Generalized (0, 1, 2)-polytopes

Katy Beeler

Berlin Mathematical School Berlin, Germany katybeeler@mi.fu-berlin.de

January 19, 2017

Generalized (0, 1, 2)-polytopes

Motivation

Definition

We say a polytope $P \subset \mathbb{R}^d$ is a (0, 1, 2)-polytope if for every $v \in \text{vert}(P)$, $v \in \{0, 1, 2\}^d$.

Definition

We say a polytope $P \subset \mathbb{R}^d$ is a (0, 1, a)-polytope if for every $v \in \text{vert}(P)$, $v \in \{0, 1, a\}^d$.

Example

Consider the following (0, 1, 3)-polytope with vertex set:

 $\left\{\begin{array}{l}(1,1,0),(3,0,0),(0,3,0),(3,3,0),(0,0,1),(3,0,1),\\(0,3,1),(3,3,1),(0,0,3),(1,0,3),(0,1,3),(1,1,3)\end{array}\right\}.$

Definition

Let $\mathbf{a} \in R^d$. We say a polytope $P \subset \mathbb{R}^d$ is a $(0, 1, a_i)$ -polytope if for every $v \in \text{vert}(P)$, $v \in \{0, 1, a_i\}^d$ for $i \in [d]$.

Example

Consider the following $(0, 1, a_i)$ -polytope, for $\mathbf{a} = (2, 3, 4)$, with vertex set:

$$\left\{\begin{array}{c}(0,0,0),(1,0,0),(0,1,0),(1,3,0),\\(2,1,0),(2,3,1),(0,0,4),(1,1,4)\end{array}\right\}$$

Question

Can we enumerate these guys?

Proposition

A (0, 1, 2)-polytope has at most 16 vertices.

Example

Consider the following polytope with vertex set:

$$\left\{\begin{array}{c} (1,0,0), (2,0,0), (2,1,0), (0,1,0), (0,2,0), (1,2,0), \\ (0,0,1), (2,0,1), (0,2,1), (2,2,1), (0,0,2), (1,0,2), \\ (0,1,2), (2,1,2), (1,2,2), (2,2,2) \end{array}\right\}$$

Question

Which values of a allow different combinatorial types?

Find det(M) = 0 for

$$M = \begin{pmatrix} | & | & | & | \\ v_1 & v_2 & v_3 & v_4 \\ | & | & | & | \\ 1 & 1 & 1 & 1 \end{pmatrix} \quad \text{for } v_i \in \{0, 1, a\}^3.$$

Only real solution greater than 2 is a = 3.

Find det(M) = 0 for

$$M = \begin{pmatrix} | & | & | & | \\ v_1 & v_2 & v_3 & v_4 \\ | & | & | & | \\ 1 & 1 & 1 & 1 \end{pmatrix} \quad \text{for } v_i \in \{0, 1, a\}^3$$

Only real solution greater than 2 is a = 3.

Different combinatorial types could exist for

(a)
$$a = 2$$
 (b) $2 < a < 3$
(c) $a = 3$ (d) $3 < a$

Number of combinatorial types of (0, 1, a)-polytopes:

no. of vertices	<i>a</i> = 2	2 < a < 3	<i>a</i> = 3	<i>a</i> > 3	total
6	7	7	7	7	7
7	34	34	34	34	34
8	193	247	249	249	251
9	680	1215	1415	1406	1462
10	1758	*	*	*	*
11	2049	5243	6150	6196	6437
12	955	2814	3134	3153	3319
13	207	663	700	704	745
14	29	90	91	92	97
15	3	10	10	10	10
16	1	2	2	2	2
total	6017	*	*	*	*

Question

Can we enumerate $(0, 1, a_i)$ -polytopes employing the previous approach?

Consider the 4 \times 4 matrix

$$M = [m_{ij}]$$

where $m_{ij} \in \{0, 1, a_i\}$ and $m_{4j} = 1$.

Consider the 4 \times 4 matrix

$$M = [m_{ij}]$$

where $m_{ij} \in \{0, 1, a_i\}$ and $m_{4j} = 1$.

334 determinants with solutions in the feasible range, $\mathbb{R}^3_{\geq 2}$

Consider the 4 \times 4 matrix

$$M = [m_{ij}]$$

where $m_{ij} \in \{0, 1, a_i\}$ and $m_{4j} = 1$.

334 determinants with solutions in the feasible range, R³₂₂
Choose ~470,000 points randomly, >540 distinct regions

Consider the 4 \times 4 matrix

$$M = [m_{ij}]$$

where $m_{ij} \in \{0, 1, a_i\}$ and $m_{4j} = 1$.

