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Motivation

Figure: A Cartesian graph product in the wild (Credit: Rutgers
University)
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Background and Notation

m A graph G is a pair (V, E), where V is the set of nodes and
where E is the set of edges.
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Background and Notation

m A graph G is a pair (V, E), where V is the set of nodes or
vertices and where E is the set of edges.

m We denote the path graph on n vertices by P, and the cycle
graph on n vertices by C,.

Figure: G4 and P3
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Background and Notation

F. Kohl

m A graph G is a pair (V, E), where V is the set of nodes or
vertices and where E is the set of edges.

m We denote the path graph on n vertices by P, and the cycle
graph on n vertices by C,.

m A proper k-coloring of G isamap ¢c: V — {1,2,...,k}
such that ¢(v) # c(u) for all u, v with {u, v} € E.

1 1
2 1
1 2

Figure: A proper 2-coloring and a non-proper 2-coloring
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Background and Notation

m For a simple graph G, we define the counting function

X ¢ (k) := #proper k-colorings of G.
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Background and Notation

m For a simple graph G, we define the counting function
X ¢ (k) := #proper k-colorings of G.

m X is a polynomial of degree N = # V/(G) with leading
coefficient 1. x¢ is called the chromatic polynomial of G.
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Background and Notation

m For a simple graph G, we define the counting function
X ¢ (k) := #proper k-colorings of G.

m X is a polynomial of degree N = #V/(G) with leading
coefficient 1.

m xg(—1) counts the number of acyclic orientations of G.
This is a special case of a reciprocity theorem for x¢.
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Background and Notation

m For a simple graph G, we define the counting function
X ¢ (k) := #proper k-colorings of G.

m As it turns out, x¢ is a polynomial of degree N = #V/(G)
with leading coefficient 1.

m xc(—1) counts the number of acyclic orientations of G.
This is a special case of a reciprocity theorem for x¢.

m We are interested in the number of proper k-colorings of
G x P, or G x C,, where k and n are variables.
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Background and Notation

m For graphs G; = (V4, E1) and Gy = (V5, Ep) the Cartesian
product G; x Gy is the graph with vertex set V; x V5

m The vertices (u1, v1) and (ug, v2) are connected by an edge if
(u1 = up and {Vl, VQ} S E2) or if (V1 = v» and {ul, Uz} S El).

Figure: C4 X P3 and P3 X P6.
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Background and Notation

Let G be any graph and let n and k be positive integers. How
many proper k-colorings of G x P, are there?
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Background and Notation

Let G be any graph and let n and k be positive integers. How
many proper k-colorings of G x P, are there?

What is the asymptotic behavior of the number of proper
k-colorings of G x C, as k,n — co?
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Special Cases
m The Transfer-Matrix Method
m Inside-Out Polytopes
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Special Cases

There are two special cases:
m k is fixed and n is not = Transfer-Matrix Method, see e. g.
[8]-

m nis fixed and k is not = Inside-Out Polytopes, see [1].
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Special Cases
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The Transfer-Matrix Method

The Transfer-Matrix Method:

m The transfer-matrix method is classically used to count walks
on (weighted di-)graphs.
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Special Cases
0e0000000000000

The Transfer-Matrix Method

The Transfer-Matrix Method:

m The transfer-matrix method is classically used to count walks
on (weighted di-)graphs.

m Let (A;;);; be the adjacency matrix of a graph (V,E), i. e.,
Aij=1if {vi,vj} € E and 0 otherwise.
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Special Cases
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The Transfer-Matrix Method

The Transfer-Matrix Method:

m The transfer-matrix method is classically used to count walks
on (weighted di-)graphs.

m Let (A;;);; be the adjacency matrix of a graph (V,E), i. e,
Aij=1if {vj,vj} € E and 0 otherwise.

