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P C R full-dimensional lattice polytope with respect to the lattice Z<.
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Combinatorial objects with many beautiful connections with other
subjects:

algebraic geometry (toric geometry)

optimization (integer programming)

commutative algebra (semigroup algebras)

theoretical physics (mirror symmetry)

It's important to study relations among their invariants!
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Some invariants we study:

Lattice points (how many

and where) e e o o e o o s e
Volume . e o o e
Faces (vertices,edges,...) . N
Triangulations

Degree ) ot
Ehrhart polynomial ' e

h*-polynomial « my favoritet
Width
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Some invariants we study:

Lattice points (how many
and Where) . . . ) . ) . . .

Volume .
Faces (vertices,edges,...)
Triangulations

Degree

Ehrhart polynomial
h*-polynomial « my favoritet
Width

Translations and lattice automorphisms preserves all of them

So we consider lattice polytopes up to affine automorphisms of the lattice.
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Continuous volume vs discrete volume



Continuous volume vs discrete volume
The information that we want to know may be spread uniformly on RY or
quantized on Z¢9.
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Continuous volume vs discrete volume
The information that we want to know may be spread uniformly on RY or
quantized on Z¢9.

Jpldu

w standard d-dimensional Lebesgue measure — vol(P)
{1 “counting measure” X — [X NZ4| — |PNZ%

PN Z7| % vol(P)

Matthias Beck
Sinai Robins.

Computing the
Continuous
Discretely

Integer-Point Enumeration in Polyhedra

Illustrated by David Austin

) Springer
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EASY!

vol(P)=|PNZ|—1
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EASY!

vol(P)=|PNZ|—1

EASY thanks to Pick's Formulal

1
vol(P):\POmZd\+§\aPmZd\—1
2 = 9 4+ 4 -1

Proved by Pick in 1899. It works also for non-convex polygons!
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Can we get the volume just looking at the lattice points of the polytope?
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Can we get the volume just looking at the lattice points of the polytope?

It has 4 lattice points (the vertices) but arbitrarily large volume.
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Can we get the volume just looking at the lattice points of the polytope?

emplex! —

It has 4 lattice points (the vertices) but arbitrarily large volume.
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If P is a d-dimensional lattice polytope,we define the function

ehrp(k) := |kP N Z|

THEOREM (EHRHART 1962)

The function ehrp(k) is actually a polynomial of degree d, called the Ehrhart
polynomial of P.
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If P is a d-dimensional lattice polytope,we define the function

ehrp(k) := |kP N Z|

THEOREM (EHRHART 1962)

The function ehrp(k) is actually a polynomial of degree d, called the Ehrhart
polynomial of P.

ehI‘p(k) = Cdkd + Cd_lkd_l 4+ -4+ ak+ao

Co = 1
¢4 = vol(P)
Co 1= vol(28P)

the other coefficients do not have a totally understood combinatorial
interpretation (think of Federico's talk)

If we want to know vol(P), we need to count the lattice points in P,2P,...,dP.
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QUESTION

Can one characterize all polynomials which are Ehrhart polynomial of some lattice
polytope?
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QUESTION

Can one characterize all polynomials which are Ehrhart polynomial of some lattice
polytope?

trivial in dimension 1
solved by Scott in dimension 2 (1976)

totally open in dimension > 3
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One may rephrase the previous question by considering the corresponding
generating series of ehrp

Z chrp(k)th = (1h*E»;21+1

k>0

h*(t) = hit? + h5 t9 V4 A+ 1

polynomial of degree < d
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One may rephrase the previous question by considering the corresponding
generating series of ehrp

Zehrp(k)tk = h(t)

k>0 (1)
h*(t) = hit? + h5 t9 V4 A+ 1
polynomial of degree < d

All the coefficients have a combinatorial interpretation.
Example:
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_ d+1
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All the coefficients have a combinatorial interpretation.
Example:
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Example:
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One may rephrase the previous question by considering the corresponding
generating series of ehrp

Z ehrp(k)th = (1/7*51521“

k>0

h*(t) = hit? + h5 t9 V4 A+ 1

polynomial of degree < d

All the coefficients have a combinatorial interpretation.

