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Separators

! Let G = (V ,E ) be a connected simple graph (no loops or
parallel edges)

! Definiton: A separator is a subset C of the vertices of the
graph, whose removal partitions the graph to two large
disjoint subsets A and B .

! cn ≤ |A| ≤ |B | ≤ (1− c)n where n is the number of vertices
and 0 < c < 1

2 is called separation constant



Example



Background

! Lipton & Tarjan (1979) : Planar separator theorem
! Planar graphs have separators of size O(

√
n) for c = 1

3

! Miller & al. (1997) : Intersection graphs of balls in d
dimensions

! A k-ply systems have separators of size O(k1/dn1−1/d)

! Conjecture by Kalai 1991/2004 : Simple d-polytopes have
separators of size O(n(d−2)/(d−1))



The theorem

! There exist simple d-polytopes whose separators are

Ω
(

n
log3/2 n

)
for all d ≥ 4 and any c.

! These polytopes can be separate by removing O
(

n
log n

)

vertices.



Starting point

! Neighborly cubical polytopes (Joswig & Ziegler 2000)
! NCd(m) is a d-polytope with k-skeleton of an m-cube,

2k + 2 ≤ d
! Cubical polytopes, i.e. facets are (d − 1)-cubes

! Note: They are not neighborly in the usual sense



Neighborly cubical polytopes

! Neighborly cubical polytopes arise by perturbing a
m-dimensional cube and projecting it down to the desired
dimension d .

! The perturbation is done by a neighborly simplicial
d − 2-polytope on m − 1 vertices.

! There are a lot of such polytopes (≥ nnd/2), so neighborly
cubical polytopes are not unique at all.



Double truncation, part 1

! Let’s focus on d = 4, the first interesting case.

! The f -vector is 2m−2(4, 2m, 3m − 6,m − 2)
! By truncating all vertices we get the polytope NC4(m)′ whose

facets are
! simplicial polytopes exposed by the cut (vertex figures of

NC4(m))
! vertex-truncated cubes

! This polytope has f -vector
(4m, 14m − 24, 11m − 22,m + 2) · 2m−2



Truncated cube

CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=162424



Double truncation, part 2

! Now let us truncate the edges of the original polytope
! We end up with the polytope NC4(m)′′ whose facets are

! Cubes whose vertices and edges have been truncated
! Simple polytopes, which are the truncated vertex figures
! Prisms over polygons

! The f -vector of this polytope is
(24m − 48, 48m − 96, 27m − 46, 3m − 2) · 2m−2

! From the f -vector we see that this polytope is simple



Resulting graph

! G(NC4(m)′′) is the graph of an m-cube Qm where vertices
have been replaced by 3-regular graphs on 6m − 12 vertices.

! The 3-regular graphs, which we call clusters, are connected
with each other through 3 to m − 1 edges



Separator

! Let us map an arbitrary separator (A,B ,C ) of G(NC4(m)′′) to
Qm

! Each cluster is mapped to a single vertex of Qm

! If all of the vertices in a cluster are in A, insert the vertex of
cube into A′ ⊂ Qm

! Do the same for B , and add the rest of the vertices to C ′

! Either (A′,B ′,C ′) is a separator in Qm for a suitable c ′

! Or C ′ is linear size (and we are done)



Separator (cont.)

! Minimal separators in m-cube are of the form
∑m

i=1 vi = k ,
where is the vertex label in a {0, 1}m cube.

! For large m, most of the vertices are in layers
m/2−

⌈√
m
⌉
, . . .m/2 +

⌈√
m
⌉

! Approximately
(m

m
2

)
= 2m√

m
vertices have to be removed to

separate the cube.

! The separator of G (NC4(m)′′ is at least as big as the
separator of Qm.

! Since there are n := (6m − 12)2m vertices in total, the

separator is Ω
(

2m√
m

)
= Ω

(
n

log3/2 n

)



Separator (cont.)

! On the other hand, the clusters are connected on average by
less than 6 edges.

! Cutting the m-cube to two (m − 1)-cubes across a random
“axis” therefore separates the graph by removing 6 · 2m
vertices.

! This translates to O(2m) = O( n
log n )



Higher dimensions

! Higher dimensional polytopes are created by taking the
product with a (d − 4)-cube for d > 4.



Expander graphs (motivation)

! Applications require networks that are robust, i.e. they will
tolerate failure of some nodes and still be able to function.

! For example, computer networks should function even if
several parts fail.

! The failures might be the result of an attack, so we should
look at worst case scenarios.

! There is usually a cost for building a connection, so number of
edges per vertex should not be large.

! Expander graphs are also useful for randomized algorithms.



Note

! There are different definitions for vertex and edge expansion,
but in the case of regular graphs they are qualitatively same



Expander Graphs

! Let Gi = (Vi ,Ei ) be a sequence of graphs with |Vi | → ∞
! The neighborhood of a set S is

δS = {y ∈ V (G )|(x , y) ∈ E (G ), x ∈ S , y /∈ S}
! Gi is a (vertex) expander if for any Si ⊂ Vi , 2|SI | ≤ |Vi |

hi =

{
δSi
Si

> ϵ, ϵ > 0

}
(1)

! In other words, the separator is size O(n).

! Dividing the graph into two is hard, since any cut will contain
vertices proportional to the size of the smaller piece.



Expander Graphs

! Alternative characterization of expander graphs can be
achieved algebraically if the graph is d-regular.

! Let A(G ) be the normalized adjacency matrix of the graph
(aij = 1/d if edge eij is present in the graph, 0 otherwise.)

! The largest eigenvalue is 1, since the vector (1, 1, . . . , 1) is an
eigenvector.

! If |λ2| < 1− ϵ holds for the graphs, they are expanders.



Expander Graphs

! The algebraic and combinatorial expansion are related by
Cheeger inequalities:

1

2
(d − dλ2) ≤ h(G ) ≤

√
2d(d − dλ2) (2)



Expander Graphs

! It seems that the requirements set for the graphs are quite
strict and expander graphs would be rare.

! However, asymptotically almost every regular graph is an
expander.



Example
! The graph is elements of Zp, element n is connected to

n + 1, n − 1 and n−1.



Non-example



Construction

! Infinite families of expanders can be constructed using so
called zig-zag product for graphs.

! Input:
! A D-regular graph G on vertices [N] with 2nd largest

eigenvalue λ1.
! d-regular graph H on vertices [D] vertices with 2nd largest

eigenvalue λ2

! Output: d2 regular graph on DN vertices with 2nd largest
eigenvalue at most λ1 + λ2 + λ2

2

! Note: The graph might not be simple (it can have self-loops)



Zig-Zag product

! How does it work?

! The edges incident to a given vertex are enumerated from 1
to D (graph G ) and 1 to d (graph H).

! For every pair (i , j) ∈ {1, . . . , d}2 and every pair
(V1 ∈ V (G ),V2 ∈ V (H)) do the following:

! Take the path i from V2 to V ′
2.

! Take the path V ′
2 from V1 to V ′

1.
! Take the path j from V ′

2 to V ′′
2 .

! Add an edge between (V1,V2) and (V ′
1,V

′′
2 ).



Zig-Zag product

! This works since either the steps in the small or the large
graph expand well

! This does not necessarily create polytopal graphs, but we
hope to be able to modify it



The end

! That’s it!


