The integer decomposition property and Gelfand-Tsetlin polytopes

Per Alexandersson

Royal institute of Technology, Stockholm
Osaka, August 1, 2018

Motivation

Gelfand-Tsetlin polytopes appear in various areas:

- Closely related to type A_{n} root systems.
- Lattice points \leftrightarrow semi-standard Young tableaux.
- Special faces \leftrightarrow formula for Schubert polynomials
- Lattice points in some special faces \leftrightarrow Demazure characters
- Contain several other families of polytopes.

Rich interplay with other combinatorial objects.

Skew Gelfand-Tsetlin patterns

A Gelfand-Tsetlin pattern, or GT-patterns for short, is a triangular or parallelogram arrangement of non-negative numbers,

$$
\begin{aligned}
& x_{1}^{m} \quad x_{2}^{m} \quad \cdots \quad \cdots \quad x_{n}^{m} \\
& \begin{array}{llllllllll}
\ddots & & \ddots & & & & & \ddots & \\
& x_{1}^{2} & & x_{2}^{2} & & \cdots & & \cdots & & x_{n}^{2} \\
& & x_{1}^{1} & & x_{2}^{1} & & \cdots & & \cdots & \\
& & & & & & & & \\
& & & & & & & &
\end{array}
\end{aligned}
$$

where

$$
\begin{gathered}
a \\
c
\end{gathered} \quad \text { and } \quad{ }^{b} \quad c \quad b \quad \Leftrightarrow \quad a \geq c \geq b \text {. }
$$

A BiJection

$$
\begin{aligned}
& \begin{array}{lllllllllll}
5 & & 4 & & 2 & & 1 & & 1 & 0 \\
5 & & 3 & & 2 & & 1 & & 0 \\
& \mathbf{3} & & \mathbf{3} & & \mathbf{2} & & \mathbf{1} & \\
& & 3 & & 3 & & 1 & & \\
& & & 3 & & 2 & & & \\
& & & & 3 & & & &
\end{array} \\
& \begin{array}{llllllllll}
4 & & 3 & & 2 & & 1 & & & \\
& 4 & & 3 & & 1 & & 1 & & \\
& 3 & & 3 & & 1 & & 1 & & \\
& & 3 & & 2 & & 1 & & 0 & \\
& & & 2 & & 1 & & 1 & & 0
\end{array} \\
&
\end{aligned}
$$

GELFAND-TsETLIN POLYTOPES

Consider all GT-patterns with m rows, with top and bottom row given by $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$. The inequalities defines a convex polytope, $\mathcal{P}_{\lambda / \mu}$.

GELFAND-TsETLIN POLYTOPES

Consider all GT-patterns with m rows, with top and bottom row given by $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$. The inequalities defines a convex polytope, $\mathcal{P}_{\lambda / \mu}$.

The integer points in $\mathcal{P}_{\lambda / \mu}$ corresponds to Young tableaux with shape $\boldsymbol{\lambda} / \boldsymbol{\mu}$ and entries $\leq(m-1)$.

Marked order polytopes

The GT-polytopes are a special case of marked order polytopes.

Figure : Hasse diagam of a marked poset. The inequalities we get are $1 \leq x_{4} \leq x_{2} \leq x_{1} \leq 7, x_{2} \leq 4,1 \leq x_{6} \leq 3 \leq x_{5} \leq 4$, $x_{6} \leq x_{4}$ and $2 \leq x_{3} \leq x_{1}$.

Integrally closed polytopes

A convex polytope \mathcal{P} is said to have the integer decomposition property (IDP) if for every positive integer k and integer point $p \in k \mathcal{P}$, there are integer points $p_{j} \in \mathcal{P}$ such that

$$
p=p_{1}+p_{2}+\cdots+p_{k}
$$

Integrally closed polytopes

A convex polytope \mathcal{P} is said to have the integer decomposition property (IDP) if for every positive integer k and integer point $p \in k \mathcal{P}$, there are integer points $p_{j} \in \mathcal{P}$ such that

$$
p=p_{1}+p_{2}+\cdots+p_{k}
$$

Unimodular TRIANGULATIONS

All marked order polytopes have a unimodular triangulation. Such a triangulation decomposes the polytope into unimodular simplices, that have volume 1.

Unimodular TRIANGULATIONS

All marked order polytopes have a unimodular triangulation. Such a triangulation decomposes the polytope into unimodular simplices, that have volume 1.

Hence, GT-polytopes are IDP.

IDP AND CONCATENATION

Let \boxtimes denote the elementwise addition of GT-patterns.

						1	1	1	1	1	
			1	1	1	3	3	3			
1	2	2	2	2	2	4	4	5			
2	4	5									

IDP

Generalizing:

$$
\left(\mathcal{P}_{\boldsymbol{\lambda}_{1}}, \mathcal{P}_{\boldsymbol{\lambda}_{2}}, \ldots, \mathcal{P}_{\boldsymbol{\lambda}_{k}}\right)
$$

is IDP - see Akiyoshi's talk.

