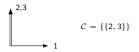
The intersection ring of matroids

Simon Hampe, TU Berlin

Workshop on Convex Polytopes

20th of January, 2017

 A matroid M (think: list of vectors) on a set E := {1,..., n} is a collection C of subsets of E, called *circuits* (think: minimal dependent subsets), fulfilling a *circuit exchange axiom*.



- A matroid M (think: list of vectors) on a set E := {1,...,n} is a collection C of subsets of E, called *circuits* (think: minimal dependent subsets), fulfilling a *circuit exchange axiom*.
- The rank (think: dimension) of a set S ⊆ E is the maximal size of a subset of S not containing a circuit. The rank of M is the rank of E.

(日) (同) (三) (三) (三) (○) (○)

- A matroid M (think: list of vectors) on a set E := {1,..., n} is a collection C of subsets of E, called *circuits* (think: minimal dependent subsets), fulfilling a *circuit exchange axiom*.
- The rank (think: dimension) of a set $S \subseteq E$ is the maximal size of a subset of S not containing a circuit. The rank of M is the rank of E.
- A flat (think: span of vectors) of M is a set F such that for any x ∉ F, rank(F + x) = rank(F) + 1. The flats of a matroid form a *lattice*.

- A matroid M (think: list of vectors) on a set E := {1,...,n} is a collection C of subsets of E, called *circuits* (think: minimal dependent subsets), fulfilling a *circuit exchange axiom*.
- The rank (think: dimension) of a set S ⊆ E is the maximal size of a subset of S not containing a circuit. The rank of M is the rank of E.
- A flat (think: span of vectors) of M is a set F such that for any x ∉ F, rank(F + x) = rank(F) + 1. The flats of a matroid form a *lattice*.

2,3

$$C = \{\{2,3\}\}$$
 rank($\{2\}$) = rank($\{2,3\}$) = 1 (1) (2,3)
 \emptyset

Convention: All matroids are loopfree (think: no zero vectors), i.e. \emptyset is a flat.

A vector space of matroids

• Let $\mathfrak{C}_{r,n}$ be the set of all chains of subsets of E of the form

$$\mathcal{L} = (\emptyset =: F_0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_r := E) \; .$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

A vector space of matroids

• Let $\mathfrak{C}_{r,n}$ be the set of all chains of subsets of E of the form

$$\mathcal{L} = (\emptyset =: F_0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_r := E) .$$

 To each matroid M of rank r on E we associate a vector w_M in ℝ^𝔅_{r,n} by

$$(w_M)_{\mathcal{L}} := \begin{cases} 1, & \text{if } \mathcal{L} \text{ is a chain of flats of } M, \\ 0, & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A vector space of matroids

• Let $\mathfrak{C}_{r,n}$ be the set of all chains of subsets of E of the form

$$\mathcal{L} = (\emptyset =: F_0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_r := E) \ .$$

 To each matroid M of rank r on E we associate a vector w_M in ℝ^𝔅_{r,n} by

$$(w_M)_{\mathcal{L}} := \begin{cases} 1, & \text{if } \mathcal{L} \text{ is a chain of flats of } M, \\ 0, & \text{otherwise.} \end{cases}$$

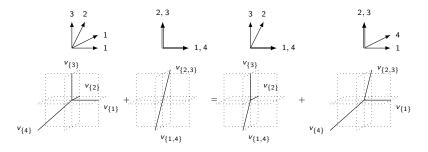
• For a set
$$F \subseteq E$$
, let $v_F := \sum_{i \in F} e_i \in \mathbb{R}^n / (1, \dots, 1)$.

- For a set $F \subseteq E$, let $v_F := \sum_{i \in F} e_i \in \mathbb{R}^n / (1, \dots, 1)$.
- For a chain L = (∅ = F₀,..., F_r = E), we define a polyhedral cone cone(L) := cone(v_{F1},..., v_{Fr-1}).

- For a set $F \subseteq E$, let $v_F := \sum_{i \in F} e_i \in \mathbb{R}^n / (1, \dots, 1)$.
- For a chain L = (∅ = F₀,..., F_r = E), we define a polyhedral cone cone(L) := cone(v_{F1},..., v_{Fr-1}).
- ► To a matroid *M* of rank *r* on *n* elements, we associate its Bergman fan B(M), which is the union of all cone(L), where L is a chain of flats of *M*.

• For a set $F \subseteq E$, let $v_F := \sum_{i \in F} e_i \in \mathbb{R}^n / (1, \dots, 1)$.

