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1. Toric varieties and fans

Definition
An n-dimensional toric variety is a normal algebraic variety X over
C containing (C∗)n as an open dense subset, s.t. the natural action
(C∗)n ↷ (C∗)n extends to an action on X .

Examples
(C∗)n,Cn,Pn are toric varieties.



Definition
A rational strongly convex polyhedral cone is a cone σ ⊂ Rn

generated by finitely many vectors in Zn which does not contain any
non-zero linear subspace of Rn.

Definition
A fan in Rn is a non-empty finite set ∆ of such cones satisfying the
following conditions:

If σ ∈ ∆, then each face of σ is in ∆.

If σ, τ ∈ ∆, then σ ∩ τ is a face of each.

Fact

{fans in Rn} 1:1←→ {n-dimensional toric varieties},
∆ 7→ X(∆).



Construction of a toric variety X(∆) from a fan ∆.

Step 1 (affine toric varieties)
First we construct an affine toric variety Uσ for each σ ∈ ∆.

σ∨ = {u ∈ Rn | ⟨u, v⟩ ≥ 0 ∀v ∈ σ}: the dual of σ.

σ∨ ∩ Zn is a commutative monoid.

The monoid ring C[σ∨ ∩ Zn] is a finitely generated integral
domain. So we put Uσ = SpecC[σ∨ ∩ Zn].

Step 2 (gluing)
Let τ be a face of σ and let τ→ σ be the inclusion.

{ a monoid homomorphism σ∨ ∩ Zn → τ∨ ∩ Zn.

{ an open immersion Uτ → Uσ.

Gluing {Uσ | σ ∈ ∆}, we obtain the toric variety X(∆).



Example
σ = R≥0(2e1 − e2) + R≥0e2 ⊂ R2

{ σ∨ = R≥0e1 + R≥0(e1 + 2e2)
{ σ∨ ∩ Z2 = Z≥0e1 + Z≥0(e1 + e2) + Z≥0(e1 + 2e2).

C[σ∨ ∩ Z2] = C[X ,XY ,XY2] = C[U,V ,W ]/(UW − V2). Therefore
Uσ = SpecC[U,V ,W ]/(UW − V2).



Definition
∆ is nonsingular⇔ every cone of ∆ is generated by a part of a
basis for Zn.

∆ is complete⇔ ∪σ∈∆ σ = Rn.

Fact
X(∆) is nonsingular⇔ ∆ is nonsingular.

X(∆) is complete⇔ ∆ is complete.



2. Toric varieties associated to building sets

S: a nonempty finite set.

Definition
A building set on S is a finite set B of nonempty subsets of S
satisfying the following conditions:

If I, J ∈ B and I ∩ J , ∅, then I ∪ J ∈ B.

For every i ∈ S, we have {i} ∈ B.

Bmax: the set of all maximal (by inclusion) elements of B.
An element of Bmax is called a B-component.
B is connected⇔ Bmax = {S}.
B |C = {I ∈ B | I ⊂ C}: the restriction of B to C (∅ , C ⊂ S).
B =

⊔
C∈Bmax

B |C for any building set B.



G = (V(G),E(G)): a finite simple graph, that is, a finite graph with
no loops and no multiple edges.

Definition
For I ⊂ V(G), we define the induced subgraph G|I by

V(G|I) = I,E(G|I) = {{v ,w} ∈ E(G) | v ,w ∈ I}.

B(G) = {I ⊂ V(G) | G|I is connected, I , ∅} is a building set on
V(G). We call B(G) the graphical building set.

Example
Let P3 be the path graph with 3 nodes.

Then B(P3) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}.



Definition
A nested set of B is a subset N ⊂ B \ Bmax satisfying the following
conditions:

If I, J ∈ N, then we have either I ⊂ J or J ⊂ I or I ∩ J = ∅.
For any k ≥ 2 and for any pairwise disjoint I1, . . . , Ik ∈ N, we
have I1 ∪ · · · ∪ Ik < B.

N(B): the set of all nested sets of B.



Definition (fans from building sets)
First, suppose B is a connected building set on S = {1, . . . , n + 1}.

e1, . . . , en: the standard basis for Rn, en+1 = −e1 − · · · − en.

eI =
∑

i∈I ei for I ⊂ S.

R≥0N =
∑

I∈N R≥0eI for N ∈ N(B).

∆(B) = {R≥0N | N ∈ N(B)} is a fan in Rn.
Thus we have an n-dimensional toric variety X(∆(B)).
If B is disconnected, then we define X(∆(B)) =

∏
C∈Bmax

X(∆(B |C)).

Proposition
∆(B) is nonsingular and complete.

Remark
∆(B) is the normal fan of a simple polytope called a nestohedron.
Thus X(∆(B)) is nonsingular and projective.



Example
We have B(P3) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}. Thus

N(B(P3)) ={∅, {{1}}, {{2}}, {{3}}, {{1, 2}}, {{2, 3}},
{{1}, {3}}, {{1}, {1, 2}}, {{2}, {1, 2}}, {{2}, {2, 3}}, {{3}, {2, 3}}}.

