The Finiteness Threshold Width of Lattice Polytopes

Jan Hofmann

FU Berlin – Berlin Mathematical School

January 18, 2017

All of this is joint work with

Mónica

Paco

Christian

The finiteness threshold width of lattice polytopes arXiv:1607.00798 $\,$

Some known classifications:

reflexive polytopes up to dimension 4 [KS09]

- reflexive polytopes up to dimension 4 [KS09]
- smooth reflexive polytopes up to dimension 9 [Ob07,LP08]

- reflexive polytopes up to dimension 4 [KS09]
- smooth reflexive polytopes up to dimension 9 [Ob07,LP08]
- canonical 3-polytopes [Kas10]

- reflexive polytopes up to dimension 4 [KS09]
- smooth reflexive polytopes up to dimension 9 [Ob07,LP08]
- canonical 3-polytopes [Kas10]
- hollow 3-polytopes [AWW11,AKW15]

- reflexive polytopes up to dimension 4 [KS09]
- smooth reflexive polytopes up to dimension 9 [Ob07,LP08]
- canonical 3-polytopes [Kas10]
- hollow 3-polytopes [AWW11,AKW15]

Definition: Equivalent polytopes

Two lattice polytopes P and P' are called *unimodularly equivalent*, if there is a lattice-preserving affine isomorphism mapping them onto each other, i.e. P' = AP + b, with $A \in GL_d(\mathbb{Z}), b \in \mathbb{Z}^d$.

- reflexive polytopes up to dimension 4 [KS09]
- smooth reflexive polytopes up to dimension 9 [Ob07,LP08]
- canonical 3-polytopes [Kas10]
- hollow 3-polytopes [AWW11,AKW15]

Definition: Equivalent polytopes

Two lattice polytopes P and P' are called *unimodularly equivalent*, if there is a lattice-preserving affine isomorphism mapping them onto each other, i.e. P' = AP + b, with $A \in GL_d(\mathbb{Z}), b \in \mathbb{Z}^d$.

Finitely many lattice polytopes := finitely many up to the above equivalence relation

Naive approach: Enumerate by dimension and size $(|P \cap \mathbb{Z}^d|)$ of P

• d = 1 works great:

$ P \cap \mathbb{Z}^d $	# different polytopes	
2	1	•• ,
3	1	• • • • •
4	1	• • • • • • • • •
:	:	÷

Naive approach: Enumerate by dimension and size $(n := |P \cap \mathbb{Z}^d|)$ of P = d = 2 also works:

п	# different polytopes	▶
3	1	, –
4	3	
5	6	
÷	:	

Naive approach: Enumerate by dimension and size $(n := |P \cap \mathbb{Z}^d|)$ of P = d = 2 also works:

Naive approach: Enumerate by dimension and size $(n := |P \cap \mathbb{Z}^d|)$ of P = d = 2 also works:

Works thanks to:

Pick's Theorem, vol(P) = 2i + b - 2

Naive approach: Enumerate by dimension and size $(n := |P \cap \mathbb{Z}^d|)$ of P = d = 2 also works:

Works thanks to:

Pick's Theorem, $vol(P) = 2i + b - 2 \implies vol(P) \le 2n - 5$

Naive approach: Enumerate by dimension and size $(n := |P \cap \mathbb{Z}^d|)$ of P = d = 2 also works:

Works thanks to:

- Pick's Theorem, $vol(P) = 2i + b 2 \implies vol(P) \le 2n 5$
- Every full-dimensional polytope contains a standard simplex.

Naive approach: Enumerate by dimension and size $(n := |P \cap \mathbb{Z}^d|)$ of P = d = 3 fails miserably:

Naive approach: Enumerate by dimension and size $(n := |P \cap \mathbb{Z}^d|)$ of P = d = 3 fails miserably:

Rescue in dimension 3

Theorem[BS16a]

For each size n all but finitely many lattice 3-polytopes have width 1.

