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Separators

» Let G = (V, E) be a connected simple graph (no loops or
parallel edges)

» Definiton: A separator is a subset C of the vertices of the
graph, whose removal partitions the graph to two large
disjoint subsets A and B.

» cn < |A] < |B| < (1 — ¢)n where n is the number of vertices
and 0 < c < % is called separation constant



Example



Background

» Lipton & Tarjan (1979) : Planar separator theorem
» Planar graphs have separators of size O(+/n) for ¢ = %
» Miller & al. (1997) : Intersection graphs of balls in d
dimensions
> A k-ply systems have separators of size O(k/9nt=1/9)
» Conjecture by Kalai 1991/2004 : Simple d-polytopes have
separators of size O(n(d=2)/(d=1))



The theorem

» There exist simple d-polytopes whose separators are
Q(*) for all d > 4 and any c.
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> These polytopes can be separate by removing O( a )

logn
vertices.



Starting point

» Neighborly cubical polytopes (Joswig & Ziegler 2000)

» NCy(m) is a d-polytope with k-skeleton of an m-cube,
2k+2<d
» Cubical polytopes, i.e. facets are (d — 1)-cubes

> Note: They are not neighborly in the usual sense



Neighborly cubical polytopes

» Neighborly cubical polytopes arise by perturbing a
m-dimensional cube and projecting it down to the desired
dimension d.

» The perturbation is done by a neighborly simplicial
d — 2-polytope on m — 1 vertices.
nd/2)

» There are a lot of such polytopes (> n , SO neighborly

cubical polytopes are not unique at all.



Double truncation, part 1

v

Let's focus on d = 4, the first interesting case.
The f-vector is 2™2(4,2m,3m — 6, m — 2)

By truncating all vertices we get the polytope NC4(m)" whose
facets are

v

v

» simplicial polytopes exposed by the cut (vertex figures of
NC4(m))
> vertex-truncated cubes

v

This polytope has f-vector
(4m,14m —24,11m — 22, m +2) - 2m—2



Truncated cube




Double truncation, part 2

v

Now let us truncate the edges of the original polytope
We end up with the polytope NC4(m)” whose facets are

» Cubes whose vertices and edges have been truncated
» Simple polytopes, which are the truncated vertex figures
» Prisms over polygons

v

v

The f-vector of this polytope is
(24m — 48,48m — 96,27m — 46,3m — 2) - 2M~2

From the f-vector we see that this polytope is simple

v



Resulting graph

» G(NC4(m)") is the graph of an m-cube Q, where vertices
have been replaced by 3-regular graphs on 6m — 12 vertices.
» The 3-regular graphs, which we call clusters, are connected
with each other through 3 to m — 1 edges



Separator

» Let us map an arbitrary separator (A, B, C) of G(NC4(m)”) to
Qm

» Each cluster is mapped to a single vertex of @,
» If all of the vertices in a cluster are in A, insert the vertex of
cube into A’ C Qn,
» Do the same for B, and add the rest of the vertices to C’

» Either (A’, B’, C’) is a separator in Q,, for a suitable ¢’
» Or C’ is linear size (and we are done)



Separator (cont.)

» Minimal separators in m-cube are of the form Zln;l v; = k,
where v is the vertex label in a {0,1}" cube.

» For large m, most of the vertices are in layers

m/2—[Vm]|,...m/2+ [/m]
. m o om .
» Approximately (%) = 7 Vertices have to be removed to
separate the cube.

» The separator of G(NCyq(m)” is at least as big as the
separator of Q.

» Since there are n := (6m — 12)2™ vertices in total, the

separator is Q(%) = Q(ﬁ)



Separator (cont.)

» On the other hand, the clusters are connected on average by
less than 6 edges.

» Cutting the m-cube to two (m — 1)-cubes across a random
“axis” therefore separates the graph by removing 6 - 2™
vertices.

» This translates to O(2™) = O(=2)

logn




Higher dimensions

» Higher dimensional polytopes are created by taking the
product with a (d — 4)-cube for d > 4.



Expander graphs (motivation)

» Applications require networks that are robust, i.e. they will
tolerate failure of some nodes and still be able to function.

» For example, computer networks should function even if
several parts fail.
» The failures might be the result of an attack, so we should
look at worst case scenarios.
» There is usually a cost for building a connection, so number of
edges per vertex should not be large.

» Expander graphs are also useful for randomized algorithms.



Note

» There are different definitions for vertex and edge expansion,
but in the case of regular graphs they are qualitatively same



Expander Graphs

» Let G; = (Vj, E;) be a sequence of graphs with |V;| — oo

» The neighborhood of a set S is
65 ={y e V(G)I(x.y) € E(G),x€ S,y ¢ S}
» Gj is a (vertex) expander if for any S; C V;,2|S5| < | V]

h;:{5;i>e,e>0} (1)

> In other words, the separator is size O(n).

» Dividing the graph into two is hard, since any cut will contain
vertices proportional to the size of the smaller piece.



Expander Graphs

» Alternative characterization of expander graphs can be
achieved algebraically if the graph is d-regular.

» Let A(G) be the normalized adjacency matrix of the graph
(aj = 1/d if edge e is present in the graph, 0 otherwise.)

» The largest eigenvalue is 1, since the vector (1,1,...,1) is an
eigenvector.

» If [A2] < 1 — € holds for the graphs, they are expanders.



Expander Graphs

» The algebraic and combinatorial expansion are related by
Cheeger inequalities:

%(d —dX2) < h(G) < \/2d(d — d)\2) ()



Expander Graphs

> It seems that the requirements set for the graphs are quite
strict and expander graphs would be rare.

» However, asymptotically almost every regular graph is an
expander.



Example

cted to

element n is conne

-1

» The graph is elements of Z,,
n+1n—1andn




Non-example




Construction

> Infinite families of expanders can be constructed using so
called zig-zag product for graphs.
> Input:
» A D-regular graph G on vertices [N] with 2nd largest
eigenvalue Ap.
» d-regular graph H on vertices [D] vertices with 2nd largest
eigenvalue \,
» Output: d? regular graph on DN vertices with 2nd largest
eigenvalue at most \; + A + )\3

» Note: The graph might not be simple (it can have self-loops)



Zig-Zag product

» How does it work?

» The edges incident to a given vertex are enumerated from 1
to D (graph G) and 1 to d (graph H).

» For every pair (i,j) € {1,...,d}? and every pair
(Vi € V(G), Vo € V(H)) do the following:

Take the path i from V, to Vj.

Take the path Vj from V; to Vj.

Take the path j from Vj to V4’

Add an edge between (Vi, V,) and (V{, V))).

v
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Zig-Zag product

» This works since either the steps in the small or the large
graph expand well

» This does not necessarily create polytopal graphs, but we
hope to be able to modify it



The end

» That's it!



