Simple polytopes without small separators

L. Loiskekoski

FU Berlin

January 18, 2017

Separators

- ▶ Let G = (V, E) be a connected simple graph (no loops or parallel edges)
- Definiton: A separator is a subset C of the vertices of the graph, whose removal partitions the graph to two large disjoint subsets A and B.
- cn ≤ |A| ≤ |B| ≤ (1 − c)n where n is the number of vertices and 0 < c < ¹/₂ is called *separation constant*

Example

Background

- ▶ Lipton & Tarjan (1979) : Planar separator theorem
 - Planar graphs have separators of size $O(\sqrt{n})$ for $c = \frac{1}{3}$
- Miller & al. (1997) : Intersection graphs of balls in d dimensions
 - A k-ply systems have separators of size $O(k^{1/d}n^{1-1/d})$
- ► Conjecture by Kalai 1991/2004 : Simple *d*-polytopes have separators of size O(n^{(d-2)/(d-1)})

The theorem

- There exist simple *d*-polytopes whose separators are $\Omega\left(\frac{n}{\log^{3/2} n}\right)$ for all $d \ge 4$ and any *c*.
- ► These polytopes can be separate by removing O(n/log n) vertices.

Starting point

- Neighborly cubical polytopes (Joswig & Ziegler 2000)
 - ▶ $NC_d(m)$ is a *d*-polytope with *k*-skeleton of an *m*-cube, $2k + 2 \leq d$
 - Cubical polytopes, i.e. facets are (d-1)-cubes
- Note: They are not neighborly in the usual sense

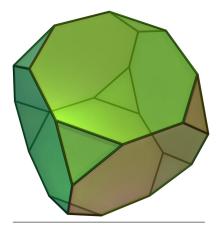
Neighborly cubical polytopes

- Neighborly cubical polytopes arise by perturbing a *m*-dimensional cube and projecting it down to the desired dimension *d*.
- ► The perturbation is done by a neighborly simplicial d - 2-polytope on m - 1 vertices.
- ► There are a lot of such polytopes (≥ n^{nd/2}), so neighborly cubical polytopes are not unique at all.

Double truncation, part 1

- Let's focus on d = 4, the first interesting case.
- The *f*-vector is $2^{m-2}(4, 2m, 3m-6, m-2)$
- By truncating all vertices we get the polytope NC₄(m)' whose facets are
 - simplicial polytopes exposed by the cut (vertex figures of NC₄(m))
 - vertex-truncated cubes
- ► This polytope has *f*-vector (4*m*, 14*m* - 24, 11*m* - 22, *m* + 2) · 2^{*m*-2}

Truncated cube



Double truncation, part 2

- Now let us truncate the edges of the original polytope
- ▶ We end up with the polytope NC₄(*m*)["] whose facets are
 - Cubes whose vertices and edges have been truncated
 - Simple polytopes, which are the truncated vertex figures
 - Prisms over polygons
- ► The *f*-vector of this polytope is (24*m* - 48, 48*m* - 96, 27*m* - 46, 3*m* - 2) · 2^{*m*-2}
- From the *f*-vector we see that this polytope is simple

Resulting graph

- ► G(NC₄(m)") is the graph of an m-cube Q_m where vertices have been replaced by 3-regular graphs on 6m - 12 vertices.
 - ► The 3-regular graphs, which we call *clusters*, are connected with each other through 3 to m 1 edges

Separator

- ▶ Let us map an arbitrary separator (A, B, C) of G(NC₄(m)") to Q_m
 - Each cluster is mapped to a single vertex of Q_m
- If all of the vertices in a cluster are in A, insert the vertex of cube into A' ⊂ Q_m
- Do the same for B, and add the rest of the vertices to C'
 - Either (A', B', C') is a separator in Q_m for a suitable c'
 - Or C' is linear size (and we are done)

Separator (cont.)

- Minimal separators in *m*-cube are of the form $\sum_{i=1}^{m} v_i = k$, where **v** is the vertex label in a $\{0,1\}^m$ cube.
- ► For large *m*, most of the vertices are in layers $m/2 \lceil \sqrt{m} \rceil$, ... $m/2 + \lceil \sqrt{m} \rceil$
- ► Approximately \$\begin{pmatrix}m \frac{m}{2} = \frac{2^m}{\sqrt{m}}\$ vertices have to be removed to separate the cube.
- ► The separator of G(NC₄(m)" is at least as big as the separator of Q_m.
- ► Since there are $n := (6m 12)2^m$ vertices in total, the separator is $\Omega\left(\frac{2^m}{\sqrt{m}}\right) = \Omega\left(\frac{n}{\log^{3/2} n}\right)$

Separator (cont.)

