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Matroid terminology

§ A matroid M (think: list of vectors) on a set E :“ t1, . . . , nu
is a collection C of subsets of E , called circuits (think: minimal
dependent subsets), fulfilling a circuit exchange axiom.

§ The rank (think: dimension) of a set S Ď E is the maximal
size of a subset of S not containing a circuit. The rank of M
is the rank of E .

§ A flat (think: span of vectors) of M is a set F such that for
any x R F , rankpF ` xq “ rankpF q ` 1. The flats of a matroid
form a lattice.
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rankpt2uq “ rankpt2, 3uq “ 1
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E

Convention: All matroids are loopfree (think: no zero vectors),
i.e. H is a flat.
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A vector space of matroids

§ Let Cr ,n be the set of all chains of subsets of E of the form

L “ pH “: F0 Ĺ F1 Ĺ ¨ ¨ ¨ Ĺ Fr :“ E q .

§ To each matroid M of rank r on E we associate a vector wM

in RCr,n by

pwMqL :“

#

1, if L is a chain of flats of M,

0, otherwise.

§ This defines a vector space Mr ,n, which is the subspace of
RCr,n generated by the vectors wM .
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Some geometric intuition

§ For a set F Ď E , let vF :“
ř

iPF ei P Rn{p1, . . . , 1q.

§ For a chain L “ pH “ F0, . . . ,Fr “ E q, we define a
polyhedral cone conepLq :“ conepvF1 , . . . , vFr´1q.

§ To a matroid M of rank r on n elements, we associate its
Bergman fan BpMq, which is the union of all conepLq, where
L is a chain of flats of M.
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Note: vt4u “ p0, 0, 0, 1q ” p´1,´1,´1, �A0q.
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Cyclic flats and nested matroids

§ A cyclic flat of a matroid M is a flat, which is a union of
circuits.
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§ The cyclic flats form again a lattice.

§ Knowing the cyclic flats and their ranks determines the
matroid (Brylawski ’75, Bonin and de Mier ’08).

§ A matroid is called nested if its lattice of cyclic flats is a chain.

Theorem (H)

The nested matroids form a basis of Mr ,n.
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The G-invariant

§ The G- invariant of a matroid of rank r on n elements is,
basically, a vector in Rp

n
rq.

§ It is the universal valuative invariant for subdivisions of
matroid polytopes (Fink, Derksen).

§ Is is quite general, in that it can be linearly transformed into
most other matroid invariants, such as the Tutte polynomial
or the number of (cyclic) flats (Bonin, Kung).

Theorem (H)

The G-invariant induces a linear map

Mr ,n Ñ Rp
n
rq .
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Tropical geometry

§ A very primitive picture of tropical geometry is

Algebraic
geometry

Tropicalization
Tropical

geometry

§ This process takes algebraic varieties to tropical cycles, which
are weighted polyhedral fans.

§ Example: The tropicalization of a linear space is the Bergman
fan of a matroid (Sturmfels ’02).

§ The tropical cycles in Rn form a graded ring, where
§ Addition = “Weighted sums of sets”.
§ Multiplication = Stable intersection Xst.
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Stable intersection of Bergman fans

§ A subset S of a matroid is spanning, if the smallest flat
containing it is E .

§ The set of spanning sets SpMq determines M.

§ For two matroids M,M 1 we define their intersection M ^M 1

via

SpM ^M 1q “ tS X S 1, S P SpMq,S 1 P SpM 1qu .

Theorem (Speyer ’08)

The stable intersection of two Bergman fans is

BpMq Xst BpMq “

#

BpM ^M 1q, if M ^M 1 is loopfree,

0, otherwise.
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The intersection of matroids

§ We thus obtain a ring Mn :“
Àn

r“1Mr ,n, where the product
is defined by

M ¨M 1 :“

#

M ^M 1, if M ^M 1 is loopfree,

0, otherwise.

§ This ring is graded by corank.

Proposition (H)

Every nested matroid is a product of corank one matroids, so Mn

is generated in corank one.
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Counting nested matroids

Theorem (H)

The number of loopfree nested matroids of rank r on n elements is
the Eulerian number Ar´1,n.

Note: The Eulerian numbers are symmetric, so Mr ,n –Mn´r`1,n.

Corollary (follows from Fulton, Sturmfels ’97 and the above)

Mn – A˚pX pPn´1qq, the cohomology ring of the toric variety of a
permutohedron.

Corollary

Mn fulfills Poincaré duality, i.e.
Mr ,n – HompMn´r`1,n,Rq p–Mn´r`1,nq via

M ÞÑ pN ÞÑ M ¨ Nq .
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McMullen’s polytope algebra

McMullen defined a polytope algebra Πn: It is the algebra
generated by symbols rPs for each polytope in Rn, modulo
translations and the identity

rP Y Qs “ rPs ` rQs ´ rP X Qs ,

whenever P Y Q is a polytope. Multiplication is given by
Minkowski sum.

Theorem (H)

Mr ,n bZ Q is isomorphic to the subalgebra of Πn´1 generated by
matroid polytopes.
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The polytope of matroids

§ In the basis of nested matroids, every matroid of rank r
corresponds to a point in RAr´1,n .

§ Let Pr ,n :“ convtM; M matroid of rank r on rnsu.

Proposition (H)

Pr ,n is an empty lattice polytope whose vertices are exactly the
matroids.

§ Since many invariants are linear maps, extremality questions
can be phrased as linear programs.
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The polytope of matroids - continued

§ Trivial examples: P1,n “ Pn,n “ point and Pn´1,n “ simplex.

§ Otherwise, not much is known. I.e., what are the facets,
what’s the graph, the f -vector,...

§ These polytopes get large very quickly.
§ (partial) f -vectors of the smallest non-trivial examples:

§ pn, rq “ p4, 2q : p14, 85, 298, 673, 1029, 1085, 785, 378, 113, 18q.
§ pn, rq “ p5, 2q : p51, 1105, 14075, ? . . .?, 319q.
§ pn, rq “ p5, 3q : p106, 5365, ? . . .?, 394q.
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§ pn, rq “ p4, 2q : p14, 85, 298, 673, 1029, 1085, 785, 378, 113, 18q.
§ pn, rq “ p5, 2q : p51, 1105, 14075, ? . . .?, 319q.
§ pn, rq “ p5, 3q : p106, 5365, ? . . .?, 394q.



Outlook

Some interesting ramifications:

§ Extremality questions: What is the maximal number of cyclic
flats of a matroid?

§ Regular subdivisions of matroids / White’s conjecture.

§ Matroids over hyperfields (Baker ’16).

§ The matroid of matroids: The wM define a matroid
themselves. What are, for example, its circuits?

Thank you!
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