Rescue in dimension 3

Theorem[BS16a]

For each size n all but finitely many lattice 3-polytopes have width 1.

Definition: (lattice) width of a polytope

The width of a lattice polytope P with respect to a linear functional $\ell \in (\mathbb{R}^d)^*$ is defined as

$$\operatorname{width}_{\ell}(P) := \max_{p,q \in P} |\ell \cdot p - \ell \cdot q| ,$$

and the *(lattice)* width of P is the minimum such width_{ℓ}(P) where ℓ ranges over non-zero integer functionals:

width(
$$P$$
) := $\min_{\ell \in (\mathbb{Z}^d)^* \setminus \{0\}}$ width _{ℓ} (P).

Width quiz

width
$$(P) = ?$$

Width quiz

width
$$(P) = ?$$

 For more complicated examples, use polymake (\$P->LATTICE_WIDTH).

Width quiz

width
$$(P) = 4$$

 For more complicated examples, use polymake (\$P->LATTICE_WIDTH).

Enumerating lattice 3-polytopes

Theorem[BS16a]

For each size n all but finitely many lattice 3-polytopes have width 1.

Enumerating lattice 3-polytopes

Theorem[BS16a]

For each size n all but finitely many lattice 3-polytopes have width 1.

# vertices	4	5	6	7	8	9	10	total
size 5	9	0	—	—	—	—	-	9
size 6	36	40	0	—	—	—	—	76
size 7	103	296	97	0	_	_	-	496
size 8	193	1195	1140	147	0	_	_	2675
size 9	282	2853	5920	2491	152	0	—	11698
size 10	478	5985	18505	16384	3575	108	0	45035
size 11	619	11432	48103	64256	28570	3425	59	156464

Table: Lattice 3-polytopes of width larger than one and size \leq 11, classified according to their size and number of vertices.

Enumerating lattice 3-polytopes

Theorem[BS16a]

For each size n all but finitely many lattice 3-polytopes have width 1.

# vertices	4	5	6	7	8	9	10	total
size 5	9	0	—	—	—	—		9
size 6	36	40	0	—	_	—	—	76
size 7	103	296	97	0	_	_	-	496
size 8	193	1195	1140	147	0	_	_	2675
size 9	282	2853	5920	2491	152	0	-	11698
size 10	478	5985	18505	16384	3575	108	0	45035
size 11	619	11432	48103	64256	28570	3425	59	156464

Table: Lattice 3-polytopes of width larger than one and size \leq 11, classified according to their size and number of vertices.

```
How about the general case?
```

Definition: Finiteness threshold width

For each d and each $n \ge d + 1$, denote by $w^{\infty}(d, n) \in \mathbb{N} \cup \{\infty\}$ the minimal width $W \ge 0$ such that there exist only finitely many lattice d-polytopes of size n and width > W. Let $w^{\infty}(d) := \sup_{n \in \mathbb{N}} w^{\infty}(d, n)$.

Definition: Finiteness threshold width

For each d and each $n \ge d + 1$, denote by $w^{\infty}(d, n) \in \mathbb{N} \cup \{\infty\}$ the minimal width $W \ge 0$ such that there exist only finitely many lattice d-polytopes of size n and width > W. Let $w^{\infty}(d) := \sup_{n \in \mathbb{N}} w^{\infty}(d, n)$.

•
$$w^{\infty}(1) = w^{\infty}(2) = 0$$

Definition: Finiteness threshold width

For each d and each $n \ge d + 1$, denote by $w^{\infty}(d, n) \in \mathbb{N} \cup \{\infty\}$ the minimal width $W \ge 0$ such that there exist only finitely many lattice d-polytopes of size n and width > W. Let $w^{\infty}(d) := \sup_{n \in \mathbb{N}} w^{\infty}(d, n)$.

