The integer decomposition property and Gelfand–Tsetlin polytopes

Per Alexandersson

Royal institute of Technology, Stockholm

Osaka, August 1, 2018

MOTIVATION

Gelfand–Tsetlin polytopes appear in various areas:

- Closely related to type A_n root systems.
- \blacktriangleright Lattice points \leftrightarrow semi-standard Young tableaux.
- \blacktriangleright Special faces \leftrightarrow formula for Schubert polynomials
- \blacktriangleright Lattice points in some special faces \leftrightarrow Demazure characters
- ▶ Contain several other families of polytopes.

Rich interplay with other combinatorial objects.

Skew Gelfand-Tsetlin patterns

A *Gelfand-Tsetlin pattern*, or GT-patterns for short, is a triangular or parallelogram arrangement of non-negative numbers,

A BIJECTION

Consider all GT-patterns with m rows, with top and bottom row given by λ and μ . The inequalities defines a convex polytope, $\mathcal{P}_{\lambda/\mu}$. Consider all GT-patterns with m rows, with top and bottom row given by λ and μ . The inequalities defines a convex polytope, $\mathcal{P}_{\lambda/\mu}$.

The integer points in $\mathcal{P}_{\lambda/\mu}$ corresponds to Young tableaux with shape λ/μ and entries $\leq (m-1)$.

MARKED ORDER POLYTOPES

The GT-polytopes are a special case of *marked order polytopes*.

Figure : Hasse diagam of a marked poset. The inequalities we get are $1 \le x_4 \le x_2 \le x_1 \le 7$, $x_2 \le 4$, $1 \le x_6 \le 3 \le x_5 \le 4$, $x_6 \le x_4$ and $2 \le x_3 \le x_1$.

A convex polytope \mathcal{P} is said to have the *integer decomposition property* (IDP) if for every positive integer kand *integer* point $p \in k\mathcal{P}$, there are *integer* points $p_j \in \mathcal{P}$ such that

$$p = p_1 + p_2 + \dots + p_k.$$

A convex polytope \mathcal{P} is said to have the *integer decomposition property* (IDP) if for every positive integer kand *integer* point $p \in k\mathcal{P}$, there are *integer* points $p_j \in \mathcal{P}$ such that

$$p = p_1 + p_2 + \dots + p_k.$$

UNIMODULAR TRIANGULATIONS

All marked order polytopes have a *unimodular triangulation*. Such a triangulation decomposes the polytope into *unimodular simplices*, that have volume 1.

UNIMODULAR TRIANGULATIONS

All marked order polytopes have a *unimodular triangulation*. Such a triangulation decomposes the polytope into *unimodular simplices*, that have volume 1.

Hence, GT-polytopes are IDP.

IDP AND CONCATENATION

Let \boxtimes denote the elementwise addition of GT-patterns.

IDP

Generalizing:

$$(\mathcal{P}_{\boldsymbol{\lambda}_1}, \mathcal{P}_{\boldsymbol{\lambda}_2}, \dots, \mathcal{P}_{\boldsymbol{\lambda}_k})$$

is IDP — see Akiyoshi's talk.

IDP

Generalizing:

$$\mathcal{P}_{\boldsymbol{\lambda}_1}, \mathcal{P}_{\boldsymbol{\lambda}_2}, \dots, \mathcal{P}_{\boldsymbol{\lambda}_k})$$

is IDP — see Akiyoshi's talk.

However,

$$\begin{array}{c} \hline ? \\ \hline ? \\ \hline ? \\ \hline \end{array} \boxtimes \quad \boxed{?} = \boxed{\begin{array}{c} 3 \\ 1 \\ 4 \\ \hline 2 \\ \hline \end{array}}$$

has no solution, so $(\mathcal{P}_3, \mathcal{P}_{2/1})$ is not IDP.

IDP

Generalizing:

$$\mathcal{P}_{\boldsymbol{\lambda}_1}, \mathcal{P}_{\boldsymbol{\lambda}_2}, \dots, \mathcal{P}_{\boldsymbol{\lambda}_k})$$

is IDP — see Akiyoshi's talk.

However,

$$\begin{array}{c} \hline ? \\ \hline ? \\ \hline ? \\ \hline \end{array} \boxtimes \quad \boxed{?} = \boxed{\begin{array}{c} 3 \\ 1 \\ 4 \\ \hline 2 \\ \hline \end{array}}$$

has no solution, so $(\mathcal{P}_3, \mathcal{P}_{2/1})$ is not IDP.