Example:
Op~~
ol o
'é Vi ~~
O hel
" \ll\\. ) — h; =1
e Of S~ _ - 1
IS Yo N h(t)=t>+t+1
/ [ ] e 1

AN - h]
O\% I
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One may rephrase the previous question by considering the corresponding
generating series of ehrp

Z ehrp(k)th = (1/7*51521“

k>0

h*(t) = hit? + h5 t9 V4 A+ 1

polynomial of degree < d

All the coefficients have a combinatorial interpretation.

Example:
Op~~
ol o
'é Vi ~~
O hel
" ‘ll\\. ) — h; =1
e Of S~ _ - 1
IS Yo N h(t)=t>+t+1
/ [ ] e 1

O\%' o
- hy=1
This can be extended from simplices to polytopes via half-open triangulations.
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All the coefficients have a combinatorial interpretation!
h? € Z>q for each i
h{ =1
i =|PNZ~d—1
Y = |int(P) N Z7|

Moreover
14 hi + ...+ h} = dlvol(P) =: Vol(P)
monotonicity P C @, h;),- < h*Q),- for each i

normalized volume
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Some necessary conditions are already known.

hy > b} (Ehrhart)
R4+ W + R < B+ hf 4+ hry fori=01,..., |9 -1 (Hibi)
B4+ hy+- b <RI+ h_ 4+ R fori=0,1,...,[5] (Stanley)
if hy#0then 1< hf <hf fori=1,...,d—1 (Hibi)
many others! (Stapledon)
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Some necessary conditions are already known.

hy > b} (Ehrhart)
R4+ W + R < B+ hf 4+ hry fori=01,..., |9 -1 (Hibi)
B4+ hy+- b <RI+ h_ 4+ R fori=0,1,...,[5] (Stanley)
if h% £0then 1< hi <hf fori=1,...,d—1 (Hibi)
many others! (Stapledon)
characterize all characterize all
Ehrhart polynomials v h*-vectors

(h;, hiv sty hZ—la h;)
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2-dimensional lattice polytopes

ha

30

20 |
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|
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2-dimensional lattice polytopes
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2-dimensional lattice polytopes

h3
hy > b} (Ehrhart) 30

THEOREM (SCOTT, 1976)
(1, ht, h3) is h*-vector if and only if
o h; =0, or
o hi <3h 43, or
o h*=(1,7,1).
10

10

20

30 h
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2-dimensional lattice polytopes

he > b, (Ehrhart)

THEOREM (SCOTT, 1976)

(1, hi, h3) is h*-vector if and only if
o h; =0, or
o hi <3h; + 3, or
o h*=(1,7,1).

e = simplices
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2-dimensional lattice polytopes

ha
hy > hj (Ehrhart) 30
THEOREM (SCOTT, 1976)
(1, hi, h3) is h*-vector if and only if
o h; =0, or

o hi <3h5+3, or
o h* =(1,7,1).

37, =

20 |

e = simplices
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3-dimensional hollow lattice polytopes, i.e. no interior points (hj = 0)

h3
30 |
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3-dimensional hollow lattice polytopes, i.e. no interior points (hi = 0)

o = simplices
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3-dimensional hollow lattice polytopes, i.e. no interior points (h}

THEOREM (TREUTLEIN, 2010)
1+ hit+ h3t? is h*-pol. =

h3 =0, or

hi <3h5 +3, or

h*(t) =1+ 7t + 2.

o = simplices
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THEOREM (TREUTLEIN, 2010)
1+ hit+ h3t? is h*-pol. =

h3 =0, or

hi < 3h3+ 3, or

h*(t) =1+ 7t + 2.