So we have the fan ∆(B(P3)) below. Therefore X(∆(B(P3))) is P2

blown-up at two points.



3. Toric Fano varieties associated to graphs

X : a nonsingular projective algebraic variety.

Definition
X is Fano⇔ the anticanonical divisor −KX is ample.

X is weak Fano⇔ −KX is nef and big.

X is Fano⇒ X is weak Fano.



G: a finite simple graph.

Theorem 1 (S)
X(∆(B(G))) is Fano⇔ each connected component of G has ≤ 3
nodes.

Since X(∆) × X(∆′) is Fano iff X(∆) and X(∆′) are Fano, it
suffices to show the following:

Theorem 1′

For a connected graph G, X(∆(B(G))) is Fano⇔ |V(G)| ≤ 3.

∆(r): the set of r-dimensional cones of ∆.



Theorem 1′

For a connected graph G, X(∆(B(G))) is Fano⇔ |V(G)| ≤ 3.

Proof (⇒) Let |V(G)| = n + 1, that is, dim X(∆(B(G))) = n.

X(∆): n-dimensional toric Fano variety
⇒ |∆(1)| ≤ 3n (n: even), |∆(1)| ≤ 3n − 1 (n: odd),
(Casagrande, 2006).

|∆(B(G))(1)| ≥ |∆(B(Pn+1))(1)| = (n+1)(n+2)
2 − 1

(Buchstaber–Volodin, 2011).
(n+1)(n+2)

2 − 1 ≤ 3n (≤ 3n − 1) holds only for n ≤ 2. So |V(G)| ≤ 3.
(⇐) If |V(G)| ≤ 3, then X(∆(B(G))) must be one of the following:

A point (G: one node).

P1 (G = P2).

P2 blown-up at two points (G = P3).

P2 blown-up at three points (G = K3).

Thus X(∆(B(G))) is Fano for every case. □



G: a finite simple graph.

Theorem 2 (S)
X(∆(B(G))) is weak Fano⇔
∀G′: connected component of G and ∀I ⊊ V(G′),
G′|I is neither a cycle graph of length ≥ 4 nor the diamond graph.

Figure: the diamond graph.



Examples
G: a cycle graph, the diamond graph, a tree, or a complete
graph⇒ X(∆(B(G))): weak Fano.

The toric variety of the left graph is weak Fano, but the toric
variety of the right graph is not weak Fano because it has a
cycle graph of length 4 as a proper induced subgraph.



∆: a nonsingular complete fan in Rn.

V(τ): the torus-invariant curve corresponding to τ ∈ ∆(n − 1).

Proposition
Let τ = R≥0v1 + · · ·+ R≥0vn−1 ∈ ∆(n − 1), where v1, . . . , vn−1 are
primitive vectors in Zn, and let v and v ′ be the distinct primitive
vectors in Zn s.t. τ+ R≥0v , τ+ R≥0v ′ ∈ ∆(n).

∃a1, . . . , an−1 ∈ Z s.t. v + v ′ + a1v1 + · · ·+ an−1vn−1 = 0.

The intersection number (−KX(∆).V(τ)) is 2 + a1 + · · ·+ an−1.

Theorem
X(∆) is Fano⇔ (−KX(∆).V(τ)) > 0 ∀τ ∈ ∆(n − 1).

X(∆) is weak Fano⇔ (−KX(∆).V(τ)) ≥ 0 ∀τ ∈ ∆(n − 1).



G: a connected graph with |V(G)| = n + 1.

N ∈ N(B(G)) with |N| = n − 1
(corresponding to an (n − 1)-dimensional cone R≥0N).

Key Lemma
∃{J, J′} ⊂ B(G) \ N s.t. N ∪ {J},N ∪ {J′} ∈ N(B(G)) and

(−KX(∆(B(G))).V(R≥0N)) =

{
2 −m (J ∪ J′ = V(G)),
1 −m (J ∪ J′ ⊊ V(G)),

where m is the number of connected components of G|J∩J′ .

Hence we can compute the intersection number by counting
connected components of a certain induced subgraph.



Since X(∆) × X(∆′) is weak Fano iff X(∆) and X(∆′) are weak
Fano, it suffices to show the following:

Theorem 2′

For a connected graph G, X(∆(B(G))) is weak Fano⇔ ∀I ⊊ V(G),
G|I is neither a cycle graph of length ≥ 4 nor the diamond graph.

Sketch of the Proof (⇒) Suppose that ∃I ⊊ V(G) s.t. G|I is a cycle
graph of length ≥ 4 or the diamond graph. Then we can construct
N ∈ N(B(G)) with |N| = n − 1 s.t. (−KX(∆(B(G))).V(R≥0N)) = −1.
Thus X(∆(B(G))) is not weak Fano.
(⇐) Suppose that X(∆(B(G))) is not weak Fano. Then
∃N ∈ N(B(G)) with |N| = n − 1 s.t. (−KX(∆(B(G))).V(R≥0N)) ≤ −1.
By using graph-theoretic arguments, we can find I ⊊ V(G) s.t.
G|I is a cycle graph of length ≥ 4 or the diamond graph. □



4. Toric Fano varieties associated to buildings

Theorem 3 (S)
Let B be a building set. Then the following are equivalent:

X(∆(B)) is Fano.