•
$$w^{\infty}(1) = w^{\infty}(2) = 0$$

• $w^{\infty}(3) = 1$

Theorem

$$w^{\infty}(d) < \infty$$

•
$$w_H(d-2) \leq w^\infty(d) \leq w_H(d-1)$$

•
$$w_H(d-2) \leq w^\infty(d) \leq w_H(d-1)$$

Definitions: Hollow polytopes, empty polytopes, $w_H(d) \& w_E(d)$

We say a lattice polytope is *hollow*, if $P \cap \mathbb{Z}^d \subseteq \delta P$. We say it is *empty*, if $P \cap \mathbb{Z}^d = \text{vert}(P)$. We denote by $w_H(d)$ and $w_E(d)$ the maximum widths of hollow and empty lattice *d*-polytopes, respectively.

Theorem	Theorem
$w^\infty(d) < \infty$	$w^{\infty}(4)=2$
Corollary	

There are only finitely many empty 4-simplices of width larger than two.

Theorem	Theorem
$w^\infty(d) < \infty$	$w^{\infty}(4)=2$

Corollary

There are only finitely many empty 4-simplices of width larger than two.

This Corollary was proclaimed in [BBBK11], but the proof has a gap.

Theorem	Theorem
$w^\infty(d) < \infty$	$w^{\infty}(4)=2$

Corollary

There are only finitely many empty 4-simplices of width larger than two.

- This Corollary was proclaimed in [BBBK11], but the proof has a gap.
- Full classification of those polytopes was computed recently by Óscar Iglesias, verifying a conjecture by Christian Haase[H00]
The finiteness threshold width - is finite

Theorem

 $w^{\infty}(d) < \infty$

The finiteness threshold width - is finite

Theorem

 $w^{\infty}(d) < \infty$

•
$$w^{\infty}(d) \leq w_H(d-1)$$

The finiteness threshold width - is finite

Theorem

 $w^{\infty}(d) < \infty$

• $w^{\infty}(d) \leq w_{H}(d-1) \leq O(d^{rac{3}{2}})$ by the flatness theorem [KL88]

d	$w_E(d-1)$	$w_H(d-2)$	$w^{\infty}(d)$	$w_H(d-1)$
1	—	—	0	_
2	1	—	0	1
3	1	1	1	2
4	1	2	2	3
5	\geq 4	3	\geq 4	\ge 4

d	$w_E(d-1)$	$w_H(d-2)$	$w^{\infty}(d)$	$w_H(d-1)$
1	—	—	0	—
2	1	_	0	1
3	1	1	1	2
4	1	2	2	3
5	\geq 4	3	\geq 4	\geq 4

In particular $w_H(2) = 2 \le w^{\infty}(4) \le 3 = w_H(3)$.

How do *d*-polytopes of size *n* look like?

- How do *d*-polytopes of size *n* look like?
- Non-hollow *P* have bounded volume. [He83]
- Only finitely many P of bounded volume. [LZ91]

- How do *d*-polytopes of size *n* look like?
- Non-hollow *P* have bounded volume. [He83]
- Only finitely many *P* of bounded volume. [LZ91]
 - \implies All but f. m. *d*-polytopes of size *n* are hollow.

- How do *d*-polytopes of size *n* look like?
- Non-hollow *P* have bounded volume. [He83]
- Only finitely many P of bounded volume. [LZ91]
 All but f. m. d-polytopes of size n are hollow.
- All but f.m. hollow *d*-polytopes project onto a hollow (*d* 1)-polytope.[NZ11]

- How do *d*-polytopes of size *n* look like?
- Non-hollow *P* have bounded volume. [He83]
- Only finitely many P of bounded volume. [LZ91]
 All but f me dealstance of size near balls
 - \implies All but f. m. *d*-polytopes of size *n* are hollow.
- All but f.m. hollow *d*-polytopes project onto a hollow (*d* 1)-polytope.[NZ11]

Lemma

Let $d < n \in \mathbb{N}$. All but finitely many lattice *d*-polytopes of size bounded by *n* are hollow. Furthermore, all but finitely many of the hollow *d*-polytopes admit a projection to some hollow lattice (d - 1)-polytope.

