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P ⊂ Rd full-dimensional lattice polytope with respect to the lattice Zd .
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Combinatorial objects with many beautiful connections with other
subjects:
� algebraic geometry (toric geometry)
� optimization (integer programming)
� commutative algebra (semigroup algebras)
� theoretical physics (mirror symmetry)
� ...

It’s important to study relations among their invariants!
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Some invariants we study:
� Lattice points (how many

and where)
� Volume
� Faces (vertices,edges,...)
� Triangulations
� Degree
� Ehrhart polynomial
� h∗-polynomial ← my favorite!

� Width
� ...

Translations and lattice automorphisms preserves all of them

So we consider lattice polytopes up to affine automorphisms of the lattice.
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Continuous volume vs discrete volume

The information that we want to know may be spread uniformly on Rd or
quantized on Zd . ∫

P 1dµ

� µ standard d-dimensional Lebesgue measure → vol(P)
� µ “counting measure” X 7→

∣∣X ∩ Zd
∣∣ → ∣∣P ∩ Zd

∣∣
∣∣∣P ∩ Zd

∣∣∣ ?←→ vol(P)
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dim 1 EASY!

vol(P) = |P ∩ Z| − 1

dim 2 EASY thanks to Pick’s Formula!

vol(P) = |P◦ ∩ Zd |+ 1
2 |∂P ∩ Zd | − 1

12 = 9 + 4 − 1

Proved by Pick in 1899. It works also for non-convex polygons!
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dim 3 Can we get the volume just looking at the lattice points of the polytope?

emplex! →

It has 4 lattice points (the vertices) but arbitrarily large volume.
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If P is a d-dimensional lattice polytope,we define the function

ehrP(k) := |kP ∩ Zd |

Theorem (Ehrhart 1962)
The function ehrP(k) is actually a polynomial of degree d, called the Ehrhart
polynomial of P.

ehrP(k) = cd kd + cd−1kd−1 + · · ·+ c1k + c0

� c0 = 1
� cd = vol(P)
� cd−1 = vol(∂P)

2
� the other coefficients do not have a totally understood combinatorial

interpretation (think of Federico’s talk)
If we want to know vol(P), we need to count the lattice points in P,2P,. . .,dP.
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Question
Can one characterize all polynomials which are Ehrhart polynomial of some lattice
polytope?

� trivial in dimension 1
� solved by Scott in dimension 2 (1976)
� totally open in dimension ≥ 3
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One may rephrase the previous question by considering the corresponding
generating series of ehrP ∑

k≥0
ehrP(k)tk = h∗(t)

(1− t)d+1

h∗(t) = h∗
d td + h∗

d−1td−1 + . . .+ h∗
1t + 1

polynomial of degree ≤ d

All the coefficients have a combinatorial interpretation.
Example:

→ h∗
0 = 1

→ h∗
1 = 1

→ h∗
2 = 1

This can be extended from

simplices to polytopes via half-open triangulations.
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All the coefficients have a combinatorial interpretation!
� h∗

i ∈ Z≥0 for each i
� h∗

0 = 1
� h∗

1 = |P ∩ Zd | − d − 1
� h∗

d = |int(P) ∩ Zd |
Moreover
� 1 + h∗

1 + . . .+ h∗
d = d!vol(P) =: Vol(P) normalized volume

� monotonicity P ⊆ Q, h∗
P,i ≤ h∗

Q,i for each i
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Some necessary conditions are already known.
� h∗

1 ≥ h∗
d (Ehrhart)

� h∗
d + h∗

d−1 + · · ·+ h∗
d−i ≤ h∗

0 + h∗
1 + · · ·+ h∗

i+1 for i = 0, 1, . . . ,
⌊ d

2
⌋
− 1 (Hibi)

� h∗
0 + h∗

1 + · · ·+ h∗
i ≤ h∗

s + h∗
s−1 + · · ·+ h∗

s−i for i = 0, 1, . . . ,
⌊ s

2
⌋ (Stanley)