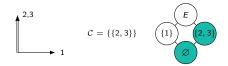
- For a chain L = (∅ = F₀,..., F_r = E), we define a polyhedral cone cone(L) := cone(v_{F1},..., v_{Fr-1}).
- ► To a matroid *M* of rank *r* on *n* elements, we associate its Bergman fan B(M), which is the union of all cone(L), where L is a chain of flats of *M*.



Note: $v_{\{4\}} = (0, 0, 0, 1) \equiv (-1, -1, -1, \mathbb{A}).$

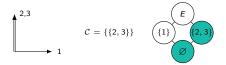
・ロト・西ト・山田・山田・山下・

• A *cyclic flat* of a matroid *M* is a flat, which is a union of circuits.



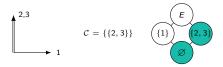
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A *cyclic flat* of a matroid *M* is a flat, which is a union of circuits.



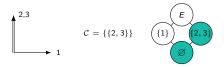
The cyclic flats form again a lattice.

• A *cyclic flat* of a matroid *M* is a flat, which is a union of circuits.



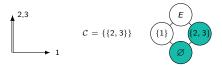
- The cyclic flats form again a lattice.
- Knowing the cyclic flats and their ranks determines the matroid (Brylawski '75, Bonin and de Mier '08).

• A *cyclic flat* of a matroid *M* is a flat, which is a union of circuits.



- The cyclic flats form again a lattice.
- Knowing the cyclic flats and their ranks determines the matroid (Brylawski '75, Bonin and de Mier '08).
- A matroid is called *nested* if its lattice of cyclic flats is a chain.

• A *cyclic flat* of a matroid *M* is a flat, which is a union of circuits.

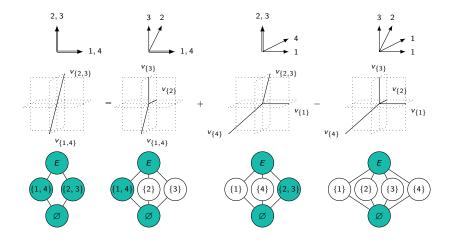


- The cyclic flats form again a lattice.
- Knowing the cyclic flats and their ranks determines the matroid (Brylawski '75, Bonin and de Mier '08).
- A matroid is called *nested* if its lattice of cyclic flats is a chain.

Theorem (H)

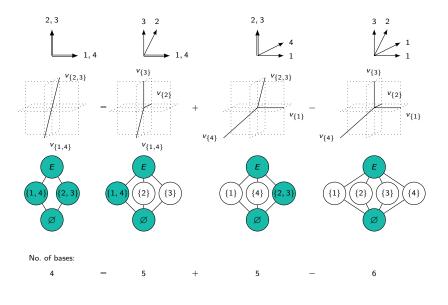
The nested matroids form a basis of $\mathbb{M}_{r,n}$.

An example



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

An example



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

The \mathcal{G} -invariant

The *G*- invariant of a matroid of rank *r* on *n* elements is, basically, a vector in ℝⁿ(ⁿ).

The \mathcal{G} -invariant

- The *G* invariant of a matroid of rank *r* on *n* elements is, basically, a vector in ℝⁿ_r.
- It is the universal valuative invariant for subdivisions of matroid polytopes (Fink, Derksen).

The \mathcal{G} -invariant

- The *G* invariant of a matroid of rank *r* on *n* elements is, basically, a vector in ℝ⁽ⁿ⁾_r.
- It is the universal valuative invariant for subdivisions of matroid polytopes (Fink, Derksen).
- Is is quite general, in that it can be linearly transformed into most other matroid invariants, such as the Tutte polynomial or the number of (cyclic) flats (Bonin, Kung).

The $\mathcal{G}\text{-invariant}$

- The \mathcal{G} invariant of a matroid of rank r on n elements is, basically, a vector in $\mathbb{R}^{\binom{n}{r}}$.
- It is the universal valuative invariant for subdivisions of matroid polytopes (Fink, Derksen).
- Is is quite general, in that it can be linearly transformed into most other matroid invariants, such as the Tutte polynomial or the number of (cyclic) flats (Bonin, Kung).

Theorem (H)

The \mathcal{G} -invariant induces a linear map

$$\mathbb{M}_{r,n} \to \mathbb{R}^{\binom{n}{r}}$$

A very primitive picture of tropical geometry is

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A very primitive picture of tropical geometry is

 This process takes algebraic varieties to *tropical cycles*, which are weighted polyhedral fans.

A very primitive picture of tropical geometry is

- This process takes algebraic varieties to *tropical cycles*, which are weighted polyhedral fans.
- Example: The tropicalization of a linear space is the Bergman fan of a matroid (Sturmfels '02).

A very primitive picture of tropical geometry is

- This process takes algebraic varieties to *tropical cycles*, which are weighted polyhedral fans.
- Example: The tropicalization of a linear space is the Bergman fan of a matroid (Sturmfels '02).

