adv. Math. 205 (2006), no. 1,p. 134–162.
- Ciucu, Mihai, An improved upper bound for the 3-dimensional dimer problem, *Duke Mathematical Journal*, Vol 94, Number 1, p. 1–11, 1998
- Ehrhart, Eugène, Sur les polyèdres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris, Vol. 254, p. 616–618, 1962
- Hibi, Takayuki and Higashitani, Akihiro, Smooth Fano polytopes arising from finite partially ordered sets, *Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science*, Vol 45.,Number 3, p. 449–461, 2011

- Macdonald, I. G., Polynomials associated with finite cell-complexes, J. London Math. Soc. (2), Vol. 4, 181–192, 1971
- Ohsugi, Hidefumi and Hibi, Takayuki, Convex polytopes all of whose reverse lexicographic initial ideals are squarefree, *Proceedings of the American Mathematical Society*, Vol. 129, Number 9, p. 2541–2546 (electronic), 2001
- Richard Stanley, Acyclic Orientations of Graphs *Discrete Mathematics*, Volume 5.,p. 171–178, 1973.
- Stanley, Richard, Enumerative combinatorics. Volume 1.
 Second edition. Cambridge Studies in Advanced Mathematics,
 49. Cambridge University Press, Cambridge, 2012. xiv+626 pp.

Image: A math a math

- Richard Stanley, Two poset polytopes, Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science, Vol. 1, Number 1, p. 9–23, 1986
- Winston Yang, Bell numbers and k-trees. *Discrete Math.* **156** (1996), no. 1–3, 247–252.
- Ziegler, Günter M., Lectures on polytopes, *Graduate Texts in Mathematics*, Vol. 152, Springer-Verlag, New York, 1995

< □ > < 同 >