THEOREM (HENK-TAGAMI, 2009)

~=

(3

20

o = simplices
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3-dimensional lattice polytopes with 1 interior point (hj = 1)

;> by (Ehrhart)
hi < hy (Hibi)
ifh£0i=2,...,d—1
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3-dimensional lattice polytopes with 1 interior point (hj = 1)

hs
40 ||
hi > hj (Ehrhart)
bt < bt (Hibi) 39|
iR #£0,i=2,...,d—1
20 ||
THEOREM (KASPRZYK, 2010)
There are 674,688 3-dimensional 101
lattice polytopes with 1 interior
lattice point.
4 | | |

|
10 20 30 40 px

e = simplices
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3-dimensional lattice polytopes with 1 interior point (hj = 1)

he > b, (Ehrhart)
hi < by (Hibi)

ifh£0i=2,...,d—1

THEOREM (KASPRZYK, 2010)

There are 674,688 3-dimensional
lattice polytopes with 1 interior
lattice point.

h3

40

30

20

10

20 30

e = simplices

40
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3-dimensional lattice polytopes with 1 interior point (hj = 1)

;> by (Ehrhart)
hi < hy (Hibi)
ifh£0i=2,...,d—1

THEOREM (KASPRZYK, 2010)

There are 674,688 3-dimensional
lattice polytopes with 1 interior
lattice point.
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3-dimensional lattice polytopes with 1 interior point (hj = 1)

;> by (Ehrhart)
hi < hy (Hibi)
ifh£0i=2,...,d—1

THEOREM (KASPRZYK, 2010)

There are 674,688 3-dimensional
lattice polytopes with 1 interior
lattice point.
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0000000000
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3-dimensional lattice polytopes with 2 interior point (hj = 2)

h3
60

40

20

20

40

|
60 hi
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3-dimensional lattice polytopes with 2 interior point (hj = 2)

hs
60
hy > h} (Ehrhart)
ht < h* (Hibi) 401
ifhy#0,i=2,..., d—1
20 ||
A | |

|
20 40 60 p;

e = simplices
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3-dimensional lattice polytopes with 2 interior point (hj = 2)

hs
60
hy > h} (Ehrhart)
ht < h* (Hibi) 401

ifhy#0,i=2,..., d—1

THEOREM (B.,KASPRzZYK, 2016)

There are 22,673,449 20
3-dimensional lattice polytopes
with 2 interior lattice points.

A | |

|
20 40 60 p:

e = simplices
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3-dimensional lattice polytopes with 2 interior point (h3

hy > h} (Ehrhart)

hy < h¥ (Hibi)

ifhy#0,i=2,...,d—1
THEOREM (B.,KASPRzZYK, 2016)

There are 22,673,449
3-dimensional lattice polytopes
with 2 interior lattice points.

h;
60

o8
40 H 5 e

S
20
| | |
20 40 60 hi

e = simplices
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3-dimensional lattice polytopes with 2 interior point (h

hy > h} (Ehrhart)
hy < h¥ (Hibi)
iRy £0,i=2,...,d—1

THEOREM (B.,KASPRzZYK, 2016)

There are 22,673,449
3-dimensional lattice polytopes
with 2 interior lattice points.

Wk
I

N

SN—r

h;
60

foloceielole: %
40 H 5 g %

S
/1
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e = simplices
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3-dimensional lattice polytopes with 2 interior point (hj = 2)

h;
60 -
what are these?
hy > h} (Ehrhart) /o
hi < h? (Hibi) 401 gt
ifhs£0i=2,...,d—1
/1
THEOREM (B.,KASPRzZYK, 2016)
There are 22,673,449 20
3-dimensional lattice polytopes
with 2 interior lattice points.
| | |
20 40 60 h

e = simplices
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3-dimensional lattice polytopes with 2 interior point (hj = 2)

hy > h} (Ehrhart)
hy < h¥ (Hibi)
iRy £0,i=2,...,d—1

THEOREM (B.,KASPRzZYK, 2016)

There are 22,673,449
3-dimensional lattice polytopes
with 2 interior lattice points.