- The tropical cycles in \mathbb{R}^n form a graded ring, where
 - Addition = "Weighted sums of sets".

A very primitive picture of tropical geometry is

- This process takes algebraic varieties to *tropical cycles*, which are weighted polyhedral fans.
- Example: The tropicalization of a linear space is the Bergman fan of a matroid (Sturmfels '02).

- The tropical cycles in \mathbb{R}^n form a graded ring, where
 - Addition = "Weighted sums of sets".
 - Multiplication = Stable intersection \cap_{st} .

• A subset S of a matroid is *spanning*, if the smallest flat containing it is *E*.

• A subset S of a matroid is *spanning*, if the smallest flat containing it is E.

・ロト・日本・モート モー うへぐ

• The set of spanning sets $\mathcal{S}(M)$ determines M.

- A subset S of a matroid is *spanning*, if the smallest flat containing it is E.
- The set of spanning sets $\mathcal{S}(M)$ determines M.
- For two matroids M, M' we define their *intersection* $M \wedge M'$ via

$$\mathcal{S}(M \wedge M') = \{S \cap S', S \in \mathcal{S}(M), S' \in \mathcal{S}(M')\} .$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A subset S of a matroid is *spanning*, if the smallest flat containing it is E.
- The set of spanning sets $\mathcal{S}(M)$ determines M.
- For two matroids M, M' we define their *intersection* $M \wedge M'$ via

$$\mathcal{S}(M \wedge M') = \{S \cap S', S \in \mathcal{S}(M), S' \in \mathcal{S}(M')\} .$$

Theorem (Speyer '08)

The stable intersection of two Bergman fans is

$$B(M) \cap_{\mathsf{st}} B(M) = egin{cases} B(M \wedge M'), & ext{if } M \wedge M' & ext{is loopfree,} \\ 0, & ext{otherwise.} \end{cases}$$

The intersection of matroids

▶ We thus obtain a ring $\mathbb{M}_n := \bigoplus_{r=1}^n \mathbb{M}_{r,n}$, where the product is defined by

$$M \cdot M' := egin{cases} M \wedge M', ext{if } M \wedge M' ext{ is loopfree,} \ 0, ext{otherwise.} \end{cases}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

The intersection of matroids

• We thus obtain a ring $\mathbb{M}_n := \bigoplus_{r=1}^n \mathbb{M}_{r,n}$, where the product is defined by

$$M \cdot M' := egin{cases} M \wedge M', ext{if } M \wedge M' ext{ is loopfree,} \ 0, ext{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

This ring is graded by corank.

The intersection of matroids

• We thus obtain a ring $\mathbb{M}_n := \bigoplus_{r=1}^n \mathbb{M}_{r,n}$, where the product is defined by

$$M \cdot M' := egin{cases} M \wedge M', ext{if } M \wedge M' ext{ is loopfree,} \ 0, ext{otherwise.} \end{cases}$$

This ring is graded by corank.

Proposition (H)

Every nested matroid is a product of corank one matroids, so \mathbb{M}_n is generated in corank one.

Counting nested matroids

Theorem (H)

The number of loopfree nested matroids of rank r on n elements is the Eulerian number $A_{r-1,n}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Counting nested matroids

Theorem (H)

The number of loopfree nested matroids of rank r on n elements is the Eulerian number $A_{r-1,n}$.

Note: The Eulerian numbers are symmetric, so $\mathbb{M}_{r,n} \cong \mathbb{M}_{n-r+1,n}$.

Counting nested matroids

Theorem (H)

The number of loopfree nested matroids of rank r on n elements is the Eulerian number $A_{r-1,n}$.

Note: The Eulerian numbers are symmetric, so $\mathbb{M}_{r,n} \cong \mathbb{M}_{n-r+1,n}$.

Corollary (follows from Fulton, Sturmfels '97 and the above) $\mathbb{M}_n \cong A^*(X(P_{n-1}))$, the cohomology ring of the toric variety of a

permutohedron.

Counting nested matroids

Theorem (H)

The number of loopfree nested matroids of rank r on n elements is the Eulerian number $A_{r-1,n}$.

Note: The Eulerian numbers are symmetric, so $\mathbb{M}_{r,n} \cong \mathbb{M}_{n-r+1,n}$.

Corollary (follows from Fulton, Sturmfels '97 and the above) $% \left(\left(f_{1},f_{2},f_{3},f$

 $\mathbb{M}_n \cong A^*(X(P_{n-1}))$, the cohomology ring of the toric variety of a permutohedron.