Part II

Integrality and non-integrality. Motivated by research by King, Tollu, Toumazet and later de Loera and McAllister.

MR3459049 [Reviewed] Alexandersson, Per(1-PA) Geffand-Tsetlin polytopes and the integer decomposition property. (English summary) European J. Combin. 54 (2016), 1–20. 17B10 (05E10 52E12) Review DPF [Clipboard] Journal [Article | Make Link Citations From References: 0 From Reviews: 0

A Gelfand-Tsetlin polytope is the set of all Gelfand-Tsetlin patterns with certain boundary conditions depending on three vectors λ , μ , and w. These patterns come up naturally in representation theory, where λ/μ is the *skew shape* and w is the *weight* of the patterns [I. M. Gelfand and M. L. Tsetlin, Doklady Akad. Nauk SSSR (N.S.) **71** (1950), 825–828; MR0035774]. Aside from representation-theoretic reasons, there are geometric-combinatorial motivations to study Gelfand-Tsetlin polytopes.

Gelfand-Tsetlin polytopes II

Let $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ be the Gelfand-Tsetlin polytope defined by the same inequalities and equalities before, with the addition that the sum of the entries in row j resp. row j + 1 in the pattern differ by exactly w_j .

Gelfand-Tsetlin polytopes II

Let $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ be the Gelfand-Tsetlin polytope defined by the same inequalities and equalities before, with the addition that the sum of the entries in row j resp. row j + 1 in the pattern differ by exactly w_j .

Here, $\mathbf{w} = (2, 2, 1, 1)$ and \mathbf{w} is the *type* of the tableau; w_j counts the number of boxes with content j.

CONNECTION WITH STRUCTURE CONSTANTS

The number of integer points in $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ is equal to the number of Young tableaux with shape λ/μ and type \mathbf{w} .

CONNECTION WITH STRUCTURE CONSTANTS

The number of integer points in $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ is equal to the number of Young tableaux with shape λ/μ and type \mathbf{w} . These numbers, denoted $K_{\lambda/\mu,\mathbf{w}}$, are the skew Kostka numbers.

$$s_{\lambda/\mu}(\mathbf{x}) = \sum_{\mathbf{w} \text{ weak integer composition}} K_{\lambda/\mu,\mathbf{w}} \mathbf{x}^{\mathbf{w}}$$
$$= \sum_{\mathbf{w} \text{ partition}} K_{\lambda/\mu,\mathbf{w}} m_{\mathbf{w}}(\mathbf{x})$$

CONNECTION WITH STRUCTURE CONSTANTS

The number of integer points in $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ is equal to the number of Young tableaux with shape λ/μ and type \mathbf{w} . These numbers, denoted $K_{\lambda/\mu,\mathbf{w}}$, are the skew Kostka

numbers. denoted $\Lambda_{\lambda/\mu,\mathbf{w}}$, are the skew Kos

$$s_{\lambda/\mu}(\mathbf{x}) = \sum_{\mathbf{w} \text{ weak integer composition}} K_{\lambda/\mu,\mathbf{w}} \mathbf{x}^{\mathbf{w}}$$
$$= \sum_{\mathbf{w} \text{ partition}} K_{\lambda/\mu,\mathbf{w}} m_{\mathbf{w}}(\mathbf{x})$$

The $K_{\lambda/\mu,\mathbf{w}}$ are special cases of Littlewood–Richardson coefficients.

Properties of $\mathcal{P}_{\boldsymbol{\lambda}/\boldsymbol{\mu},\mathbf{w}}$

The GT-polytopes $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ have strange properties.

¹Berenstein, Kirillov, 1988 and Rassart, 2004 ²King, Tollu, Toumazet and de Loera, McAllister, 2004

Per Alexandersson GT-polytopes

Properties of $\mathcal{P}_{\boldsymbol{\lambda}/\boldsymbol{\mu},\mathbf{w}}$

The GT-polytopes $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ have strange properties.

- ► All $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ have polynomial Ehrhart function. ¹
- ► Some $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ are non-integral.²

¹Berenstein, Kirillov, 1988 and Rassart, 2004 ²King, Tollu, Toumazet and de Loera, McAllister, 2004

Properties of $\mathcal{P}_{\boldsymbol{\lambda}/\boldsymbol{\mu},\mathbf{w}}$

The GT-polytopes $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ have strange properties.