- On the other hand, the clusters are connected on average by less than 6 edges.
- ► Cutting the *m*-cube to two (*m* − 1)-cubes across a random "axis" therefore separates the graph by removing 6 · 2^{*m*} vertices.

• This translates to
$$O(2^m) = O(\frac{n}{\log n})$$

Higher dimensions

► Higher dimensional polytopes are created by taking the product with a (d - 4)-cube for d > 4.

Expander graphs (motivation)

- Applications require networks that are robust, i.e. they will tolerate failure of some nodes and still be able to function.
 - For example, computer networks should function even if several parts fail.
 - The failures might be the result of an attack, so we should look at worst case scenarios.
- There is usually a cost for building a connection, so number of edges per vertex should not be large.
- Expander graphs are also useful for randomized algorithms.

Note

There are different definitions for vertex and edge expansion, but in the case of regular graphs they are qualitatively same

• Let $G_i = (V_i, E_i)$ be a sequence of graphs with $|V_i| \to \infty$

- ► The neighborhood of a set S is $\delta S = \{y \in V(G) | (x, y) \in E(G), x \in S, y \notin S\}$
- G_i is a (vertex) expander if for any $S_i \subset V_i, 2|S_l| \le |V_i|$

$$h_i = \left\{ \frac{\delta S_i}{S_i} > \epsilon, \epsilon > 0 \right\}$$
(1)

- In other words, the separator is size O(n).
- Dividing the graph into two is hard, since any cut will contain vertices proportional to the size of the smaller piece.

- Alternative characterization of expander graphs can be achieved algebraically if the graph is *d*-regular.
- ▶ Let A(G) be the normalized adjacency matrix of the graph (a_{ij} = 1/d if edge e_{ij} is present in the graph, 0 otherwise.)
- ► The largest eigenvalue is 1, since the vector (1, 1, ..., 1) is an eigenvector.
- If $|\lambda_2| < 1 \epsilon$ holds for the graphs, they are expanders.

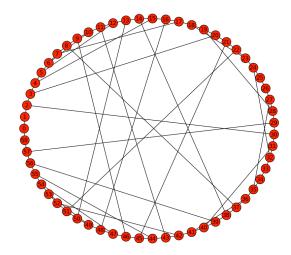
The algebraic and combinatorial expansion are related by Cheeger inequalities:

$$\frac{1}{2}(d-d\lambda_2) \le h(G) \le \sqrt{2d(d-d\lambda_2)}$$
(2)

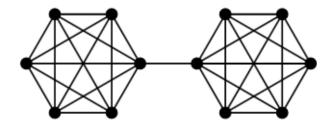
- It seems that the requirements set for the graphs are quite strict and expander graphs would be rare.
- However, asymptotically almost every regular graph is an expander.

Example

► The graph is elements of \mathbb{Z}_p , element *n* is connected to n+1, n-1 and n^{-1} .



Non-example



Construction

- Infinite families of expanders can be constructed using so called zig-zag product for graphs.
- Input:
 - A D-regular graph G on vertices [N] with 2nd largest eigenvalue λ₁.
 - ► d-regular graph H on vertices [D] vertices with 2nd largest eigenvalue λ₂
- ► Output: d² regular graph on DN vertices with 2nd largest eigenvalue at most λ₁ + λ₂ + λ₂²
- Note: The graph might not be simple (it can have self-loops)

Zig-Zag product

- How does it work?
- The edges incident to a given vertex are enumerated from 1 to D (graph G) and 1 to d (graph H).
- For every pair (i, j) ∈ {1,...,d}² and every pair (V₁ ∈ V(G), V₂ ∈ V(H)) do the following:
 - Take the path *i* from V_2 to V'_2 .
 - Take the path V'_2 from V_1 to V'_1 .
 - Take the path j from V'_2 to V''_2 .
 - Add an edge between (V_1, V_2) and (V'_1, V''_2) .

Zig-Zag product

- This works since either the steps in the small or the large graph expand well
- This does not necessarily create polytopal graphs, but we hope to be able to modify it

The end

► That's it!