h;
60
what are these?
[oleaelete: %
40 | (e
S8
/1 % 4
20
! ! !
20 40 60 h

e = simplices
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3-dimensional lattice simplices with 10 interior points (h5 = 10)

h3
200 |-

150 |-

100 |-
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| | |
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3-dimensional lattice simplices with 10 interior points (h5 = 10)

b

200 |-
hy > b} (Ehrhart) i
hy < hf (Hibi)
iR £0,i=2...,d—1

100 -

50 |-

|

| | |
50 100 150 200 p

e = simplices
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3-dimensional lattice simplices with 10 interior points (h5 = 10)

hy > b} (Ehrhart)
hi < h? (Hibi)
iR A0, i=2,...,d—1

Possible candidates:

hy < 19h3 + 16

(4h% +5)hs <
hi(5h +4) — 4h3 + 4

h3
200 [

150 |-

100 |-

50 -

| | |
50 100 150 200 px

e = simplices
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3-dimensional lattice simplices with 10 interior points (h5 = 10)

hy > b} (Ehrhart)
hi < h? (Hibi)
iR A0, i=2,...,d—1

Possible candidates:

hi < 19h% + 16
hs — ht > 9h% +9
(4h% +5)hs <

hi(5h +4) — 4h3 + 4

h3
200 ©

150 |-

100 |-

50 -

50 100 150 200 px

e = simplices

17 / 35



3-dimensional lattice simplices with 10 interior points (h5 = 10)

hy > b} (Ehrhart)
hi < h? (Hibi)
iR A0, i=2,...,d—1

Possible candidates:

hi < 19h% + 16
hs — hi > 9h% +9
(4h% +5)hs <

hi(5h +4) — 4h3 + 4

ha
200

150

100

50

| | |
50 100 150 200 px

e = simplices
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Summary:
There is a lot to be done in Ehrhart Theory, already in dimension 3
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A possible approach: the study of the volume
VOl(P) = 14 h} + -+ I}

Vol(P) is straightforward invariant,

a lot of motivation coming from other areas.

19 / 35



A possible approach: the study of the volume
VOl(P) = 1+ hf + -+ + I}
Vol(P) is straightforward invariant,
a lot of motivation coming from other areas.
Two different philosophies:

| extract a lot of information on the distribution of lattice points in the lattice
polytope and | get the correct value for the volume

hy,....,hy —  Vol(P) (Ehrhart's Theorem)

| extract a minimal information on the distribution of lattice points in the
lattice polytope and | get bounds for the volume

h% —  bounds for Vol(P) (Hensley's Theorem)
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It works only for lattice polytopes!
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It works only when A% > 0!

If b = 0:
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It works only for lattice polytopes!

It works only when A% > 0!
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It works only for lattice polytopes!

It works only when A% > 0!

If b = 0:

1 < Vol(P) < +o0
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When |P° N N| > 0 things get interesting!

Lup to unimodular equivalence
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When |P° N N| > 0 things get interesting!

THEOREM (LAGARIAS-ZIEGLER 1991)

A family F of d-dimensional lattice polytopes is finite * if and only if

3K s.t. Vol(P) < K for each P € F

Lup to unimodular equivalence
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When |P° N N| > 0 things get interesting!
THEOREM (LAGARIAS-ZIEGLER 1991)

A family F of d-dimensional lattice polytopes is finite * if and only if

3K s.t. Vol(P) < K for each P € F

THEOREM (HENSLEY 1983)

P d-dimensional with at least k > 0 interior lattice points. Then

VO](P) < Kd,k

Lup to unimodular equivalence
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VO/(P) < Kd,h;‘

How does Ky, p; look like?
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VO/(P) < Kd,h;‘
How does Kg,p= look like?
In dimension 2 it's a corollary of Scott’s inequality:

20
h3

15

10
(X JoNCK JoReN X Jo¥ )
0C@000®00000
ceeococeOcOee
ceecoceee

Vol(P)<9 ifhi=1,  Vol(P)< (h;+1)4 ifhi>1
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Corollary: it is possible to list the d-dimensional polytopes with k-interior points!
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Corollary: it is possible to list the d-dimensional polytopes with k-interior points!

ol 2 3 4 5 6 7 8 9 10

B WN R
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Corollary: it is possible to list the d-dimensional polytopes with k-interior points!

h

Uk

| 1 2 3 4 5 6 7 8 9 10
1 1 T 1 1 1 1 1 1 1

B WN R

d =1 < trivial
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Corollary: it is possible to list the d-dimensional polytopes with k-interior points!

g |1 2 3 4 5 6 7 8 9 10
1 1 1 11 1 1 1 1 1 1
2 16

3

4

d =1 ¢ trivial
d=2

o hj =1 + Rabinowitz, 1989
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Corollary: it is possible to list the d-dimensional polytopes with k-interior points!

g |1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 16 45
3
4
d =1 < trivial
d=2
o hy =1 < Rabinowitz, 1989
o hj =2 « Wei-Ding, 2012
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Corollary: it is possible to list the d-dimensional polytopes with k-interior points!