- How do *d*-polytopes of size *n* look like?
- Non-hollow *P* have bounded volume. [He83]
- Only finitely many P of bounded volume. [LZ91]
 All but f. m. d-polytopes of size n are hollow.
- All but f.m. hollow *d*-polytopes project onto a hollow (*d* 1)-polytope.[NZ11]

Lemma

Let $d < n \in \mathbb{N}$. All but finitely many lattice *d*-polytopes of size bounded by *n* are hollow. Furthermore, all but finitely many of the hollow *d*-polytopes admit a projection to some hollow lattice (d - 1)-polytope.

$$\implies w^{\infty}(d) \le w_{\mathcal{H}}(d-1)$$

Lemma

Let $d < n \in \mathbb{N}$. All but finitely many lattice *d*-polytopes of size bounded by *n* are hollow. Furthermore, all but finitely many of the hollow *d*-polytopes admit a projection to some hollow lattice (d - 1)-polytope.

Lemma

Let $d < n \in \mathbb{N}$. All but finitely many lattice *d*-polytopes of size bounded by *n* are hollow. Furthermore, all but finitely many of the hollow *d*-polytopes admit a projection to some hollow lattice (d - 1)-polytope.

Definition: Lift of a polytope

We say that a (lattice) polytope P is a *lift* of a (lattice) (d-1)-polytope Q if there is a (lattice) projection π with $\pi(P) = Q$. Without loss of generality, we will typically assume $\pi : \mathbb{R}^d \to \mathbb{R}^{d-1}$ to be the map that forgets the last coordinate.

Two lifts $\pi_1 : P_1 \to Q$ and $\pi_2 : P_2 \to Q$ are *equivalent* if there is a unimodular equivalence $f : P_1 \to P_2$ with $\pi_2 \circ f = \pi_1$.

Lifts of bounded size

Theorem

Let $Q \subset \mathbb{R}^{d-1}$ be a lattice (d-1)-polytope of width W. Then all lifts $P \subset \mathbb{R}^d$ of Q have width $\leq W$. All but finitely many of them have width = W.

Lifts of bounded size

Theorem

Let $Q \subset \mathbb{R}^{d-1}$ be a lattice (d-1)-polytope of width W. Then all lifts $P \subset \mathbb{R}^d$ of Q have width $\leq W$. All but finitely many of them have width = W.

Look at (d-1)-polytope P and find

• conditions for *P* to have finitely many lifts.

Lifts of bounded size

Theorem

Let $Q \subset \mathbb{R}^{d-1}$ be a lattice (d-1)-polytope of width W. Then all lifts $P \subset \mathbb{R}^d$ of Q have width $\leq W$. All but finitely many of them have width = W.

Look at (d-1)-polytope P and find

• conditions for *P* to have finitely many lifts.

• conditions for *P* to have infinitely many lifts.

Theorem

For all $d \ge 3$, $w^{\infty}(d)$ equals the maximum width of a lattice (d-1)-polytope Q that admits infinitely many lifts of bounded size. Moreover, Q is hollow.

$$w^{\infty}(4) = 2$$

$$w^{\infty}(4) = 2$$

There are 12 maximal hollow lattice 3-polytopes [AWW11,AKW15]

$$w^{\infty}(4) = 2$$

There are 12 maximal hollow lattice 3-polytopes [AWW11,AKW15]
Compute their width with polymake (our algorithm is in version 3.0.)

$$w^{\infty}(4) = 2$$

- There are 12 maximal hollow lattice 3-polytopes [AWW11,AKW15]
- Compute their width with polymake (our algorithm is in version 3.0.)
- **5** out of the 12 have width 3.

$$w^{\infty}(4) = 2$$

- There are 12 maximal hollow lattice 3-polytopes [AWW11,AKW15]
- Compute their width with polymake (our algorithm is in version 3.0.)
- **5** out of the 12 have width 3.
- All their subpolytopes have width at most 2.

