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Definitions

I Lattice polytope P :=

convex hull of a finite set of points in Zd

(or in a d-dimensional lattice).

I Size of P :=

number of lattice points in P: |P ∩ Zd |

I Volume of P :=

volume “normalized to the lattice”=

d!× Euclidean volume.

d + 1 points form a simplex of volume 1
(or unimodular simplex) if and only if
they affinely span the lattice.

The volume of a simplex is sometimes
called the determinant.
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I Width of P with respect to f ,

for a linear functional f : Rd → R
= length of the interval f (P)

f

I Width of P:= Minimum width of P with respect to a linear
NON-CONSTANT, INTEGER functional = minimum lattice
distance between two parallel lattice hyperplanes enclosing P

These three parameters of lattice polytopes are strongly connected with
their sublattice index, as we will later see.
As a previous result, it is useful to know that: For each n ≥ 4, there
are finitely many lattice 3-polytopes of size n and width > 1.
(B-Santos, 2014)



Unimodular equivalence

A unimodular transformation is a linear integer map t : Rd → Rd that
preserves the lattice. That is,

t(x) = A · x + b, x ∈ Rd

for A ∈ Zd×d , det(A) = ±1 and b ∈ Zd .
(t ∈ GL(n,Z)+ translations).
Two lattice polytopes P and Q are said equivalent or unimodularly
equivalent if there is an affine unimodular transformation t such that
t(P) = Q.

Remark
Size, volume, width are invariant modulo unimodular equivalence.



Sublattice index of lattice polytopes

Let P ⊂ Rd be a lattice d-polytope and and let 〈P ∩ Zd〉Z be the affine
sublattice generated by P ∩ Zd .

Definition
We call the sublattice index of P the index of 〈P ∩ Zd〉Z as a sublattice
of Zd .
We say that P is primitive if its lattice index is 1. That is, if P ∩ Zd

affinely spans Zd .

Remarks:

I Sufficient condition for primitiveness: If a lattice polytope
contains a unimodular d-simplex, then it is primitive. (This is not a
necessary condition in d > 2.)

I In the paper Ehrhart Theory of Spanning Polytopes by J. Hofscheier,
L. Katthn and B. Nill, they call spanning what we call primitive.

I In this talk, “index” will stand for “sublattice index”.



In dimension 1 and 2, every lattice polytope contains a unimodular
simplex, and hence every 1 or 2-dimensional lattice polytope is primitive.

In dimension 3, the following poly-
tope has index 2:

P ∩ Z3 = {(1, 0, 0), (0, 0, 0),

(−1, 0, 0), (0, 1, 0),

(0, 2, 0), (−1, 1, 2)}

x

y

z

(0, 2, 0)

(1, 0, 0)

(−1, 0, 0)

(−1, 1, 2)

〈P ∩ Z3〉Z =
{

(x , y , z) ∈ Z3 | z ≡ 0 mod 2
}

=⇒ Index 2

So, how does the index of lattice 3-polytopes behave?
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GOAL: characterize the index of lattice 3-polytopes
STARTING POINT: We have a full classification of lattice 3-polytopes
of width > 1 and sizes up to 11 (B-Santos, 2016).

We computed their indices:

size 5 6 7 8 9 10 11
index 1, no unimodular tetrahedron 2 - - - - - -
index 2 - 2 8 14 15 19 24
index 3 1 3 2 3 3 4 4
index 5 1 - - - - - -

The table SUGGESTS:
This is what actually happens in
larger sizes!!

I Only indices 1, 2, 3 or 5 appear.

I There is a unique polytope of index 5.

I The number of those of index 3 grows linearly with size.

I The number of those of index 2 grows quadratically with size.

I Except for two polytopes of size 5, all the primitive ones contain a
unimodular tetrahedron.



SUBLATTICE INDEX OF LATTICE POINT
CONFIGURATIONS

Let A ⊂ Zd be a point configuration and let 〈A〉Z be the affine sublattice
generated by A.

Definition
We call the sublattice index of A the index of 〈A〉Z as a sublattice of Zd .
We say that A is primitive if its lattice index is 1. That is, if A contains
an affine basis of Zd .
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Index = gcd of volumes

The volume vector of A is an integer vector that records the
determinants of all (d + 1)-tuples of points in A. We denote it by v(A).

Lemma
The sublattice index of A equals the greatest common divisor of the
entries in v(A).