� if h∗
d 6= 0 then 1 ≤ h∗

1 ≤ h∗
i for i = 1, . . . , d − 1 (Hibi)

� many others! (Stapledon)

characterize all
Ehrhart polynomials ↔ characterize all

h∗-vectors

(h∗
0 , h∗

1 , . . . , h∗
d−1, h∗

d )
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2-dimensional lattice polytopes

� h∗
1 ≥ h∗

d (Ehrhart)

Theorem (Scott, 1976)
(1, h∗

1 , h∗
2) is h∗-vector if and only if

h∗
2 = 0, or

h∗
1 ≤ 3h∗

2 + 3, or
h∗ = (1, 7, 1).

3∆2 =

10 20 30

10

20

30

h∗
1

h∗
2

• = simplices
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3-dimensional hollow lattice polytopes, i.e. no interior points (h∗
3 = 0)

Theorem (Treutlein, 2010)
1 + h∗

1t + h∗
2t2 is h∗-pol. ⇒

� h∗
2 = 0, or

� h∗
1 ≤ 3h∗

2 + 3, or
� h∗(t) = 1 + 7t + t2.

Theorem (Henk-Tagami, 2009)

⇐

10 20 30

10

20

30

h∗
1

h∗
2

• = simplices
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3-dimensional lattice polytopes with 1 interior point (h∗
3 = 1)

� h∗
1 ≥ h∗

d (Ehrhart)
� h∗

1 ≤ h∗
i (Hibi)

if h∗
d 6= 0, i = 2, . . . , d − 1

Theorem (Kasprzyk, 2010)
There are 674,688 3-dimensional
lattice polytopes with 1 interior
lattice point.

10 20 30 40

10

20

30

40

h∗
1

h∗
2

• = simplices
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3-dimensional lattice polytopes with 2 interior point (h∗
3 = 2)

� h∗
1 ≥ h∗

d (Ehrhart)
� h∗

1 ≤ h∗
i (Hibi)

if h∗
d 6= 0, i = 2, . . . , d − 1

Theorem (B.,Kasprzyk, 2016)
There are 22,673,449
3-dimensional lattice polytopes
with 2 interior lattice points.

20 40 60

20

40

60

h∗
1

h∗
2

• = simplices
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3-dimensional lattice simplices with 10 interior points (h∗
3 = 10)

� h∗
1 ≥ h∗

d (Ehrhart)
� h∗

1 ≤ h∗
i (Hibi)

if h∗
d 6= 0, i = 2, . . . , d − 1

Possible candidates:
� h∗

2 ≤ 19h∗
3 + 16

� h∗
2 − h∗

1 ≥ 9h∗
3 + 9

� (4h∗
3 + 5)h∗

2 ≤
h∗

1(5h∗
3 + 4)− 4h∗

3
2 + 4

50 100 150 200

50

100

150

200

h∗
1

h∗
2

• = simplices
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Summary:
There is a lot to be done in Ehrhart Theory, already in dimension 3
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A possible approach: the study of the volume

Vol(P) = 1 + h∗
1 + · · ·+ h∗

d

� Vol(P) is straightforward invariant,
� a lot of motivation coming from other areas.

Two different philosophies:

� I extract a lot of information on the distribution of lattice points in the lattice
polytope and I get the correct value for the volume

h∗
1 , . . . , h∗

d → Vol(P) (Ehrhart’s Theorem)

� I extract a minimal information on the distribution of lattice points in the
lattice polytope and I get bounds for the volume

h∗
d → bounds for Vol(P) (Hensley’s Theorem)
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� It works only for lattice polytopes!

� It works only when h∗
d > 0!

If h∗
d = 0:

1 ≤

Vol(P)

< +∞
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When |P◦ ∩ N| > 0 things get interesting!

Theorem (Lagarias-Ziegler 1991)
A family F of d-dimensional lattice polytopes is finite 1 if and only if

∃K s.t. Vol(P) < K for each P ∈ F

Theorem (Hensley 1983)
P d-dimensional with at least k > 0 interior lattice points. Then

Vol(P) < Kd,k

1up to unimodular equivalence
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Vol(P) < Kd,h∗d

How does Kd,h∗d look like?