9 4 5 6 7 8 9 10
1 1 1 1 T T T T 1 1 T
2 16 45 120 211 403 714 1,023 1,830 2,700 3,659
3
4

d =1 < trivial

d=2

©

h; = 1 + Rabinowitz, 1989
h} = 2 < Wei-Ding, 2012
3 < h <10 <+ low-volume (experimental) classification, today

©
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Corollary: it is possible to list the d-dimensional polytopes with k-interior points!

s | 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 16 45 120 211 403 714 1,023 1,830 2700 3,650
3 674,688

4

d =1 < trivial

d=2

o hy =1 < Rabinowitz, 1989
h} = 2 < Wei-Ding, 2012

o 3 < hjy <10 <+ low-volume (experimental) classification, today
d=3

o hj =1 <« Kasprzyk, 2010

©
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Corollary: it is possible to list the d-dimensional polytopes with k-interior points!

s | 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 16 45 120 211 403 714 1,023 1,830 2,700 3,659
3 674,688 22,673,449
4
d =1 < trivial
d=2

o hj =1 + Rabinowitz, 1989

o hy = 2 < Wei-Ding, 2012

o 3 < hy <10 « low-volume (experimental) classification, today
d=3

©

h; = 1 < Kasprzyk, 2010
h}; = 2 + B.-Kasprzyk, 2010
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Corollary: it is possible to list the d-dimensional polytopes with k-interior points!

g |1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 16 45 120 211 403 714 1,023 1,830 2,700 3,659
3 674,688 22,673,449 7 ? ? ? ? ? ? ?
4 ? ? 2 ? ? ? ? ? 2 ?
d =1 < trivial
d=2

o hj =1 + Rabinowitz, 1989

o hy = 2 < Wei-Ding, 2012

o 3 < hy <10 « low-volume (experimental) classification, today
d=3

©

h; = 1 < Kasprzyk, 2010
h}; = 2 + B.-Kasprzyk, 2010

Nothing else so far
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VO/(P) < Kd,h(’;

How does Kd_,h; look like?
Many improvements in the last 30 years (Hensley,Lagarias-Ziegler,Pikhurko,...):

Ka.p: = d!(8d)915%% "

24/ 35



VO/(P) < Kd,h(’;

How does Kd_,h; look like?
Many improvements in the last 30 years (Hensley,Lagarias-Ziegler,Pikhurko,...):

Ka.p: = d!(8d)915%% "

Example:
Let's specialize it for d = 3 and h; = 1. In this case we have a classification and
we know that: Vol(P) < 72
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VO/(P) < Kd,h(’;

How does Kd_,h; look like?
Many improvements in the last 30 years (Hensley,Lagarias-Ziegler,Pikhurko,...):

Ka.p: = d!(8d)915%% "

Example:

Let's specialize it for d = 3 and h; = 1. In this case we have a classification and
we know that: Vol(P) < 72

We get: Vol(P) < 3450074338614867653902299332307782591347228641797067
46655898824732992913919664841092832899257141544566817855301773263605
13125252460819749279137157726514010336646245182211353482004906943892
24936995538787249427540094281429354206514337292939389662931047961933
79559877223074786855340451918965870214516310775421507620577164647259
55181869292510608268659503932676156684685927293610151890116956902812
60623343131477627765413274119055131450295448303222656250000000000

probably not sharp
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For d > 3 Zaks, Perles and Wilks (1982) described a possible candidate for
maximizing the volume (the ZPW-simplex)

Sg = COIIV(075161, ey Sd—16d—1, (k + 1)(Sd — ].)(i'd)7 where k > 1,

has k interior points and very large volume.
(s; is the Sylvester sequence s; := 2 sni1 =1+ 10y s)

25 / 35



For d > 3 Zaks, Perles and Wilks (1982) described a possible candidate for
maximizing the volume (the ZPW-simplex)

Sg = COIIV(075161, ey Sd—16d—1, (k + 1)(Sd — ].)(i'd)7 where k > 1,
has k interior points and very large volume.