If G = Cs, then

01
A=11 0
11

(=R
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Special Cases
000e00000000000

The Transfer-Matrix Method

The Transfer-Matrix Method:

m The transfer-matrix method is classically used to count walks
on (weighted di-)graphs.

m Let (A;;)i be the adjacency matrix of a graph (V,E), i. e.,
Aij=1if {vi,vj} € E and 0 otherwise.

Transfer-Matrix Theorem

For a nonnegative integer n, (A");; counts the number of walks of
length n from v; to v;.
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The Transfer-Matrix Method

The Transfer-Matrix Method:

Transfer-Matrix Theorem

For a nonnegative integer n, (A”);; counts the number of walks of
length n from v; to v;.

Example continued

If G = G5, then

011
A=11 0 1
110
and
2 1 1
A=11 2 1
11 2
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Special Cases
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The Transfer-Matrix Method

m We want to count the number of proper k-colorings of G x P,
for fixed k. To use the transfer-matrix method, we establish a
connection between walks of length n and colorings of G x P,,.
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Special Cases
000000800000 000

The Transfer-Matrix Method

m We want to count the number of proper k-colorings of G x P,
for fixed k. To use the transfer-matrix method, we establish a
connection between walks of length n and colorings of G x P,.

m We associate a new graph Mg to G.
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Special Cases
0000000 e0000000

The Transfer-Matrix Method

m We want to count the number of proper k-colorings of G x P,
for fixed k.

m We now associate a new graph Mg to G.

m The vertices of Mg are labeled by the proper k-colorings of G.
Two vertices are connected by an edge if they form a proper
coloring of G x P».

Let k be 3 and let G = P3. Then Mg looks like:
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The Transfer-Matrix Method

(1,23) (23.1)




Special Cases
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The Transfer-Matrix Method

m Proper k-colorings of G X P,41 are now in bijection with
walks of length nin M.
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Special Cases
0000000000 e0000

The Transfer-Matrix Method

m Proper k-colorings of G x P,;1 are now in bijection with
walks of length n in Mg.

m We can use the adjacency matrix of Mg to count exactly
these walks!

FU Berlin/BMS
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Special Cases
00000000000 e000

The Transfer-Matrix Method

m Proper k-colorings of G x P,;1 are now in bijection with
walks of length n in Mg.

m We can use the adjacency matrix Ay of Mg to count exactly
these walks!

m Similarly, the number of closed walks (= the number of
colorings of G x Cp41) is counted by the trace of Al
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Special Cases
000000000000 e00

The Transfer-Matrix Method

m Proper k-colorings of G x P,;1 are now in bijection with
walks of length nin M.

m We can use the adjacency matrix Ay of Mg to count exactly
these walks!

m Similarly, the number of closed walks (= the number of
colorings of G x Cp41) is counted by the trace of A;\’/,G

m Asymptotically, the trace is dominated by A™-1, where Amax is

the biggest eigenvalue, which is real and positive by the
Frobenius-Perron theorem.
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Special Cases
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Figure: The adjacency matrix for Mp, for 4 colors
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The Transfer-Matrix Method

Conclusions

m The size of the matrix depends on kK = we can't directly use
this technique for k not fixed.

m The size of the matrix is big, so even for fixed k this is
computationally challenging.

m We will use symmetry to obtain a new matrix whose size does
not depend on k and whose biggest eigenvalue is Amax.
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Special Cases
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Inside-Out Polytopes

Inside-Out Polytopes:

m If nis fixed and k is a variable, the number of proper colorings
of G x P, is counted by the chromatic polynomial (k).
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Special Cases

O®000000000000

Inside-Out Polytopes

Inside-Out Polytopes:

m If nis fixed and k is a variable, then the number of proper
colorings of G x P, is counted by the chromatic polynomial
x(k).

m This has a beautiful interpretation in terms of Ehrhart theory
and inside-out polytopes.
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Special Cases

0O0@00000000000

Inside-Out Polytopes

Inside-Out Polytopes:

m If nis fixed and k is a variable, then the number of proper
colorings of G x P, is counted by the chromatic polynomial.

m This has a beautiful interpretation in terms of Ehrhart theory
and inside-out polytopes, see [1].

