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Motivation

Gelfand–Tsetlin polytopes appear in various areas:
I Closely related to type An root systems.
I Lattice points ↔ semi-standard Young tableaux.
I Special faces ↔ formula for Schubert polynomials
I Lattice points in some special faces ↔ Demazure

characters
I Contain several other families of polytopes.

Rich interplay with other combinatorial objects.

Per Alexandersson GT-polytopes



Skew Gelfand-Tsetlin patterns

A Gelfand-Tsetlin pattern, or GT-patterns for short, is a
triangular or parallelogram arrangement of non-negative
numbers,

xm
1 xm

2 · · · · · · xm
n

. . .
. . .

. . .

x2
1 x2

2 · · · · · · x2
n

x1
1 x1

2 · · · · · · x1
n

where

a b
c and c

a b ⇔ a ≥ c ≥ b.

Per Alexandersson GT-polytopes



A bijection

5 4 2 1 1 0
5 3 2 1 0

3 3 2 1
3 3 1

3 2
3

←→

1 1 1 5 5
2 2 3 6
3 4
4
6

4 3 2 1
4 3 1 1

3 3 1 1
3 2 1 0

2 1 1 0

←→

· · 1 3
· 1 2
· 4
2
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Gelfand-Tsetlin polytopes

Consider all GT-patterns with m rows, with top and bottom
row given by λ and µ. The inequalities defines a convex
polytope, Pλ/µ.

The integer points in Pλ/µ corresponds to Young tableaux
with shape λ/µ and entries ≤ (m − 1).
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Marked order polytopes
The GT-polytopes are a special case of marked order
polytopes.
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Figure : Hasse diagam of a marked poset. The inequalities we
get are 1 ≤ x4 ≤ x2 ≤ x1 ≤ 7, x2 ≤ 4, 1 ≤ x6 ≤ 3 ≤ x5 ≤ 4,
x6 ≤ x4 and 2 ≤ x3 ≤ x1.
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Integrally closed polytopes

A convex polytope P is said to have the integer
decomposition property (IDP) if for every positive integer k
and integer point p ∈ kP , there are integer points pj ∈ P
such that

p = p1 + p2 + · · ·+ pk .
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Unimodular triangulations

All marked order polytopes have a unimodular triangulation.
Such a triangulation decomposes the polytope into
unimodular simplices, that have volume 1.

Hence, GT-polytopes are IDP.
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IDP and concatenation

Let � denote the elementwise addition of GT-patterns.

1 1 1 1 1 5
1 1 1 3 3 3

1 2 2 2 2 2 4 4 5
2 4 5

=
1 1

1 3
1 2 4
2

�

1 1
1 3

2 2 4
4

�

1 5
1 3

2 2 5
5
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IDP
Generalizing:

(Pλ1 ,Pλ2 , . . . ,Pλk )

is IDP — see Akiyoshi’s talk.

However,
?
?
?

� ? =
3

1 4
2

has no solution, so (P3,P2/1) is not IDP.

SAD!
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Part II
Integrality and non-integrality. Motivated by research by
King, Tollu, Toumazet and later de Loera and McAllister.
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Gelfand-Tsetlin polytopes II

Let Pλ/µ,w be the Gelfand-Tsetlin polytope defined by the
same inequalities and equalities before, with the addition
that the sum of the entries in row j resp. row j + 1 in the
pattern differ by exactly wj.

4 3 2 1
4 3 1 1

3 3 1 1
3 2 1 0

2 1 1 0

←→
1 3

1 2
4

2

Here, w = (2, 2, 1, 1) and w is the type of the tableau; wj
counts the number of boxes with content j.
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Connection with structure constants

The number of integer points in Pλ/µ,w is equal to the
number of Young tableaux with shape λ/µ and type w.

These numbers, denoted Kλ/µ,w, are the skew Kostka
numbers.

sλ/µ(x) =
∑

w weak integer composition
Kλ/µ,wxw

=
∑

w partition
Kλ/µ,wmw(x)

The Kλ/µ,w are special cases of Littlewood–Richardson
coefficients.
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Properties of Pλ/µ,w

The GT-polytopes Pλ/µ,w have strange properties.

I All Pλ/µ,w have polynomial Ehrhart function. 1

I Some Pλ/µ,w are non-integral. 2

Let w be a permutation of the entries in w. Then
I Pλ/µ,w might be integral while Pλ/µ,w is non-integral.
I The number of integer points in Pλ/µ,w and Pλ/µ,w is

always the same.

1Berenstein, Kirillov, 1988 and Rassart, 2004
2King, Tollu, Toumazet and de Loera, McAllister, 2004
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Some properties

Determining if Pλ/µ,w is non-empty is hard, there is no easy
algorithm for this. However, all non-empty Pλ/µ,w contains
at least one integer vertex. 3

The case |µ| = 0 (non-skew case) is easy, there is a simple
condition on λ and w which is necessary and sufficient.

3This is a consequence of the proof of the saturation conjecture by
A. Knutson and T. Tau.
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Methods

The main resource is Jesús A. De Loera and Tyrrell B.
McAllister, Vertices of Gelfand-Tsetlin Polytopes, Discrete &
Computational Geometry 32 (2004), no. 4, 459–470.
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Theorem: The dimension of kerTG is equal to the dimension
of the minimal (dimensional) face of the GT-polytope
containing G.
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Main results

Theorem (A. 2014)
All integral Pλ/µ,1 are compressed.

This implies the existence of a unimodular triangulation and
IDP.

Note that the polytope Pλ/µ,1 is always non-empty and that
integer points in this polytope correspond to standard Young
tableaux of shape λ/µ.
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Integrality of Pλ/µ,1

Theorem (A. 2014)
The only shapes λ/µ for which Pλ/µ,1 is integral are

∗ · · ·

...

...

· · · ∗

or a disjoint union of rows of boxes.
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Proof idea
I Find subdiagram patterns that admit a non-integral

vertex.
I Prove that all skew diagrams that avoid these patterns

must be of the form above.

...

...

... (four or more boxes)
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Refinement results

Proposition (A. 2014)
Suppose w′ <ref w and let P = Pλ/µ,w and P ′ = Pλ/µ,w′ .
Then
1. |P ′ ∩ Zd′ | is greater or equal to |P ∩ Zd |. (Easy)
2. If P ′ is integral, then P is integral. (GT-proof)
3. If P ′ is integrally closed, then so is P. (Tableau-proof)
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Example
Non-skew case λ = 431, and w in the boxes.

422 332 431

2222 3221 4211 3311

22211 32111 41111

221111 311111

2111111

11111111

Note: only partitions w are shown here.
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Part III
Related questions and big counterexamples.

Ehrhart polynomial: p(k) = |kP ∩ Zd |.

Leading coefficient = volume of the polytope.
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Open problem

Conjecture (King, Tollu Toumazet, 2004)
All coefficient in the Ehrhart polynomial obtained from
Pλ/µ,w are non-negative.

This conjecture contains the problem about positivity of
Ehrhart polynomial of the Birkhoff polytope.
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Maybe the conjecture is false?

There are order polytopes with negative Ehrhart coefficients:

1
x1 x2 . . . x`−1 x`

z

0

This order polytope has Ehrhart polynomial given by
p(k) = ∑k+1

j=1 j`. For ` = 20, there are negative coefficients.
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Negative coefficients

Consequence: There are Ehrhart polynomials of faces of
Pλ/µ with negative coefficients:

x1
1 0

x2

x3 z

x4

x5
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The end

Thank you for yourtime
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