Proof.
• Index divides gcd(v(A))

index | determinant of points in 〈A〉Z =⇒
=⇒ index | determinant of points in A=entry of v(A)

• gcd(v(A)) divides index

Let ∆ = conv{p1, . . . , pd+1} with pi ∈ 〈A〉Z and det(∆) = index.
pi = integer combination(A) =⇒
=⇒ index = det(∆) = int comb(determinant of points in A) =
= int comb(coordinates of v(A)), which is a multiple of gcd(v(A))



Index = gcd of volumes

Example
Let ∆ be an empty d-simplex (“empty means
vert(∆) = ∆ ∩ Zd”) of volume q.
Then its sublattice index is q.

I We compute indices by computing the
volume vectors.

I To conclude that A is primitive, it suffices
to check that there are some simplices in(

A
d+1

)
whose gcd of volumes is 1.

I To conclude that index(A) = q > 1, it
suffices to check that all simplices in(

A
d+1

)
have volume 0 or a multiple of q,

and that there are some of them whose
gcd of volumes is q.

(1, 0, 0)(0, 0, 0)

(0, 1, 0)

(1, 1, 3)
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Index of A divides index of B ⊆ A

Lemma
The index of A divides the index of any subconfiguration B ⊆ A.

Proof.
Enough to prove it for B = A \ {p}.

I If p ∈ 〈B〉Z, then 〈A〉Z = 〈B〉Z and the index does not change.

I If p 6∈ 〈B〉Z, then 〈B〉Z is a subgroup of 〈A〉Z and hence the index of
B multiplies the index of A.

p

p

That is, the bigger the size, the smaller the index.
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Index of A is multiple of index of projection π(A)

Lemma
Let A ⊂ Zd be a lattice point set and let
π : Zd → Zs , for s < d , be a lattice
projection. Then the sublattice index of
π(A) divides the sublattice index of A.

Proof.
A lattice projection is a surjective group
homomorphism. Then, 〈π(A)〉Z = π(〈A〉Z)
and the index of 〈π(A)〉Z as a subgroup of
π(Zd) = Zs divides the index of 〈A〉Z as a
subgroup of Zd .

π

That is, projecting to smaller dimension decreases the index.



SUBLATTICE INDEX OF LATTICE 3-POLYTOPES

We want to study the sublattice index of lattice 3-polytopes. We
separate three cases and deal with them separately:

(I) Polytopes of width one

They are easy to understand.

(II) Polytopes of width > 1 and size ≤ 11

We take the information from our classification.

(III) Polytopes of width > 1 and size > 11

We use parts (I) and (II), and properties of the sublattice index
under projection or inclusion.



(I) Index of polytopes of width 1

Lattice 3-polytopes of width one have all their lattice points distributed
in two consecutive parallel lattice hyperplanes

I If the polytope has three non-collinear point in one of these planes,
then in particular there is a unimodular triangle with points of P in
this plane, which forms a unimodular tetrahedron with any of the
points in the other plane.

I If not, then P consists of lattice points
along two lattice segments and its
index is that of any emtpy tetrahedron
contained in it.

Corollary

Let P be a lattice 3-polytope of width one. Then either P contains
a unimodular tetrahedron or P is equivalent to

conv{(0, 0, 0), (k , 0, 0), (0, 0, 1), (rp, rq, 1)}
for some k , r , > 0, gcd(p, q) = 1, of index q > 1.



(II) Polytopes of width > 1 & size ≤ 11:

INDEX 1 (primitive polytopes)

Theorem
Among all lattice 3-polytopes of width > 1 and sizes 5 to 11, the
following two are the only primitive polytopes that DO NOT contain a
unimodular tetrahedron: they are both terminal tetrahedra (of size 5):

I conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 7, 1), (−1,−2,−1)}, with four
empty tetrahedra of volumes 2, 3, 5 and 7.

I conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (3, 7, 1), (−2,−3,−1)}, with four
empty tetrahedra of volumes 3, 4, 5 and 7.



(II) Polytopes of width > 1 & size ≤ 11:

INDEX 5

Theorem
Among all lattice 3-polytopes of width > 1 and sizes 5 to 11, the
following is the only polytope of index 5:

conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 5, 1), (−3,−5,−2)},
a terminal tetrahedron (size 5), with four empty tetrahedra of volume 5.



