A characterization of simplicial manifolds with $g_2 \leq 2$

Hailun Zheng

University of Washington

hailunz@uw.edu

January 17, 2017

Hailun Zheng (UW)

simplicial manifolds with $g_2 \leq 2$

January 17, 2017 1 / 24

Image: A matrix of the second seco

3

Outline

- Basics on simplicial complexes and known theorems.
- Three different retriangulations of complexes.
- Main theorems.
- Additional remarks and open problems.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

Simplicial complexes

Definition

A simplicial complex Δ on vertex set V is a collection of subsets $\tau \subseteq V$, called faces, that is closed under inclusion.

For a simplicial complex Δ , define:

- dim $\tau := |\tau| 1$ for $\tau \in \Delta$,;
- $each dim \Delta := \max \{ \dim \tau : \tau \in \Delta \};$
- a facet τ is a maximal face under inclusion;
- the star of a face τ is $\operatorname{st}_{\Delta} \tau := \{ \sigma \in \Delta : \sigma \cup \tau \in \Delta \};$
- the link of a face τ is $lk_{\Delta} \tau := \{ \sigma \tau \in \Delta : \tau \subseteq \sigma \in \Delta \};$
- a missing face τ is a subset of V(Δ) such that τ is not a face of Δ but every proper subset of τ is.

 Δ is called *pure*, if all of its facets have the same dimension.

 Δ is called *prime*, if it is pure and has no missing facets.

200

Face-number related invariants

Let Δ be a (d-1)-dimensional simplicial complex.

Definition

The *f*-number $f_i = f_i(\Delta)$ denotes the number of *i*-dimensional faces of Δ . The vector $(f_{-1}, f_0, \dots, f_{d-1})$ is called the *f*-vector.

Definition

The *h*-vector of Δ , (h_0, h_1, \cdots, h_d) , is defined by the relation $\sum_{j=0}^{d} f_{j-1}(x-1)^{d-j} = \sum_{i=0}^{d} h_i x^{d-i}$.

Definition

The g-vector of Δ is $(g_0, g_1, \dots, g_{\lfloor \frac{d}{2} \rfloor})$ whose entries are given by

•
$$g_0 = 1;$$

$$g_i = h_i - h_{i-1} \text{ for } 1 \le i \le \left\lfloor \frac{d}{2} \right\rfloor$$

For any simplicial complex Δ , there is an associated topological space $||\Delta||$.

- A polytope is the convex hull of a finite set of points in some ℝ^e. It is called a *simplicial d*-polytope if it is *d*-dimensional and all of its facets are simplicial. The boundary complex of a simplicial polytope is called a *polytopal sphere*.
- A simplicial sphere (resp. manifold) is a simplicial complex whose geometric realization is homeomorphic to a sphere (resp. manifold).

Central question: Characterize simplicial manifolds with small g_i , $i \ge 2$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

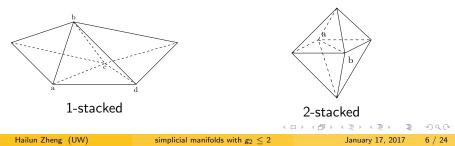
(r-1)-stacked spheres

Given a simplicial ball Δ , the faces of $\Delta - \partial \Delta$ are called the *interior* faces of Δ .

Definition

Let Δ be a simplicial *d*-ball. Δ is said to be (r-1)-stacked if Δ has no interior *k*-faces for $k \leq d-r$. An (r-1)-stacked simplicial sphere is the boundary complex of an (r-1)-stacked triangulation of a simplicial ball.

Remark: 1-stacked = stacked.



Previous results, $g_2 = 0$

Theorem (Kalai, 1987)

Let Δ be a simplicial manifold of dimension $d \ge 2$. Then $g_2 \ge 0$. Furthermore, if $d \ge 3$, then equality holds if and only if Δ is a stacked sphere.

Remarks:

- The theorem continues to hold in the class of normal pseudomanifolds.
- The proof is based on rigidity theory of graphs.

IN INCO

Previous results, $g_i = 0$ for $i \ge 2$

Theorem (Murai-Nevo, 2013)

Let Δ be polytopal (d-1)-sphere and $2 \le r \le d/2$. Then $g_r(\Delta) = 0$ if and only if Δ is (r-1)-stacked.