Corollary

 \mathbb{M}_n fulfills Poincaré duality, i.e. $\mathbb{M}_{r,n} \cong \operatorname{Hom}(\mathbb{M}_{n-r+1,n}, \mathbb{R}) \ (\cong \mathbb{M}_{n-r+1,n})$ via

$$M \mapsto (N \mapsto M \cdot N)$$

McMullen's polytope algebra

McMullen defined a *polytope algebra* Π_n : It is the algebra generated by symbols [P] for each polytope in \mathbb{R}^n , modulo translations and the identity

$$[P \cup Q] = [P] + [Q] - [P \cap Q]$$
,

whenever $P \cup Q$ is a polytope. Multiplication is given by Minkowski sum.

McMullen's polytope algebra

McMullen defined a *polytope algebra* Π_n : It is the algebra generated by symbols [P] for each polytope in \mathbb{R}^n , modulo translations and the identity

$$[P \cup Q] = [P] + [Q] - [P \cap Q]$$
,

whenever $P \cup Q$ is a polytope. Multiplication is given by Minkowski sum.

Theorem (H)

 $\mathbb{M}_{r,n} \otimes_{\mathbb{Z}} \mathbb{Q}$ is isomorphic to the subalgebra of Π_{n-1} generated by matroid polytopes.

In the basis of nested matroids, every matroid of rank r corresponds to a point in ℝ^A_{r-1,n}.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 In the basis of nested matroids, every matroid of rank r corresponds to a point in ℝ^A_{r-1,n}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Let $P_{r,n} := \operatorname{conv}\{M; M \text{ matroid of rank } r \text{ on } [n]\}.$

- In the basis of nested matroids, every matroid of rank r corresponds to a point in ℝ^A_{r-1,n}.
- Let $P_{r,n} := \operatorname{conv}\{M; M \text{ matroid of rank } r \text{ on } [n]\}.$

Proposition (H)

 $P_{r,n}$ is an empty lattice polytope whose vertices are exactly the matroids.

- In the basis of nested matroids, every matroid of rank r corresponds to a point in ℝ^A_{r-1,n}.
- Let $P_{r,n} := \operatorname{conv}\{M; M \text{ matroid of rank } r \text{ on } [n]\}.$

Proposition (H)

 $P_{r,n}$ is an empty lattice polytope whose vertices are exactly the matroids.

 Since many invariants are linear maps, extremality questions can be phrased as linear programs.

• Trivial examples: $P_{1,n} = P_{n,n}$ = point and $P_{n-1,n}$ = simplex.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Trivial examples: $P_{1,n} = P_{n,n} = \text{point and } P_{n-1,n} = \text{simplex.}$

 Otherwise, not much is known. I.e., what are the facets, what's the graph, the *f*-vector,...

• Trivial examples: $P_{1,n} = P_{n,n} = \text{point and } P_{n-1,n} = \text{simplex.}$

- Otherwise, not much is known. I.e., what are the facets, what's the graph, the *f*-vector,...
- These polytopes get large very quickly.

- Trivial examples: $P_{1,n} = P_{n,n}$ = point and $P_{n-1,n}$ = simplex.
- Otherwise, not much is known. I.e., what are the facets, what's the graph, the *f*-vector,...
- These polytopes get large very quickly.
- (partial) *f*-vectors of the smallest non-trivial examples:
 - (n, r) = (4, 2) : (14, 85, 298, 673, 1029, 1085, 785, 378, 113, 18).

- (n, r) = (5, 2) : (51, 1105, 14075, ?...?, 319).
- (n, r) = (5, 3) : (106, 5365, ?...?, 394).

Some interesting ramifications:

Some interesting ramifications:

Extremality questions: What is the maximal number of cyclic flats of a matroid?

(ロ)、(型)、(E)、(E)、 E) の(の)

Some interesting ramifications:

Extremality questions: What is the maximal number of cyclic flats of a matroid?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Regular subdivisions of matroids / White's conjecture.

Some interesting ramifications:

• Extremality questions: What is the maximal number of cyclic flats of a matroid?

- Regular subdivisions of matroids / White's conjecture.
- Matroids over hyperfields (Baker '16).

Some interesting ramifications:

• Extremality questions: What is the maximal number of cyclic flats of a matroid?

- Regular subdivisions of matroids / White's conjecture.
- Matroids over hyperfields (Baker '16).
- ► The matroid of matroids: The w_M define a matroid themselves. What are, for example, its circuits?

Some interesting ramifications:

- Extremality questions: What is the maximal number of cyclic flats of a matroid?
- Regular subdivisions of matroids / White's conjecture.
- Matroids over hyperfields (Baker '16).
- ► The matroid of matroids: The w_M define a matroid themselves. What are, for example, its circuits?

Thank you!