(s; is the Sylvester sequence s; := 2 sni1 =1+ 10y s)

CONJECTURE
d>3,hy>1
Vol(P) < (b} + 1)(sq — 1)%.

Equality only for ZPW-simplices (one extra non-ZPW-simplex for d = 3, h}; = 1).
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For d > 3 Zaks, Perles and Wilks (1982) described a possible candidate for
maximizing the volume (the ZPW-simplex)

Sg = COIIV(075161, ey Sd—16d—1, (k + 1)(Sd — ].)(i'd)7 where k > 1,
has k interior points and very large volume.

(s; is the Sylvester sequence s; := 2 sni1 =1+ 10y s)

CONJECTURE
d>3,hy>1
Vol(P) < (b} + 1)(sq — 1)%.

Equality only for ZPW-simplices (one extra non-ZPW-simplex for d = 3, h}; = 1).

Proved in some special cases

when P is a simplex and h}; =1 (Averkov-Kriimpelmann-Nill 2015)
when d =3, b} =1 (Kasprzyk 2010)
when d =3, b} =2 (B.-Kasprzyk 2016)
when P is a reflexive polytope (B.-Kasprzyk-Nill 2016)

those are interesting cases, as they contain some ZPW-simplices!
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Suppose 0 € P°, we define the dual of P as

P* .= {y € (RY)*|(y,x) > —1 for every x € P}
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Suppose 0 € P°, we define the dual of P as

P* = {y € (RY)*|(y,x) > —1 for every x € P}

N lattice

P*NM={0} = P*NM={0}, but P* may not be a lattice polytope!

DEFINITION
If P* is a lattice polytope, we call P reflexive.

(P*)* = P (so P reflexive iff P* reflexive)
P reflexive = P has one interior point
PCQ=P DQ"

L] L] L]
M lattice
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Reflexive polytopes are AMAZING objects!
Defined with theoretical physics applications in mind (Batyrev, 1994)
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The concept of reflexive is related to the concept of Gorenstein

reflexive ¢ Gorenstein toric reflexive polytopes up to o Gorenstein
polytopes Fano varieties translation and integer dilation Ehrhart rings

Every lattice polytope is a face of a reflexive polytope (Haase-Melnikov, 2006)
They are classified up to dim 4 (Kreuzer-Skarke, 2000)
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Reflexive polytopes are AMAZING objects!
Defined with theoretical physics applications in mind (Batyrev, 1994)
The concept of reflexive is related to the concept of Gorenstein

reflexive ¢ Gorenstein toric reflexive polytopes up to o Gorenstein
polytopes Fano varieties translation and integer dilation Ehrhart rings

Every lattice polytope is a face of a reflexive polytope (Haase-Melnikov, 2006)
They are classified up to dim 4 (Kreuzer-Skarke, 2000)
2| 3 | 4 | >5
16 | 4,319 | 473,800,776 | 7

The ZPW-simplices S¢ are reflexive
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A dual version of the conjecture is valid for b, = 1.

THEOREM (B.,KASPRZYK,NILL 2016)

Let d > 3. If P is a lattice polytope with h}; = 1 then

Vol(P*) < 2(sg — 1)?
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THEOREM (B.,KASPRZYK,NILL 2016)

Let d > 3. If P is a lattice polytope with h}; = 1 then

Vol(P*) < 2(sg — 1)?

Corollary 1
Let d > 3. If P is reflexive

Vol(P) < 2(syg — 1)?

The conjecture is true for reflexive polytopes!
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A dual version of the conjecture is valid for b, = 1.

THEOREM (B.,KASPRZYK,NILL 2016)

Let d > 3. If P is a lattice polytope with h}; = 1 then
Vol(P*) < 2(sg — 1)?
Corollary 1
Let d > 3. If P is reflexive
Vol(P) < 2(syg — 1)?

The conjecture is true for reflexive polytopes!