Remarks:

- The theorem is also true for homology spheres with weak Lefschetz property over a field of characteristic 0.
- The proof is based on commutative algebra tools.

イロト 不得 トイヨト イヨト ヨー シタウ

Previous result 3, $g_2 = 1$

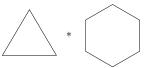
Given two simplicial complexes Δ_1 and Δ_2 on disjoint vertex sets, define their join, $\Delta_1 * \Delta_2$, as the complex on vertex set $V(\Delta_1) \cup V(\Delta_2)$ whose faces are $\{\tau_1 \cup \tau_2 : \tau_1 \in \Delta_1, \tau_2 \in \Delta_2\}$. We also denote the boundary complex of the *i*-dimensional simplex as $\partial \sigma^i$.

Theorem (Nevo-Novinsky, 2011)

Let $d \ge 4$, and let Δ be a prime simplicial (d - 1)-sphere and $g_2(\Delta) = 1$. Then Δ is combinatorially isomorphic to one of the following cases:

•
$$\partial \sigma^i * \partial \sigma^{d-i}$$
, where $2 \leq i \leq d-2$;

2 $\partial \sigma^{d-2} * C$, where C is a cycle.



イロト 不得 トイヨト イヨト ヨー シタウ

Central retriangulation, definition

Definition

Assume that

- Δ is a *d*-dimensional simplicial complex;
- B is a subcomplex of Δ which is also a simplicial d-ball.

The **central retriangulation** of Δ along *B*, denoted as $\operatorname{crtr}_B(\Delta)$, is the new complex we obtain after

- removing all of the interior faces of B;
- **2** replacing them with the interior faces of the cone on ∂B .

(the cone point is a new vertex v.)

Central retriangulation, examples

Examples:

 $f(\Delta) = f(\operatorname{crtr}_B(\Delta)) = (1, 11, 20, 10)$

 $g_2(\operatorname{crtr}_B(\Delta)) = g_2(\Delta) + (\# \text{ of new edges} - 4 \cdot (\# \text{ of new vertices}) = 1).$

Sac

Central retriangulation, properties

Any (r-1)-stacked sphere S uniquely determines an (r-1)-stacked ball whose boundary complex is S. We denotes this (r-1)-stacked ball by S(r-1).

Properties:

- If the retriangulated subcomplex B is an (r-1)-stacked ball, where $2 \le r \le d/2$, then $g_i(\operatorname{crtr}_B(\Delta)) = g_i(\Delta) + g_{i-1}(\partial B)$ for $1 \le i \le d/2$.
- If B is the union of some facets of ∆ whose facet-ridge graph is a tree, then B is a stacked ball.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Inverse stellar retriangulation, definition

Definition

Let Δ be a *d*-dimensional simplicial complex. Assume that there is a vertex $v \in V(\Delta)$ such that

1 $lk_{\Delta} v$ is a (r-1)-stacked (d-1)-sphere for some $2 \le r \le d/2$;

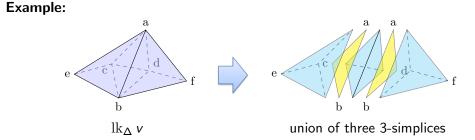
2 no interior face of $(lk_{\Delta} v)(r-1)$ is a face of Δ .

Then define the *inverse stellar retriangulation* on vertex v by

$$\operatorname{sd}_{\nu}^{-1}(\Delta) = (\Delta \setminus \{\nu\}) \cup (\operatorname{lk}_{\Delta} \nu)(r-1).$$

イロト 不得 トイヨト イヨト ヨー シタウ

Inverse stellar retriangulation, properties



Properties of inverse stellar retriangulation:

The Swartz operation, part 1

Definition

Let Δ be a simplicial (d-1)-manifold. If a missing facet τ of $lk_{\Delta} v$ is also a missing face of Δ , then we define the *Swartz operation* on (v, τ) of Δ by

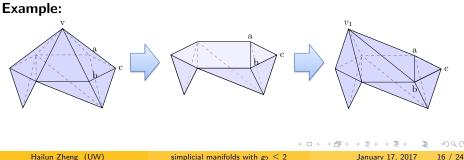
- 1 removing v;
- 2 adding τ to Δ ;
- Coning off two remaining simplicial spheres S₁, S₂ with two new vertices v₁, v₂.

(Here S_1 , S_2 are the two simplicial spheres such that their connected sum by identifying the face τ is $lk_{\Delta} v$.)