The case
$$d = 4$$

$$w^{\infty}(4)=2$$

Figure: The five (maximal) hollow 3-polytopes of width three

The case d = 4

The case d = 4

The case
$$d = 4$$

$$w^{\infty}(4)=2$$

Figure: The five hollow 3-polytopes of width three

The case
$$d = 4$$

$$w^{\infty}(4)=2$$

Figure: The five hollow 3-polytopes of width three

To show: These polytopes have only f.m. lifts of bounded size.

Jan Hofmann (FU Berlin – BMS)

The Finiteness Threshold Width

January 18, 2017

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

Proof:

It is enough to look at tight lifts, where a lift is called tight if there is a bijection between the vertices of P and Q.

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

- It is enough to look at tight lifts, where a lift is called tight if there is a bijection between the vertices of P and Q.
- Any tight lift of Q is of the form P(F̃, h) := conv(F̃ ∪ {ṽ}), where F̃ is a tight lift of F and ṽ = (v, h) is a point in the fiber of v.

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

- It is enough to look at tight lifts, where a lift is called tight if there is a bijection between the vertices of P and Q.
- Any tight lift of Q is of the form P(F̃, h) := conv(F̃ ∪ {ṽ}), where F̃ is a tight lift of F and ṽ = (v, h) is a point in the fiber of v.
- Let m be the distance of v to F.

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

- It is enough to look at tight lifts, where a lift is called tight if there is a bijection between the vertices of P and Q.
- Any tight lift of Q is of the form P(F̃, h) := conv(F̃ ∪ {ṽ}), where F̃ is a tight lift of F and ṽ = (v, h) is a point in the fiber of v.
- Let m be the distance of v to F.
- $P(\tilde{F}, h)$ is equivalent to $P(\tilde{F}, h + m)$ for all $h \in \mathbb{Z}$.

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

- It is enough to look at tight lifts, where a lift is called tight if there is a bijection between the vertices of P and Q.
- Any tight lift of Q is of the form P(F̃, h) := conv(F̃ ∪ {ṽ}), where F̃ is a tight lift of F and ṽ = (v, h) is a point in the fiber of v.
- Let *m* be the distance of *v* to *F*.
- $P(\tilde{F}, h)$ is equivalent to $P(\tilde{F}, h + m)$ for all $h \in \mathbb{Z}$.
- Hence there are at most m-1 values of h that give non-equivalent tight liftings $P(\tilde{F}, h)$, for any fixed \tilde{F} .

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

Corollary

Lattice simplices have finitely many lifts of bounded size.

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

Corollary

Lattice simplices have finitely many lifts of bounded size.

True by an inductive argument, as 1-simplices have only finitely many lifts.
The case
$$d = 4$$

Theorem

$$w^{\infty}(4) = 2$$

Figure: The five hollow 3-polytopes of width three

Theorem

1
$$w^{\infty}(d,n) \leq w^{\infty}(d,n+1)$$
 for all d,n .
2 $w^{\infty}(d) \leq w^{\infty}(d+1)$ for all d .

Theorem

1
$$w^{\infty}(d,n) \le w^{\infty}(d,n+1)$$
 for all d,n .
2 $w^{\infty}(d) \le w^{\infty}(d+1)$ for all d .

Questions

■ Is
$$w^{\infty}(d, n) \le w^{\infty}(d+1, n+1)$$
? (True for $n = d+1$ [HZ00])
■ Is $w^{\infty}(d) = w^{\infty}(d, d+1)$? (True for $d \le 4$)

All of this is joint work with

Mónica

Paco

Christian

The finiteness threshold width of lattice polytopes arXiv:1607.00798 $\,$