Corollary 2

Let X be a d-dimensional toric Fano variety with at worst canonical singularities,
where d > 3. Then its anticanonical degree is bounded by

(—Kx)? < 2(sq — 1)?
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STRATEGY FOR THE PROOF

Remember that P C Q = P* O Q*.
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STRATEGY FOR THE PROOF

Remember that P C Q = P* O Q*.

It is enough to prove it for minimal lattice polytopes with h} = 1!

minimal!

Lemma (Kreuzer-Skarke/Kasprzyk): A minimal polytope is either a simplex, or
admits a decomposition in lower dimensional simplices with one interior point

L] L] L] .0. L] IO.
‘:) = CONV e—e—e [J o °
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STRATEGY FOR THE PROOF

In higher dimensions the decomposition
P =conv($5U---US;)

may have a more complex structure
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STRATEGY FOR THE PROOF
A consequence of the decomposition of P in simplices is

P*C S x---x 5.
We use the monotonicity of the normalised volume Vol(P) := d!vol(P):
P* C S5 x---x 5/ = Vol(P*) <Vol(S5] x -+ x 5;),
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P*C S x---x 5.
We use the monotonicity of the normalised volume Vol(P) := d!vol(P):
P* C S5 x---x 5/ = Vol(P*) <Vol(S5] x -+ x 5;),

and the sharp bound for the volume of the dual of simplices with one interior
lattice point (AKN)

Vol(P*) < Vol(5; x -+- x §f)

t
= (i + -+ de) ] vol(S})
i=1
1
(it d) ] o 2ss — 1)

i=1
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STRATEGY FOR THE PROOF
A consequence of the decomposition of P in simplices is

P*C S x---x 5.
We use the monotonicity of the normalised volume Vol(P) := d!vol(P):
P* C S5 x---x 5/ = Vol(P*) <Vol(S5] x -+ x 5;),

and the sharp bound for the volume of the dual of simplices with one interior
lattice point (AKN)

Vol(P*) < Vol(5; x -+- x §f)

t
= (i + -+ de) ] vol(S})
i=1
|
(it d) ] o 2ss — 1)
i=1
We are left with
the case in which the minimal polytope P decomposes in two
(d — 1)-dimensional simplices
a few cases in dimension up to 5.
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STRATEGY FOR THE PROOF

Case 1: P decomposes in two (d — 1)-dimensional simplices
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STRATEGY FOR THE PROOF

Case 1: P decomposes in two (d — 1)-dimensional simplices

describe P* as union of slices.

describe each slice in terms of a product of slices of the S/ (which are easier
to deal with).

integrate!

We express vol(P*) in terms of barycentric coordinates of the S; and we use
existing bounds (AKN)

32 /35



STRATEGY FOR THE PROOF

Case 2: finitely many cases in dimension < 5
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STRATEGY FOR THE PROOF

Case 2: finitely many cases in dimension < 5

P* decomposes in two lower dimensional simplices.
classification of barycentric

+ coordinates in dimensions

integration technique
up to 4

check that the bound holds for all of them
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STRATEGY FOR THE PROOF

Case 2: finitely many cases in dimension < 5

P* decomposes in two lower dimensional simplices.
classification of barycentric

+ coordinates in dimensions

integration technique
up to 4

check that the bound holds for all of them

P* decomposes in more lower dimensional simplices.
classification of simplices

with A% = 1 of dimension
up to 3
build minimal polytopes and check that the bound holds for all of them

decomposition +
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What’s next? Fix d > 3 and h} > 0.

It is clear that
‘PﬂZd‘ < Jd,h;

Not much known. Not even a candidate for deh;.
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What’s next? Fix d > 3 and h} > 0.

It is clear that
‘PﬂZd‘ < Jd,h;

Not much known. Not even a candidate for deh;.

is it true that |PﬁZd| < ‘Sﬁ; ﬂZd‘?
what is |S¢. 127
d
more generally is it true that hf(P) < hf(Sf.)?
is h*(S9.)?
what is h} (Sh;)'
CONJECTURE (BK 16)

Ford =3 and h; > 1

W <16k +19  and  hi < 10h% + 16.
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Thank you!