IDP

Generalizing:

$$
\left(\mathcal{P}_{\boldsymbol{\lambda}_{1}}, \mathcal{P}_{\boldsymbol{\lambda}_{2}}, \ldots, \mathcal{P}_{\boldsymbol{\lambda}_{k}}\right)
$$

is IDP - see Akiyoshi's talk.
However,

has no solution, so $\left(\mathcal{P}_{3}, \mathcal{P}_{2 / 1}\right)$ is not IDP.

IDP

Generalizing:

$$
\left(\mathcal{P}_{\boldsymbol{\lambda}_{1}}, \mathcal{P}_{\boldsymbol{\lambda}_{2}}, \ldots, \mathcal{P}_{\boldsymbol{\lambda}_{k}}\right)
$$

is IDP - see Akiyoshi's talk.
However,

\[

\]

has no solution, so $\left(\mathcal{P}_{3}, \mathcal{P}_{2 / 1}\right)$ is not IDP.

SAD!

Part II

Integrality and non-integrality. Motivated by research by King, Tollu, Toumazet and later de Loera and McAllister.

MR3459049 Reviewed
Alexandersson, Per(1-PA)
Gelfand-Tsetlin polytopes and the integer decomposition property. (English summary) European J. Combin. 54 (2016), 1-20.
17B10 (05E10 52B12)
Review PDF Clipboard Journal Article Make Link
A Gelfand-Tsetlin polytope is the set of all Gelfand-Tsetlin patterns with certain boundary conditions depending on three vectors λ, μ, and w. These patterns come up naturally in representation theory, where λ / μ is the skew shape and w is the weight of the patterns [I. M. Gel'fand and M. L. Tsetlin, Doklady Akad. Nauk SSSR (N.S.) 71 (1950), 825-828; MR0035774]. Aside from representation-theoretic reasons, there are geometric-combinatorial motivations to study Gelfand-Tsetlin polytopes.

Gelfand-Tsetlin polytopes II

Let $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ be the Gelfand-Tsetlin polytope defined by the same inequalities and equalities before, with the addition that the sum of the entries in row j resp. row $j+1$ in the pattern differ by exactly w_{j}.

GELFAND-TsETLIN POLYTOPES II

Let $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ be the Gelfand-Tsetlin polytope defined by the same inequalities and equalities before, with the addition that the sum of the entries in row j resp. row $j+1$ in the pattern differ by exactly w_{j}.

Here, $\mathbf{w}=(2,2,1,1)$ and \mathbf{w} is the type of the tableau; w_{j} counts the number of boxes with content j.

Connection with structure constants

The number of integer points in $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ is equal to the number of Young tableaux with shape $\boldsymbol{\lambda} / \boldsymbol{\mu}$ and type \mathbf{w}.

Connection with structure constants

The number of integer points in $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ is equal to the number of Young tableaux with shape $\boldsymbol{\lambda} / \boldsymbol{\mu}$ and type \mathbf{w}.
These numbers, denoted $K_{\lambda / \mu, \mathbf{w}}$, are the skew Kostka numbers.

$$
\begin{aligned}
s_{\boldsymbol{\lambda} / \boldsymbol{\mu}}(\mathbf{x})= & \sum_{\mathbf{w} \text { weak integer composition }} K_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathbf{w}} \mathbf{x}^{\mathbf{w}} \\
= & \sum_{\mathbf{w} \text { partition }} K_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathbf{w}} m_{\mathbf{w}}(\mathbf{x})
\end{aligned}
$$

Connection with structure constants

The number of integer points in $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ is equal to the number of Young tableaux with shape $\boldsymbol{\lambda} / \boldsymbol{\mu}$ and type \mathbf{w}.
These numbers, denoted $K_{\lambda / \mu, \mathbf{w}}$, are the skew Kostka numbers.

$$
\begin{aligned}
s_{\lambda / \mu}(\mathbf{x}) & =\sum_{\mathbf{w} \text { weak integer composition }} K_{\lambda / \mu, \mathrm{w}} \mathbf{x}^{\mathbf{w}} \\
& =\sum_{\mathbf{w} \text { partition }} K_{\lambda / \mu, \mathbf{w}} m_{\mathbf{w}}(\mathbf{x})
\end{aligned}
$$

The $K_{\lambda / \mu, \mathbf{w}}$ are special cases of Littlewood-Richardson coefficients.

Properties of $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathrm{w}}$

The GT-polytopes $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ have strange properties.

[^0]
Properties of $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathbf{w}}$

The GT-polytopes $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ have strange properties.

- All $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ have polynomial Ehrhart function. ${ }^{1}$
- Some $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ are non-integral. ${ }^{2}$

[^1]
Properties of $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathrm{w}}$

The GT-polytopes $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathrm{w}}$ have strange properties.

- All $\mathcal{P}_{\lambda / \boldsymbol{\mu}, \mathrm{w}}$ have polynomial Ehrhart function. ${ }^{1}$
- Some $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ are non-integral. ${ }^{2}$

Let $\overline{\mathbf{w}}$ be a permutation of the entries in \mathbf{w}. Then

- $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ might be integral while $\mathcal{P}_{\lambda / \mu, \overline{\mathrm{w}}}$ is non-integral.
- The number of integer points in $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathbf{w}}$ and $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \overline{\mathbf{w}}}$ is always the same.

