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Convention: All matroids are loopfree (think: no zero vectors),
i.e. Jis a flat.
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A vector space of matroids

» Let €, , be the set of all chains of subsets of E of the form

L=(F=F<ch<c --SF:=E).

» To each matroid M of rank r on E we associate a vector wy
in R% by

1, if £ is a chain of flats of M,
(wm)c =

0, otherwise.

» This defines a vector space M, ,, which is the subspace of
R%» generated by the vectors wy.
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» Foraset FC E let ve =), .peieR"/(1,...,1).

» Forachain L= (g = Foy,...,F, = E), we define a
polyhedral cone cone(L) := cone(vg,, ..., VF ;).

» To a matroid M of rank r on n elements, we associate its

Bergman fan B(M), which is the union of all cone(L), where
L is a chain of flats of M.
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» A cyclic flat of a matroid M is a flat, which is a union of
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The cyclic flats form again a lattice.

v

» Knowing the cyclic flats and their ranks determines the
matroid (Brylawski '75, Bonin and de Mier '08).

» A matroid is called nested if its lattice of cyclic flats is a chain.

Theorem (H)

The nested matroids form a basis of M, ,.
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The G-invariant

» The G- invariant of a matroid of rank r on n elements is,
basically, a vector in R().

» It is the universal valuative invariant for subdivisions of
matroid polytopes (Fink, Derksen).

» Is is quite general, in that it can be linearly transformed into
most other matroid invariants, such as the Tutte polynomial
or the number of (cyclic) flats (Bonin, Kung).

Theorem (H)
The G-invariant induces a linear map

n
r
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Tropical geometry

» A very primitive picture of tropical geometry is

geometry

» This process takes algebraic varieties to tropical cycles, which
are weighted polyhedral fans.

» Example: The tropicalization of a linear space is the Bergman
fan of a matroid (Sturmfels '02).
» The tropical cycles in R" form a graded ring, where

» Addition = “Weighted sums of sets”.
» Multiplication = Stable intersection Ng;.
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Stable intersection of Bergman fans

» A subset S of a matroid is spanning, if the smallest flat
containing it is E.
» The set of spanning sets S(M) determines M.

» For two matroids M, M’ we define their intersection M A M’
via

S(MAM)={SnS,SecSM),S eSM)} .

Theorem (Speyer '08)
The stable intersection of two Bergman fans is

B(M A M"),if M A M is loopfree,

0, otherwise.

B(M) ng B(M) = {



The intersection of matroids

» We thus obtain a ring M, := @7_; M, ,,, where the product
is defined by

M. M = M A M if M A M is loopfree,
o 0, otherwise.



The intersection of matroids

» We thus obtain a ring M, := @7_; M, ,,, where the product
is defined by

M. M = M A M if M A M is loopfree,
o 0, otherwise.

» This ring is graded by corank.



The intersection of matroids

» We thus obtain a ring M, := @7_; M, ,,, where the product
is defined by

MM = {I\/I A M if M A M is loopfree,

0, otherwise.

» This ring is graded by corank.

Proposition (H)

Every nested matroid is a product of corank one matroids, so M,
is generated in corank one.
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Counting nested matroids

Theorem (H)

The number of loopfree nested matroids of rank r on n elements is
the Eulerian number A,_1 p.

Note: The Eulerian numbers are symmetric, so M, , = M,_,;1 5.

Corollary (follows from Fulton, Sturmfels '97 and the above)
M, = A*(X(P,—1)), the cohomology ring of the toric variety of a
permutohedron.

Corollary

M, fulfills Poincaré duality, i.e.
Mr,n = Hom(Mn—H—l,mR) (; Mn—r+1,n) via

M (N— M-N) .
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McMullen's polytope algebra

McMullen defined a polytope algebra I,: It is the algebra
generated by symbols [P] for each polytope in R”, modulo
translations and the identity

[PuQ]=I[P]+[QI-[PnQ],

whenever P U Q is a polytope. Multiplication is given by
Minkowski sum.

Theorem (H)

M, , ®z Q is isomorphic to the subalgebra of I',_; generated by
matroid polytopes.
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The polytope of matroids

» In the basis of nested matroids, every matroid of rank r
corresponds to a point in RA—1n.

» Let Py, := conv{M; M matroid of rank r on [n]}.

Proposition (H)
P:,n is an empty lattice polytope whose vertices are exactly the

matroids.

» Since many invariants are linear maps, extremality questions
can be phrased as linear programs.
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The polytope of matroids - continued

» Trivial examples: Py , = P, , = point and P,_1 , = simplex.
» Otherwise, not much is known. l.e., what are the facets,
what's the graph, the f-vector,...
» These polytopes get large very quickly.
» (partial) f-vectors of the smallest non-trivial examples:
» (n,r) = (4,2) : (14,85,298,673,1029, 1085, 785, 378, 113, 18).
» (n,r) = (5,2) : (51,1105, 14075,7...7,319).
» (n,r) = (5,3) : (106,5365,7...7,394).
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» Extremality questions: What is the maximal number of cyclic
flats of a matroid?

» Regular subdivisions of matroids / White's conjecture.
» Matroids over hyperfields (Baker '16).

» The matroid of matroids: The wy, define a matroid
themselves. What are, for example, its circuits?

Thank you!



