Polyhedral Constructions using the Laplacian Matrix

Marie Meyer

Department of Mathematics University of Kentucky

January 19, 2017

Marie Meyer (University of Kentucky) Polyhedral Constructions using the Laplacian

Proof Sketch of the Matrix Tree TheoremDefinitions and Notation

Dall and Pfeifle's Polyhedral Construction
A Polyhedral Proof of the Matrix Tree Theorem (2014)

- G := ([n], E) is a connected graph with n vertices and |E| = d.
- N := signed vertex-edge incidence matrix is the (n × d)-matrix of rank n - 1.
- L := Laplacian matrix is the $n \times n$ matrix $L = N \cdot N^T$ with eigenvalues $\{0, \lambda_1, \lambda_2, \cdots, \lambda_{n-1}\}, \lambda_i \in \mathbb{R}_{>0}.$

Definition

The zonotope generated by an $(n \times d)$ - matrix M of rank r is the Minkowski sum of the line segments conv $\{0, M_i\}$, where M_i is the *i*th column of M.

$$Z(M) = \{\sum_{i=1}^{d} \alpha_i M_i | \alpha_i \in [0,1]\}$$

Definition

The zonotope generated by an $(n \times d)$ - matrix M of rank r is the Minkowski sum of the line segments conv $\{0, M_i\}$, where M_i is the *i*th column of M.

$$Z(M) = \{\sum_{i=1}^{d} \alpha_i M_i | \alpha_i \in [0,1]\}$$

Theorem (Stanley)

Z(M) is the (almost) disjoint union of parallelepipeds indexed by linearly independent columns of M.

Marie Meyer (University of Kentucky) Polyhedral Constructions using the Laplacian

Thanks for listening!

< 🗇 🕨

2