In dimension 2 it’s a corollary of Scott’s inequality:

5 10 15 20

5

10

15

20

3∆2

h∗
1

h∗
2

Vol(P) ≤ 9 if h∗
2 = 1, Vol(P) ≤ (h∗

2 + 1)4 if h∗
2 > 1
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Corollary: it is possible to list the d-dimensional polytopes with k-interior points!

d
h∗d 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1
2 16 45 120 211 403 714 1,023 1,830 2,700 3,659
3 674,688 22,673,449 ? ? ? ? ? ? ? ?
4 ? ? ? ? ? ? ? ? ? ?

� d = 1 ← trivial
� d = 2

h∗
d = 1 ← Rabinowitz, 1989

h∗
d = 2 ← Wei-Ding, 2012

3 ≤ h∗
d ≤ 10 ← low-volume (experimental) classification, today

� d = 3
h∗

d = 1 ← Kasprzyk, 2010

h∗
d = 2 ← B.-Kasprzyk, 2010

Nothing else so far
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Vol(P) < Kd,h∗d

How does Kd,h∗d look like?

Many improvements in the last 30 years (Hensley,Lagarias-Ziegler,Pikhurko,...):

Kd,h∗d = d!(8d)d 15d22d+1
h∗

d

Example:
Let’s specialize it for d = 3 and h∗

3 = 1. In this case we have a classification and
we know that: Vol(P) ≤ 72
We get: Vol(P) ≤ 3450074338614867653902299332307782591347228641797067
46655898824732992913919664841092832899257141544566817855301773263605
13125252460819749279137157726514010336646245182211353482004906943892
24936995538787249427540094281429354206514337292939389662931047961933
79559877223074786855340451918965870214516310775421507620577164647259
55181869292510608268659503932676156684685927293610151890116956902812
60623343131477627765413274119055131450295448303222656250000000000

probably not sharp
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For d ≥ 3 Zaks, Perles and Wilks (1982) described a possible candidate for
maximizing the volume (the ZPW-simplex)

Sd
k := conv(0, s1e1, . . . , sd−1ed−1, (k + 1)(sd − 1)ed ), where k ≥ 1,

has k interior points and very large volume.
(si is the Sylvester sequence s1 := 2 sn+1 := 1 +

∏n
i=1 si )

Conjecture
d ≥ 3, h∗

d ≥ 1
Vol(P) ≤ (h∗

d + 1)(sd − 1)2.

Equality only for ZPW-simplices (one extra non-ZPW-simplex for d = 3, h∗
d = 1).

Proved in some special cases
� when P is a simplex and h∗

d = 1 (Averkov-Krümpelmann-Nill 2015)
� when d = 3, h∗

d = 1 (Kasprzyk 2010)
� when d = 3, h∗

d = 2 (B.-Kasprzyk 2016)
� when P is a reflexive polytope (B.-Kasprzyk-Nill 2016)

those are interesting cases, as they contain some ZPW-simplices!
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Suppose 0 ∈ P◦, we define the dual of P as

P∗ := {y ∈ (Rd )∗|〈y , x〉 ≥ −1 for every x ∈ P}

0

N lattice

∗−→ 0

M lattice

P∗ ∩M = {0} ⇒ P∗ ∩M = {0} , but P∗ may not be a lattice polytope!

Definition
If P∗ is a lattice polytope, we call P reflexive.

� (P∗)∗ = P (so P reflexive iff P∗ reflexive)
� P reflexive ⇒ P has one interior point
� P ⊂ Q ⇒ P∗ ⊃ Q∗
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Reflexive polytopes are AMAZING objects!
� Defined with theoretical physics applications in mind (Batyrev, 1994)

� The concept of reflexive is related to the concept of Gorenstein
reflexive

polytopes ↔ Gorenstein toric
Fano varieties

reflexive polytopes up to
translation and integer dilation ↔ Gorenstein

Ehrhart rings

� Every lattice polytope is a face of a reflexive polytope (Haase-Melnikov, 2006)
� They are classified up to dim 4 (Kreuzer-Skarke, 2000)

2 3 4 ≥ 5
16 4, 319 473, 800, 776 ?