[^2]
SOME PROPERTIES

Determining if $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathbf{w}}$ is non-empty is hard, there is no easy algorithm for this. However, all non-empty $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ contains at least one integer vertex. ${ }^{3}$
${ }^{3}$ This is a consequence of the proof of the saturation conjecture by A. Knutson and T. Tau.

Some properties

Determining if $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathbf{w}}$ is non-empty is hard, there is no easy algorithm for this. However, all non-empty $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ contains at least one integer vertex. ${ }^{3}$

The case $|\boldsymbol{\mu}|=0$ (non-skew case) is easy, there is a simple condition on $\boldsymbol{\lambda}$ and \mathbf{w} which is necessary and sufficient.
${ }^{3}$ This is a consequence of the proof of the saturation conjecture by A. Knutson and T. Tau.

Methods

The main resource is Jesús A. De Loera and Tyrrell B.
McAllister, Vertices of Gelfand-Tsetlin Polytopes, Discrete \&
Computational Geometry 32 (2004), no. 4, 459-470.

Methods

The main resource is Jesús A. De Loera and Tyrrell B.
McAllister, Vertices of Gelfand-Tsetlin Polytopes, Discrete \& Computational Geometry 32 (2004), no. 4, 459-470.

Methods

$\left(\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Methods

$$
\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Theorem: The dimension of $\operatorname{ker} T_{G}$ is equal to the dimension of the minimal (dimensional) face of the GT-polytope containing G.

Main Results

Theorem (A. 2014)

All integral $\mathcal{P}_{\lambda / \mu, 1}$ are compressed.

This implies the existence of a unimodular triangulation and IDP.

Note that the polytope $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathbf{1}}$ is always non-empty and that integer points in this polytope correspond to standard Young tableaux of shape $\boldsymbol{\lambda} / \boldsymbol{\mu}$.

Integrality of $\mathcal{P}_{\lambda / \mu, 1}$

Theorem (A. 2014)

The only shapes $\boldsymbol{\lambda} / \boldsymbol{\mu}$ for which $\mathcal{P}_{\boldsymbol{\lambda} / \boldsymbol{\mu}, \mathbf{1}}$ is integral are

or a disjoint union of rows of boxes.

Proof idea

- Find subdiagram patterns that admit a non-integral vertex.
- Prove that all skew diagrams that avoid these patterns must be of the form above.

Refinement Results

Proposition (A. 2014)

Suppose $\mathbf{w}^{\prime}<_{\text {ref }} \mathbf{w}$ and let $P=\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ and $P^{\prime}=\mathcal{P}_{\lambda / \mu, \mathbf{w}^{\prime}}$. Then

1. $\left|P^{\prime} \cap \mathbb{Z}^{d^{\prime}}\right|$ is greater or equal to $\left|P \cap \mathbb{Z}^{d}\right|$. (Easy)
2. If P^{\prime} is integral, then P is integral. (GT-proof)
3. If P^{\prime} is integrally closed, then so is P. (Tableau-proof)

EXAMPLE

Non-skew case $\boldsymbol{\lambda}=431$, and \mathbf{w} in the boxes.

Note: only partitions w are shown here.

Part III

Related questions and big counterexamples.

Ehrhart polynomial: $p(k)=\left|k \mathcal{P} \cap \mathbb{Z}^{d}\right|$.
Leading coefficient $=$ volume of the polytope.

Open problem

Conjecture (King, Tollu Toumazet, 2004)

All coefficient in the Ehrhart polynomial obtained from $\mathcal{P}_{\lambda / \mu, \mathbf{w}}$ are non-negative.

Open problem

Conjecture (King, Tollu Toumazet, 2004)

All coefficient in the Ehrhart polynomial obtained from $\mathcal{P}_{\lambda / \mu, \mathrm{w}}$ are non-negative.

This conjecture contains the problem about positivity of Ehrhart polynomial of the Birkhoff polytope.

Maybe the conjecture is false?

There are order polytopes with negative Ehrhart coefficients:

This order polytope has Ehrhart polynomial given by $p(k)=\sum_{j=1}^{k+1} j^{\ell}$. For $\ell=20$, there are negative coefficients.

Negative coefficients

Consequence: There are Ehrhart polynomials of faces of $\mathcal{P}_{\lambda / \mu}$ with negative coefficients:

ThE END

Thank you for your

[^0]: ${ }^{1}$ Berenstein, Kirillov, 1988 and Rassart, 2004
 ${ }^{2}$ King, Tollu, Toumazet and de Loera, McAllister, 2004

[^1]: ${ }^{1}$ Berenstein, Kirillov, 1988 and Rassart, 2004
 ${ }^{2}$ King, Tollu, Toumazet and de Loera, McAllister, 2004

[^2]: ${ }^{1}$ Berenstein, Kirillov, 1988 and Rassart, 2004
 ${ }^{2}$ King, Tollu, Toumazet and de Loera, McAllister, 2004