Example

Let G = P,. Then the k-colorings are given by
{(x,y): x, y € [k] and x # y}.
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Special Cases

000@0000000000

Inside-Out Polytopes

y
(0,k+1) ——
:(kvl) ,// /!
! R | bijection
L //// (17/():
X
(0,0) (k+1,0)

Figure: Integer points inside dashed triangles correspond to proper
k-colorings of Ps.
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Special Cases
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Inside-Out Polytopes

m This works in general!

m If G is a graph with vertex set V = {xi,...,xp}, then we get
an inside-out polytope by taking

Pe:=10,11"\ (UHu)

where we get a forbidden hyperplane H; ; if {x;, x;} € E. We
also denote this by (P, ), where H is a collection of the
hyperplanes.

F. Kohl FU Berlin/BMS
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Special Cases

0O0000@00000000

Inside-Out Polytopes

m If G is a graph with vertex set V = {x1,...,x,}, then we get
an inside-out polytope by taking

Pe:=1[0,1]"\ (U H,J),

where we get a forbidden hyperplane H;; if {x;, x;} € E.

m Counting proper colorings <+ counting integer points.
= Enter Ehrhart theory.

F. Kohl FU Berlin/BMS
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Special Cases

0O00000e0000000

Inside-Out Polytopes

m If P is a lattice polytope, one can define the counting function
Ep(t) := # (tP N Zd) ,

which is called the Ehrhart function of P.

F. Kohl FU Berlin/BMS
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Special Cases

0000000 @000000

Inside-Out Polytopes

m If P is a lattice d-polytope, one can define the counting
function
Ep(t) == # (tP N Zd> :
which is called the Ehrhart polynomial of P.

m Ehrhart famously proved that this is a polynomial of degree d
with leading coefficient vol(P) , see [3].

F. Kohl FU Berlin/BMS
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Special Cases

0000000080 0000

Inside-Out Polytopes

Theorem

Let P be a d-dimensional rational polytope. Then
Ep(—t) = (~1)7Eps (t) (1)

where Epo(t) counts the number of integer points in the interior of
tP.

F. Kohl FU Berlin/BMS
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Special Cases

000000000800 00
Inside-Out Polytopes

Example

Let P =[0,1]2. Then Ep(t) = (t+ 1)?, and E(2) =9 and
E(-2) = (-1)%-1.

(2,2)

(0,0)

Figure: 2P = [0, 2]°.
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Special Cases

0000000000000

Inside-Out Polytopes

m Beck and Zaslavsky apply reciprocity to every piece and they
thus get [1, Theorem 4.1]:

Reciprocity works for inside-out polytopes, but you need to
account for multiplicities of the integer points on the hyperplanes.

y

0,k +1)

F. Kohl FU Berlin/BMS
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Special Cases

00000000000 e00

Inside-Out Polytopes

m The reason why the previous results are interesting for us is
[1, Theorem 5.1]:

Theorem

For a graph G and the inside-out polytope Pg, we have

Epe(t) = xa(t —1). (2)

F. Kohl FU Berlin/BMS
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Special Cases

000000000000 80
Inside-Out Polytopes

For a graph G and the inside-out polytope Pg, we have

Epe(t) = xa(t — 1) 3)

m This theorem together with the reciprocity result gives us a
geometric proof of Stanley’s recipocity theorem!

F. Kohl FU Berlin/BMS
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Special Cases

0000000000000
Inside-Out Polytopes

For a graph G and the inside-out polytope Pg, we have

Epg(t) = xe(t —1). (4)

m This theorem together with the reciprocity result gives us a
geometric proof of Stanley's recipocity theorem!

m Now let’'s combine this geometric setup with the
transfer-matrix method!