- **334** determinants with solutions in the feasible range, $\mathbb{R}^3_{>2}$
- Choose ~470,000 points randomly, >540 distinct regions
- Integral solutions return 188 distinct regions

Generalized (0, 1, 2)-polytopes

The Hirsch conjecture

Stated by Warren M. Hirsch in 1957

Generalized (0, 1, 2)-polytopes

The Hirsch conjecture

- Stated by Warren M. Hirsch in 1957
- Puts a bound on the diameter of a polytope with respect to the number of facets

The Hirsch conjecture

- Stated by Warren M. Hirsch in 1957
- Puts a bound on the diameter of a polytope with respect to the number of facets
- Important with regards to the simplex method

The Hirsch conjecture

- Stated by Warren M. Hirsch in 1957
- Puts a bound on the diameter of a polytope with respect to the number of facets
- Important with regards to the simplex method

Disproven in general by Francisco Santos

Statement of the Hirsch Conjecture

Let $n > d \ge 2$. Let P be a d-dimensional polytope with n facets. Then diam $(P) \le n - d$.

Theorem (Naddef, 1989)

(0,1)-polytopes satisfy the Hirsch conjecture.

Step 1: The diameter is at most d.

• Let u and v be distinct vertices of P.

- Let u and v be distinct vertices of P.
- We induct on the dimension *d* to show the diameter is at most *d*.

- Let u and v be distinct vertices of P.
- We induct on the dimension d to show the diameter is at most d.
- Exhaustively check the case d = 2.

- Let u and v be distinct vertices of P.
- We induct on the dimension d to show the diameter is at most d.
- Exhaustively check the case d = 2.

- Let u and v be distinct vertices of P.
- We induct on the dimension d to show the diameter is at most d.
- Exhaustively check the case d = 2.

Step 2: The Hirsch conjecture is satisfied.

• Let u and v be distinct vertices of P.

Step 2: The Hirsch conjecture is satisfied.

- Let *u* and *v* be distinct vertices of *P*.
- We induct once more on the dimension of *P*.

Step 2: The Hirsch conjecture is satisfied.

- Let *u* and *v* be distinct vertices of *P*.
- We induct once more on the dimension of *P*.
- Both u and v are contained in d facets. We are done if they share a common facet. Else, P contains at least 2d facets and we're done.

Hirsch conjecture on $(0, 1, a_i)$ -polytopes

Theorem

The diameter of a $(0, 1, a_i)$ -polytope is bounded by $\lfloor \frac{3}{2}d \rfloor$.

This bound is tight!

In dimension 2, consider a hexagon. In even dimension, consider the product of $\frac{d}{2}$ hexagons. In odd dimension, consider the prism over the product of d-1 hexagons.

A little notation...

For $i \in [d]$, we define

$$V_i^0 := \{ v \in vert(P) : v_i = 0 \}$$

$$V_i^1 := \{ v \in vert(P) : v_i = 1 \}$$

$$V_i^2 := \{ v \in vert(P) : v_i = a_i \}.$$

Note that V_i^0 and V_i^2 are either empty, or faces of *P*.

We induct on the dimension d.

We want to show for $u, v \in P$, that one of the following two inequalities holds:

$$\delta(u, v) \le \delta^{d-1} + 1 \tag{1}$$

$$\delta(u,v) \le \delta^{d-2} + 3 \tag{2}$$

We can assume...

P is full-dimensional

We can assume...

P is full-dimensional

■ P intersects all facets of the d-orthotope [0, a₁] × [0, a₂] × [0, a₃].

We will consider the following three cases:

Case 1. There exists an $i \in [d]$ such that $u \in V_0^i$ or V_2^i and $v \in V_1^i$. Case 2. There exists an $i \in [d]$ such that $u, v \in V_1^i$. Case 3. For all $i \in [d]$, $|u_i - v_i| = a_i$.

K. Beeler Generalized (0, 1, 2)-polytopes

Case 2: There exists an $i \in [d]$ such that $u, v \in V_1^i$.

Thus $\delta(u, v) \leq \delta^{d-2} + 3$ is satisfied.

K. Beeler Generalized (0, 1, 2)-polytopes

Case 3: For all
$$i \in [d]$$
, $|u_i - v_i| = a_i$.

Thus, in Case 3a, $\delta(u, v) \leq \delta^{d-1} + 1$ is satisfied. In Case 3b, $\delta(u, v) \leq \delta^{d-2} + 3$ is satisfied.

K. Beeler

References

- Alberto Del Pia and Carla Michini. On the diameter of lattice polytopes. *Discrete and Computational Geometry*, 55(3):681-687, April 2016.
- D. Naddef. The Hirsch conjecture is true for (0,1)-polytopes. Math. Program., 45:109-110, 1989.
- D. Naddef and W.R Pulleyblank. Hamiltonicity in (0,1)-polyhedra. *Journal of Combinatorial Theory, Series B*, 37(1):41 - 52, 1984.