(II) Polytopes of width > 1 & size ≤ 11:

INDEX 3

size 5 6 7 8 9 10 11
projects to

1

1

1

n− 3

1 2 2 3 3 4 4

exceptions -

(1, 0, 0)

(−1,−1, 0)

(1, 2, 3)

(−1, 1,−3)

- - - - -



(II) Polytopes of width > 1 & size ≤ 11:

INDEX 2

size 5 6 7 8 9 10 11
projects to

n− 3

1

1 1

n− 4

1

1 1

n− 4

1

1 1 1

- 2 7 11 15 19 24

exceptions - -
(0, 2, 0)

(1, 0, 0)

(−2,−1, 0)

(1, 1, 2)

(0, 0, 2)

(−1, 0, 0)

(1, 2,−1)

(2,−4, 1)

(0, 2, 0)

(1, 0, 0)

(−2,−1, 0)

(1, 1, 2)

(−3,−1,−2)

(0, 2, 0)

(1, 0, 0)

(−5,−3,−2)

(1, 1, 2)

- - -



(III) For size > 11 and width > 1, index is 1, 2, 3
Lemma (B-Santos, 2016)
Let P be a lattice 3-polytope of size n > 11 and width > 1. Then

1. There exists a vertex u ∈ vert(P) such that
Pu := conv(P ∩ Z3 \ {u}) has width > 1,

2. or P admits a lattice projection to the following
2-dimensional configuration.

(The labels in the points indicate how many

(consecutive) lattice points of P project to it)

1

1

1

1
n− 4

Theorem
Every lattice 3-polytope of width > 1 and size n > 11 has index 1, 2 or 3.

Proof.
True for n = 11 (PART (II)). Let P be of size n > 11 and width > 1.

I If P is as in part (1), then by induction the index of Pu is 1, 2 or 3.
Since Pu is a subconfiguration of P, so is the index of P.

I If P is as in part (2), it contains a unimodular tetrahedron (index 1).
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(III) Characterizing polytopes with each index
Lemma (B-Santos, 2016)
Let P be a lattice 3-polytope of size n > 11 and width > 1. Then:

1. There exist vertices u, v ∈ vert(P) such that Pu and Pv have width
one and Puv := conv(P ∩ Z3 \ {u, v}) is 3-dimensional.

2. or P admits a lattice projection to one of the following
2-dimensional configurations. (The labels in the points indicate how

many (consecutive) lattice points of P project to it) ( SPIKED)

n− 3

A′
1 A′

2 A′
3 A′

6A′
4 A′

5

A′
7 A′

10A′
8 A′

9

1

1 1 1 1

1 1

1 11

1

1 1

1

1 1 1

1 1

1

1

1 1

1

n− 3
n− 3 n− 3

n− 3

n− 4 n− 5

1

1

1

1

1

1
1

1

1

1 1

1

1

1

1

n− 4 n− 4 n− 4

n− k − 3

k



(III) Index of spiked polytopes

Lemma
Let P be a spiked 3-polytope:

1. If P is spiked projecting to A′1, its index is 2.

2. If P is spiked projecting to A′4, its index is 3.

3. If P is spiked projecting to any other A′i , then P contains a
unimodular tetrahedron.

n− 3

A′
1 A′

2 A′
3 A′

6A′
4 A′

5

A′
7 A′

10A′
8 A′

9

1

1 1 1 1

1 1

1 11

1

1 1

1

1 1 1

1 1

1

1

1 1

1

n− 3
n− 3 n− 3

n− 3

n− 4 n− 5

1

1

1

1

1

1
1

1

1

1 1

1

1

1

1

n− 4 n− 4 n− 4

n− k − 3

k



(III) Characterizing polytopes of index 3

Theorem
Let P be a lattice 3-polytope of width > 1, size
n > 11 and index 3, then P admits a lattice
projection to the following 2-dimensional
configuration:

1

1

1

n− 3

Proof.
True for n = 11 and for P of size > 11 and spiked.
Otherwise, P has two vertices u, v such that Pu and Pv have width > 1
and Puv is 3-dimensional. Then by induction, Pu and Pv project to the
configuration:

Pu and Pv :

11

1

n− 4

Options for Puv :

11

1

n− 5

11

0

n− 4



(III) Characterizing polytopes of index 3

Theorem
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1

n− 5
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11

1

n− 3
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(III) Characterizing polytopes of index 3

Theorem
Let P be a lattice 3-polytope of width > 1, size
n > 11 and index 3, then P admits a lattice
projection to the following 2-dimensional
configuration:
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(III) Characterizing polytopes of index 2
Theorem
Let P be a lattice 3-polytope of width > 1, size n > 11 and index 2, then
P admits a lattice projection to one of the following 2-dimensional
configurations:

1

1 1

n− 4

1 111 1

1 11

n− 5 n− 5

Proof.
Proof is analogous.