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

Outline

Symmetry and the General Case

F. Kohl

Transfer-Matrix Methods Meet Ehrhart Theory



o
&
@
(@]
©
©
@
c
@
O
o
<
=]
=
c
@
&
s
1]
&
£
s,
)

Example revisited

Let G = P3. We want to count the number of proper k-colorings

of G x P,, where n and k are variables.

trix for Mp, for 4 colors

: The adjacency ma

Figure
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Symmetry and the General Case

Example revisited

Let G = P3. We want to count the number of proper k-colorings
of G x P,, where n and k are variables.

There are essentially two cases:
m v; and v3 have the same color (orbit 1)
m v; and v3 have different colors (orbit 2)

So let's define a matrix that encodes exactly this information. This
matrix will be a 2 x 2 matrix.

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

Let A € R2%2 where

m a; 1 counts the number of proper k-colorings of G x P»,
where the first copy of G is colored by a representative of
orbit 1 and the second has to be in orbit 1.

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

Let A € R2%2 where

m a; 5 counts the number of proper k-colorings of G x P»,
where the first copy of G is colored by a representative of
orbit 1 and the second has to be in orbit 2.

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

Let A € R2%2 where

m a1 counts the number of proper k-colorings of G x P»,
where the first copy of G is colored by a representative of
orbit 2 and the second has to be in orbit 1.

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

Let A € R2%2 where

m a5 counts the number of proper k-colorings of G x P»,
where the first copy of G is colored by a representative of
orbit 2 and the second has to be in orbit 2.

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

m This gives us that

A k? —3k+3 k3 —6k?+13k — 10
T\ k?—4k+5 k3 —6k*+ 14k —13

for k > 3.
m For k = 4, this simplifies to

7 10
A‘<5 11)'

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

For a general graph, there are two types of symmetries:
relabeling of the colors

graph automorphisms of G

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

Let G = P4. Using a relabeling of colors we get 5 cases.

1 1 3 1 1
2 2 1 2 2
3 1 2 3 1
4 3 1 1 2

Figure: Representatives of the 5 orbits.
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Symmetry and the General Case

Let G = P4. Then only using a relabeling of colors gives us 5
cases. Also using graph symmetry gives us 4 orbits instead.

1 1 1 1
2 2 2 2
3 1 3 1
4 3 1 2

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

There are two types of symmetries:
relabeling of the colors
graph automorphisms of G

Using these types of symmetry, we can define such a
"compactified” matrix A for any graph. A also has the same
biggest eigenvalue as the original adjacency matrix.

F. Kohl
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Symmetry and the General Case

There are two types of symmetries:
relabeling of the colors
graph automorphisms of G

Using these types of symmetry, we can define such a
"compactified” matrix A for any graph. A also has the same
biggest eigenvalue as the original adjacency matrix.

Theorem

The (/,j)-entry of A" counts the number of colorings of G X P11,
where the first G is fixed by a representative of orbit o; and the
last G is colored by an element of orbit o;.

F. Kohl FU Berlin/BMS
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Symmetry and the General Case Concludin

Example continued
Let G = P3. Recall that

A k> =3k +3 k3 —6k*>+ 13k — 10
T\ k?—4k+5 K3 —6k*+14k—13 )

Then (A?)11 = k5 — 9k* + 36k3 — 77k? + 87k — 41 counts the
number of colorings of

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

Example continued

Let G = Ps. Recall that

A k> =3k +3 k3 —6k*+ 13k — 10
“\ k?—4k+5 K3 —6k*+14k—13 )

Then (A5)1,1 counts the number of colorings of

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

Corollary

Let G X P,+1 and A be as above. Then

XGxPyi1 (K) = (wi(k), ..., wp(k))A™L, (5)

where we set w;(k) is the size of orbit i and 1 :=(1,...,1)".

This means that A contains all the information needed to get the
chromatic polynomial for every n.