イロト 不得 トイヨト イヨト ヨー シタウ

The Swartz operation, part 2

- If any of the two spheres, say S_1 , is the boundary complex of a simplex, then we add the simplex to $\Delta \cup \{\tau\}$ instead of coning off S_1 with v_1 . The resulting complex is denoted by $so_{v,\tau}(\Delta)$.
- 2 If dim $\Delta \geq 3$, then iterating this process, we add all missing facets of $lk_{\Delta} v$ to Δ . The resulting complex is denoted by $so_{v}(\Delta)$.



The Swartz Operation, properties

Properties of the Swartz Operation:

- $so_{\nu}^{-1}(\Delta)$ is PL-homeomorphic to Δ .
- **2** If $lk_{\Delta} v$ is stacked, then $so_{v}(\Delta) = sd_{v}^{-1}(\Delta)$.
- **③** If Δ is of dimension \geq 3, then

$$g_2(so_v(\Delta)) = g_2(\Delta) - \#\{\text{missing facets of } lk_\Delta v\}.$$

Simplification: It suffices to consider prime simplicial manifolds.

Theorem (Zheng, 2016)

Let $d \ge 5$, and let Δ be a prime simplicial (d - 1)-manifold with $g_2(\Delta) = 1$. Then Δ is obtained by centrally retriangulating a stacked (d - 1)-sphere along the star of one of its faces, whose dimension, *i*, satisfies 0 < i < d - 1.

Corollary

This Δ is either the join of $\partial \sigma^i$ and $\partial \sigma^{d-i}$, where $2 \leq i \leq d-2$, or the join of $\partial \sigma^{d-2}$ and a cycle.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Sketch of Proof, part 1

The starting point:

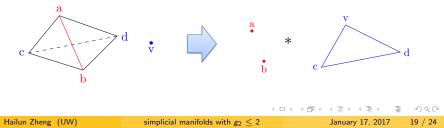
L

$$\sum_{v \in V(\Delta)} g_2(\operatorname{lk}_\Delta v) = d - 1 + 3g_3(\Delta) = d + 2 ext{ or } d - 1.$$

Case 1: Every vertex link has $g_2 = 1$.

 $\Rightarrow \Delta$ is the join of two boundary complexes of simplices.

 \Rightarrow It is obtained by centrally retriangulating $\partial\sigma^d$ along the star of a face.

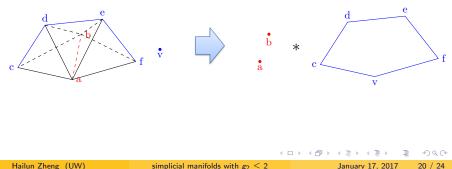


Sketch of proof, part 2

Case 2: There is a vertex link with $g_2 = 0$.

 $\Rightarrow \Delta$ is the join of a cycle and $\partial \sigma^{d-2}$.

 \Rightarrow It is obtained by centrally retriangulating a certain stacked sphere along the union of two facets.



Theorem (Zheng, 2016)

Let $d \ge 4$. Every prime simplicial (d - 1)-manifold with $g_2 = 2$ is either the octahedral 3-sphere (in this case d = 4), or it can be obtained from a polytopal (d - 1)-sphere with $g_2 = 0$ or 1, by centrally retriangulating along some stacked subcomplex.

Corollary

All simplicial (d-1)-spheres with $g_2 \leq 2$ are polytopal.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Additional remarks

- Both of the main theorems continue to hold for the class of normal pseudomanifolds when the dimension d 1 is at least 4.
- For all d ≥ 4, there are triangulations of ℝP² * S^{d-4} that have g₂ = 3. This implies that our theorem cannot be extended to higher g₂ in the class of normal pseudomanifolds.
- It appears that many non-polytopal spheres that are known so far have g₂ ≥ 5: the Barnette sphere: g₂ = 5; all non-polytopal 3-spheres with nine vertices: g₂ ≥ 5.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Open problems

- What is the minimum value of g_2 for non-polytopal (d-1)-spheres?
- ② Characterize simplicial spheres with $g_i = 1$ for any $i \ge 3$.
- Characterize simplicial balls with $g_2(\Delta, \partial \Delta) = 1$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

Thank You!

Hailun Zheng (UW)

simplicial manifolds with $g_2 \leq 2$

January 17, 2017 24 / 24