Pu and Pv :

1

1 1

n− 4

1 111 1

1 11

n− 5 n− 5

(Pu,Pu,v ) and (Pv ,Pu,v ):
1

1 1

n− 5

1 111 1

1 11

n− 6

n− 6

0

1 1

n− 4

1 111 1

1 00

n− 5

n− 5

011

1

n− 5



(III) Characterizing primitive polytopes

Theorem
Let P be a primitive 3-polytope of width > 1 and size n > 11.
Then P contains a unimodular tetrahedron.

Proof.
True for n = 11 and for P of size > 11 and spiked.
Otherwise P has vertices u, v so that Pu and Pv are of width > 1 and such
that Pu,v is 3-dimensional. Let Iu, Iv and Iuv be indices of Pu, Pv and Pu,v .

If Iu = 1, by induction Pu contains a unimodular tetrahedron, and so does P.
Same if Iv = 1.

So assume Iu, Iv > 1. Notice that Pu,v is a lattice 3-polytope of index Iuv > 1 a
multiple of I1 and I2. Let us see that Iuv = Iu = Iv .
We have two possibilities:

I If Pu,v has width > 1, then by induction Iuv = 2, 3 =⇒ Iuv = Iu = Iv

I If Pu,v has width one, then (by an extra result) =⇒ Iuv = Iu and Iuv = Iv

=⇒ The quotient sublattices Z3/Pu, Z3/Pv and Z3/Pu,v (and, therefore,
Z3/P) are the same =⇒ P is not primitive (CONTRADICTION).



SUMMARY OF RESULTS



Primitive polytopes

Corollary
The following two are the only primitive 3-polytopes that DO NOT
contain a unimodular tetrahedron:

I conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 7, 1), (−1,−2,−1)}, a terminal
tetrahedron (size 5), with four empty tetrahedra of volumes 2, 3, 5
and 7.

I conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (3, 7, 1), (−2,−3,−1)} a terminal
tetrahedron (size 5), with four empty tetrahedra of volumes 3, 4, 5
and 7.

(2, 7, 1)

(0, 0, 1)

(1, 0, 0)

(−1,−2,−1)

z

x

y

(3, 7, 1)

(0, 0, 1)

(1, 0, 0)

(−2,−3,−1)

z

x

y



Indices of lattice 3-polytopes

Corollary

Let P be a lattice 3-polytope of index q 6∈ {1, 2, 3, 5}. Then P
has width one.

Corollary

If P is a lattice polytope of width one and index q > 1, then it
consists of lattice points along two lattice segments and all its
empty tetrahedra have volume q:



Polytopes of width > 1: INDEX 5

Corollary

The following is the only lattice 3-polytope of width > 1 and
index 5:

conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 5, 1), (−3,−5,−2)},

a terminal tetrahedron (size 5), with four empty tetrahedra of
volume 5.

(2, 5, 1)

(0, 0, 1)

(1, 0, 0)

(−3,−5,−2)

z

x

y



Polytopes of width > 1: INDEX 3

size 5 6 n ≥ 7
projects to

1

1

1

n− 3

1 2
⌊
n
2

⌋
− 1

exceptions -

(1, 0, 0)

(−1,−1, 0)

(1, 2, 3)

(−1, 1,−3)

-



Polytopes of width > 1: INDEX 2
size 6 7 8 n ≥ 9

projects to

n− 3

1

1 1 2 2 3
⌊
n
2

⌋
− 1

n− 4

1

1 1

1

- 4 7
1
2

[(
n−4

2

)
−

⌊
n−4

2

⌋]
+

+n − 4

n− 4

1

1 1 1 - 1 1
⌊
n−1

2

⌋
− 1

exceptions -
(0, 2, 0)

(1, 0, 0)

(−2,−1, 0)

(1, 1, 2)

(0, 0, 2)

(−1, 0, 0)

(1, 2,−1)

(2,−4, 1)

(0, 2, 0)

(1, 0, 0)

(−2,−1, 0)

(1, 1, 2)

(−3,−1,−2)

(0, 2, 0)

(1, 0, 0)

(−5,−3,−2)

(1, 1, 2)

-



Thank you for your attention!!
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