- ► All $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ have polynomial Ehrhart function. ¹
- ► Some $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ are non-integral.²

Let $\overline{\mathbf{w}}$ be a permutation of the entries in \mathbf{w} . Then

- $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ might be integral while $\mathcal{P}_{\lambda/\mu,\overline{\mathbf{w}}}$ is non-integral.
- ► The number of integer points in $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ and $\mathcal{P}_{\lambda/\mu,\overline{\mathbf{w}}}$ is always the same.

¹Berenstein, Kirillov, 1988 and Rassart, 2004 ²King, Tollu, Toumazet and de Loera, McAllister, 2004 Determining if $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ is non-empty is hard, there is no easy algorithm for this. However, all non-empty $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ contains at least one integer vertex.³

 $^{^3{\}rm This}$ is a consequence of the proof of the saturation conjecture by A. Knutson and T. Tau.

- Determining if $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ is non-empty is hard, there is no easy algorithm for this. However, all non-empty $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ contains at least one integer vertex.³
- The case $|\boldsymbol{\mu}| = 0$ (non-skew case) is easy, there is a simple condition on $\boldsymbol{\lambda}$ and \mathbf{w} which is necessary and sufficient.

 $^{^3{\}rm This}$ is a consequence of the proof of the saturation conjecture by A. Knutson and T. Tau.

Methods

The main resource is Jesús A. De Loera and Tyrrell B. McAllister, *Vertices of Gelfand-Tsetlin Polytopes*, Discrete & Computational Geometry **32** (2004), no. 4, 459–470.

Methods

The main resource is Jesús A. De Loera and Tyrrell B. McAllister, *Vertices of Gelfand-Tsetlin Polytopes*, Discrete & Computational Geometry **32** (2004), no. 4, 459–470.

METHODS

Methods

Theorem: The dimension of ker T_G is equal to the dimension of the minimal (dimensional) face of the GT-polytope containing G.

Theorem (A. 2014)

All integral $\mathcal{P}_{\lambda/\mu,1}$ are compressed.

This implies the existence of a unimodular triangulation and IDP.

Note that the polytope $\mathcal{P}_{\lambda/\mu,1}$ is always non-empty and that integer points in this polytope correspond to *standard* Young tableaux of shape λ/μ .

INTEGRALITY OF $\mathcal{P}_{\lambda/\mu,1}$

Theorem (A. 2014)

The only shapes λ/μ for which $\mathcal{P}_{\lambda/\mu,1}$ is integral are

or a disjoint union of rows of boxes.

Proof idea

- ► Find subdiagram patterns that admit a non-integral vertex.
- Prove that all skew diagrams that avoid these patterns must be of the form above.

Per Alexandersson GT-polytopes

Proposition (A. 2014)

Suppose $\mathbf{w}' <_{\text{ref}} \mathbf{w}$ and let $P = \mathcal{P}_{\boldsymbol{\lambda}/\boldsymbol{\mu},\mathbf{w}}$ and $P' = \mathcal{P}_{\boldsymbol{\lambda}/\boldsymbol{\mu},\mathbf{w}'}$. Then

- 1. $|P' \cap \mathbb{Z}^{d'}|$ is greater or equal to $|P \cap \mathbb{Z}^{d}|$. (Easy)
- 2. If P' is integral, then P is integral. (GT-proof)
- 3. If P' is integrally closed, then so is P. (Tableau-proof)

EXAMPLE

Non-skew case $\lambda = 431$, and w in the boxes.

Note: only partitions \mathbf{w} are shown here.

Per Alexandersson GT-polytopes

Part III

Related questions and big counterexamples.

Ehrhart polynomial: $p(k) = |k\mathcal{P} \cap \mathbb{Z}^d|$.

Leading coefficient = volume of the polytope.

Conjecture (King, Tollu Toumazet, 2004)

All coefficient in the Ehrhart polynomial obtained from $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ are non-negative.

Conjecture (King, Tollu Toumazet, 2004)

All coefficient in the Ehrhart polynomial obtained from $\mathcal{P}_{\lambda/\mu,\mathbf{w}}$ are non-negative.

This conjecture contains the problem about positivity of Ehrhart polynomial of the Birkhoff polytope.

MAYBE THE CONJECTURE IS FALSE?

There are order polytopes with negative Ehrhart coefficients:

This order polytope has Ehrhart polynomial given by $p(k) = \sum_{j=1}^{k+1} j^{\ell}$. For $\ell = 20$, there are negative coefficients.

NEGATIVE COEFFICIENTS

Consequence: There are Ehrhart polynomials of *faces* of $\mathcal{P}_{\lambda/\mu}$ with *negative* coefficients:

THANK YOU FOR YOUR TIME

Per Alexandersson GT-polytopes