For any C ∈ Bmax and for any I1, I2 ∈ B |C s.t. I1 ∩ I2 , ∅, I1 1 I2
and I2 1 I1, we have I1 ∪ I2 = C and I1 ∩ I2 ∈ B |C .

Remark
This implies that X(∆(B(G))) is Fano iff each connected
component of G has ≤ 3 nodes, which agrees with Theorem 1.

Problem
Find a condition for X(∆(B)) to be weak Fano in terms of the
building set.



Let G = (V(G),A(G)) be a finite directed graph with no loops and
no multiple arrows.

Definition (Higashitani)

Let V(G) = {1, . . . , n + 1}. For −→e = (i, j) ∈ A(G), we define
ρ(−→e ) = ei − ej ∈ Rn+1. We define PG to be the convex hull of
{ρ(−→e ) | −→e ∈ A(G)} in Rn+1. PG is an integral convex polytope in
H = {(x1, . . . , xn+1) ∈ Rn+1 | x1 + · · ·+ xn+1 = 0}.



Definition
An integral convex polytope is said to be Fano if the origin is the
only lattice point in the interior, and it is said to be smooth if the
vertices of every facet form a basis for the lattice.

Fact

{n-dim’l smooth Fano polytopes} 1:1←→ {n-dim’l toric Fano varieties}.

Remark
Not all finite directed graphs yield smooth Fano polytopes.



Let B be a building set.

Theorem 4 (S)
If X(∆(B)) is Fano, then there exists a finite directed graph G s.t.
PG is smooth Fano and its associated fan is isomorphic to ∆(B).

dimension 1 2 3
# of toric Fano varieties 1 5 18
# of toric Fano varieties from finite directed graphs 1 5 16
# of toric Fano varieties from building sets 1 5 14
# of toric Fano varieties from finite simple graphs 1 2 3



Theorem 4 (S)
If X(∆(B)) is Fano, then there exists a finite directed graph G s.t.
PG is smooth Fano and its associated fan is isomorphic to ∆(B).

Proof By connecting finite directed graphs that yield toric Fano
varieties with one node, we obtain a graph that yields a toric variety
isomorphic to the product of the toric Fano varieties of the graphs.
Hence it suffices to prove the assertion when B is connected.
We put U = {I ∈ B \ {S} | ∃J ∈ B \ {S} s.t. I ∩ J , ∅ and I ∪ J = S}.

Lemma
Let B be a connected building set on S such that X(∆(B)) is Fano.
Then U must be one of the following:

U = ∅.
U = {I, J} for some I, J ∈ B.

U = {I, J,S \ (I ∩ J)} for some I, J ∈ B.



In this talk, we prove Theorem 4 only for the case when U = {I, J}.
We may assume that S = {1, . . . , n + 1},
I = [1, b] and J = [a, n + 1] for some 1 < a ≤ b < n + 1.
We can show that B = {S} ⊔ U ⊔ B |I\J ⊔ B |I∩J ⊔ B |J\I.
I \ J, I ∩ J and J \ I are intervals.

Lemma
Let B be a building set on S s.t. I, J ∈ B with I ∩ J , ∅ implies I ⊂ J
or J ⊂ I. Then there exists a bijection f : S → {1, . . . , |S |} s.t. f(I) is
an interval for any I ∈ B.

Since X(∆(B)) is Fano, B |I\J,B |I∩J and B |J\I satisfy the assumption
of the Lemma. Hence we may assume that every element of B is
an interval.



We may assume that every element of B is an interval.
We define a finite directed graph G as follows:
Let V(G) = {1, . . . , n + 1}. For K = [i, j] ∈ B \ {S}, we put

−→e K =

{
(i, j + 1) (1 ≤ j ≤ n),
(i, 1) (j = n + 1).

Let A(G) = {−→e K | K ∈ B \ {S}}. Then the linear isomorphism

F : H = {(x1, . . . , xn+1) ∈ Rn+1 | x1 + · · ·+ xn+1 = 0} → Rn,

ei − ei+1 7→ ei

induces a bijection from {ρ(−→e K ) | K ∈ B \ {S}} to {eK | K ∈ B \ {S}},
which is the set of vertices of the smooth Fano polytope corr. to
∆(B). So PG = conv{ρ(−→e K ) | K ∈ B \ {S}} is also smooth Fano. □



Example
Let S = {1, 2, 3, 4, 5} and
B = {{1}, {2}, {3}, {4}, {5}, {2, 3}, {4, 5}, {1, 2, 3}, {2, 3, 4, 5}, {1, . . . , 5}}.
X(∆(B)) is Fano by Theorem 3.
We define a finite directed graph G by V(G) = {1, 2, 3, 4, 5} and
A(G) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (2, 4), (4, 1), (1, 4), (2, 1)}.
Then ∆(B) is isomorphic to the fan associated to the smooth Fano
polytope PG.



Thank you for your attention!
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