� The ZPW-simplices Sd
1 are reflexive
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A dual version of the conjecture is valid for h∗
d = 1.

Theorem (B.,Kasprzyk,Nill 2016)
Let d ≥ 3. If P is a lattice polytope with h∗

d = 1 then

Vol(P∗) ≤ 2(sd − 1)2

Corollary 1
Let d ≥ 3. If P is reflexive

Vol(P) ≤ 2(sd − 1)2

The conjecture is true for reflexive polytopes!
Corollary 2
Let X be a d-dimensional toric Fano variety with at worst canonical singularities,
where d ≥ 3. Then its anticanonical degree is bounded by

(−KX )d ≤ 2(sd − 1)2
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Strategy for the proof

Remember that P ⊂ Q ⇒ P∗ ⊃ Q∗.

It is enough to prove it for minimal lattice polytopes with h∗
d = 1!

0 not minimal

minimal!

Lemma (Kreuzer-Skarke/Kasprzyk): A minimal polytope is either a simplex, or
admits a decomposition in lower dimensional simplices with one interior point

0 = conv 0 ∪ 0
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Strategy for the proof

In higher dimensions the decomposition

P = conv(S1 ∪ · · · ∪ St)

may have a more complex structure

0S1

S2

v
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Strategy for the proof
A consequence of the decomposition of P in simplices is

P∗ ⊆ S∗
1 × · · · × S∗

t .

We use the monotonicity of the normalised volume Vol(P) := d!vol(P):
P∗ ⊆ S∗

1 × · · · × S∗
t ⇒ Vol(P∗) ≤ Vol(S∗

1 × · · · × S∗
t ),

and the sharp bound for the volume of the dual of simplices with one interior
lattice point (AKN)

Vol(P∗) ≤ Vol(S∗
1 × · · · × S∗

t )

= (d1 + · · ·+ dt)!
t∏

i=1
vol(S∗

i )

≤ (d1 + · · ·+ dt)!
t∏

i=1

1
d! 2(sdi − 1)2

We are left with
� the case in which the minimal polytope P decomposes in two

(d − 1)-dimensional simplices
� a few cases in dimension up to 5.
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Strategy for the proof

Case 1: P decomposes in two (d − 1)-dimensional simplices

� describe P∗ as union of slices.

0

� describe each slice in terms of a product of slices of the S∗
i (which are easier

to deal with).
� integrate!

We express vol(P∗) in terms of barycentric coordinates of the Si and we use
existing bounds (AKN)
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Strategy for the proof

Case 2: finitely many cases in dimension ≤ 5

� P∗ decomposes in two lower dimensional simplices.

integration technique +
classification of barycentric
coordinates in dimensions
up to 4

check that the bound holds for all of them
� P∗ decomposes in more lower dimensional simplices.

decomposition +
classification of simplices
with h∗

d = 1 of dimension
up to 3

build minimal polytopes and check that the bound holds for all of them
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What’s next? Fix d ≥ 3 and h∗
d > 0.

It is clear that ∣∣P ∩ Zd ∣∣ < Jd,h∗d

Not much known. Not even a candidate for Jd,h∗d .

� is it true that
∣∣P ∩ Zd

∣∣ ≤ ∣∣∣Sd
h∗d
∩ Zd

∣∣∣?
� what is

∣∣∣Sd
h∗d
∩ Zd

∣∣∣?
� more generally is it true that h∗

i (P) ≤ h∗
i (Sd

h∗d
)?

� what is h∗
i (Sd

h∗d
)?

Conjecture (BK 16)
For d = 3 and h∗

3 > 1

h∗
1 ≤ 16h∗

3 + 19 and h∗
2 ≤ 19h∗

3 + 16.
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Thank you!
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