F. Kohl FU Berlin/BMS
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Symmetry and the General Case Concludin

Example continued

The chromatic polynomial of P3 x Ps is

() = (waowy) [ 73K+ 3 K =6k 13k — 10 i
XUK)= WL W2) {2 ) 15 k3 _ 6k + 14k — 13 1)’

where wy = k(k — 1) and wp = k(k — 1)(k — 2).

Figure: P3 x P3
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Symmetry and the General Case Concludin

Example continued

The chromatic polynomial of P3 x Py is

() = (waowy) [ 73K+ 3 K =6k 13k — 10 i
XUK)= WL W2) {2 ) 15 k3 _ 6k + 14k — 13 1)’

where wy = k(k — 1) and wp = k(k — 1)(k — 2).

Figure: P3 x P,

F. Kohl FU Berlin/BMS
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Symmetry and the General Case Concludin

Example continued

The chromatic polynomial of P3 x Ps is

() = (waowy) [ 73K+ 3 K =6k 13k — 10 !
XUK)= WL W2) {2 ) 15 k3 _ 6k + 14k — 13 ’

where wy = k(k — 1) and wp = k(k — 1)(k — 2).

Figure: P3 x Ps

F. Kohl FU Berlin/BMS
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Symmetry and the General Case Concludin

Example continued

The chromatic polynomial of P3 x Py is

() = (waowy) [ 73K+ 3 K =6k 13k — 10 i
XUK)= WL W2) {2 ) 15 k3 _ 6k + 14k — 13 1)’

where wy = k(k — 1) and wp = k(k — 1)(k — 2).

Figure: P3 x Pg

F. Kohl FU Berlin/BMS
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Motivation 3 d No Symmetry and the General Case

Proposition

Let Amax be the biggest eigenvalue of A (and thus of the adjacency
matrix Apy.). Then

5(A) < Amax < A(A), (6)

where §(A) and A(A) are polynomials of degree N and their two
highest coefficients agree. We also have a combinatorial
interpretation for these coefficients.

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

Example continued

Let G = P3. The biggest eigenvalue Aynax of A satisfies the
inequalities

k3 —5k% + 10k — 8 < Amax < k3 — 5k®> + 10k — 7.

The asymptotic behavior of the proper k-colorings of P3 x Cp11 is
dominated by A"

max-*

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

The row sums of A” satisfy a restricted reciprocity theorem for
k> N.

F. Kohl FU Berlin/BMS
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Symmetry and the General Case

le--,1 2 cooal £o- 1 3 copl gom 1 2 2
1 ,1%—]2 (1 1 3{—{'1{——712 3
3t o1 Lo e o Lo B Ll
4—l3 sl g-- 2 3 34— 2 2
2{%2 1 4—3 ]2 1
L yo L.-I3 L.-I3 1 2 1 1 2
4 8 2 2 1 1 2 4 1
--Jl — 3 3 c-nl — 3 3 24— 2 3
%—,2 '3 1{—% '3{—%2 Ps {——12 '3
—2 L1 Ls b by Lodds Loz Lya Lois

F. Kohl

FU Berlin/BMS

Transfer-Matrix Methods Meet Ehrhart Theory



Concluding Remarks

Outline

Concluding Remarks
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Concluding Remarks

m If we do not use graph automorphisms, we can count the
number of orbits with a deletion-contraction process. This led
to several (new?) recursions for Bell numbers.
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number of orbits with a deletion-contraction process.

m Geometrically, the orbit-decomposition corresponds to a
further subdivision of the inside-out polytope.
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m The same philosophy can be applied to many more objects,
e.g., Discrete Markov Processes, and what we call Stacked
Posets.
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Concluding Remarks

m If we do not use graph automorphisms, we can count the
number of orbits with a deletion-contraction process.

m Geometrically, the orbit-decomposition corresponds to a
further subdivision of the inside-out polytopes.

m The same philosophy can be applied to many more objects,
e.g., Discrete Markov Processes, and what we call Stacked
Posets.

m The underlying geometry of inside-out polytopes is behind all
of the theorems and proofs.
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Concluding Remarks

Thanks for your attention!
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