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Question:

In how many ways can we remove g positive integers from ℕ0 so that the remaining set is 
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Elie Alhajjar                                                                                                                 United States Military Academy



Introduction

Question:

In how many ways can we remove g positive integers from ℕ0 so that the remaining set is 
additively closed?

Answer:

I don’t know!
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Introduction

• A numerical semigroup is an additive sub-monoid of ℕ0 = {0,1,2,3,…} whose 
complement is finite.
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• The genus of S is the number of gaps, i.e. the cardinality of its complement.

• The multiplicity of S is the smallest nonzero element in S.

• The embedding dimension of S is the size of its minimal generating set.
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Introduction

• A numerical semigroup is an additive sub-monoid of ℕ0 = {0,1,2,3,…} whose 
complement is finite.

• The genus of S is the number of gaps, i.e. the cardinality of its complement.

• The multiplicity of S is the smallest nonzero element in S.

• The embedding dimension of S is the size of its minimal generating set.

• The Frobenius number of S is the largest number NOT in S.
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Example

S = {0,3,6,8,9,11,12,14,15,16,…} 

= ℕ0 \ {1,2,4,5,7,10,13}

= < 3,8 >
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Example

S = {0,3,6,8,9,11,12,14,15,16,…} 

= ℕ0 \ {1,2,4,5,7,10,13}

= < 3,8 >

g(S) = 7
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Example

S = {0,3,6,8,9,11,12,14,15,16,…} 

= ℕ0 \ {1,2,4,5,7,10,13}

= < 3,8 >

g(S) = 7

m(S) = 3
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Example

S = {0,3,6,8,9,11,12,14,15,16,…} 

= ℕ0 \ {1,2,4,5,7,10,13}

= < 3,8 >

g(S) = 7

m(S) = 3

F(S) = 13
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Example

S = {0,3,6,8,9,11,12,14,15,16,…} 

= ℕ0 \ {1,2,4,5,7,10,13}

= < 3,8 >

g(S) = 7

m(S) = 3

F(S) = 13

e(S) = 2
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Applications

• Diophantine Equations:
Nonnegative integer solutions to equations of the form a1x1 + … + anxn = b, where 
a1,…,an and b are natural numbers with gcd (a1,…,an) = 1

Elie Alhajjar                                                                                                                 United States Military Academy



Applications

• Diophantine Equations:
Nonnegative integer solutions to equations of the form a1x1 + … + anxn = b, where 
a1,…,an and b are natural numbers with gcd (a1,…,an) = 1

• Commutative Algebra:
Families of numerical semigroups yielding complete intersection and thus Gorenstein
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Applications

• Diophantine Equations:
Nonnegative integer solutions to equations of the form a1x1 + … + anxn = b, where 
a1,…,an and b are natural numbers with gcd (a1,…,an) = 1

• Commutative Algebra:
Families of numerical semigroups yielding complete intersection and thus Gorenstein
semigroup rings of the form K[ta : a in S ]

• Algebraic Geometry:
The local intersection multiplicities of formal power series form a numerical semigroup 
under some conditions
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Applications

• Algebraic Codes:
Classification of Weierstrass numerical semigroups in coding theory and cryptography
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Applications

• Algebraic Codes:
Classification of Weierstrass numerical semigroups in coding theory and cryptography

• Moreover:
Factorization of monoids
Singularities of plane algebraic curves
One-dimensional analytically irreducible local domains
etc…
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The Problem

Combinatorial Question:

In how many ways can we remove g positive integers from ℕ0 so that the remaining set is 
additively closed?
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The Problem

Combinatorial Question:

In how many ways can we remove g positive integers from ℕ0 so that the remaining set is 
additively closed?

Equivalently:

What is the number N(g) of numerical semigroups with genus g? 
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Tree Structure
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Tree Structure

N(0) = 1

N(1) = 1

N(2) = 2

N(3) = 4

N(4) = 7
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Numerical Computation

• N(10) = 204

• N(20) = 37,396

• N(30) = 5,646,773

• N(40) = 774,614,284

• N(50) = 101,090,300,128

• N(67) = 377,866,907,506,273
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Bounds

• Bras Amoros `08:

N(g) ≤ 1
𝑔𝑔+1

2𝑔𝑔
𝑔𝑔
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Bounds

• Bras Amoros `08:

N(g) ≤ 1
𝑔𝑔+1

2𝑔𝑔
𝑔𝑔

• Bras Amoros `08, Elizalde `10:

Fg+2 – 1 ≤ N(g) ≤ 1 + 3.2g-3
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Asymptotical Behavior
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Asymptotical Behavior

• Conjecture (Bras-Amoros `08):

1) lim
𝑔𝑔→∞

𝑁𝑁 𝑔𝑔−1 +𝑁𝑁(𝑔𝑔−2)
𝑁𝑁(𝑔𝑔)

= 1

2) lim
𝑔𝑔→∞

𝑁𝑁 𝑔𝑔
𝑁𝑁(𝑔𝑔−1)

= φ, the golden ratio.
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Asymptotical Behavior

• Conjecture (Bras-Amoros `08):

1) lim
𝑔𝑔→∞

𝑁𝑁 𝑔𝑔−1 +𝑁𝑁(𝑔𝑔−2)
𝑁𝑁(𝑔𝑔)

= 1

2) lim
𝑔𝑔→∞

𝑁𝑁 𝑔𝑔
𝑁𝑁(𝑔𝑔−1)

= φ, the golden ratio.

• Theorem (Zhai `13):

lim
𝑔𝑔→∞

𝑁𝑁 𝑔𝑔
𝜑𝜑𝑔𝑔

= K for some constant K, 
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Asymptotical Behavior

• Conjecture (Bras-Amoros `08):

1) lim
𝑔𝑔→∞

𝑁𝑁 𝑔𝑔−1 +𝑁𝑁(𝑔𝑔−2)
𝑁𝑁(𝑔𝑔)

= 1

2) lim
𝑔𝑔→∞

𝑁𝑁 𝑔𝑔
𝑁𝑁(𝑔𝑔−1)

= φ, the golden ratio.

• Theorem (Zhai `13):

lim
𝑔𝑔→∞

𝑁𝑁 𝑔𝑔
𝜑𝜑𝑔𝑔

= K for some constant K, hence 1) and 2) hold.
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Nonetheless…
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Nonetheless…

• Strong Genus Conjecture:

N(g) ≥ N(g – 1) + N(g – 2) for all g ≥ 2
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Nonetheless…

• Strong Genus Conjecture:

N(g) ≥ N(g – 1) + N(g – 2) for all g ≥ 2

• Weak Genus Conjecture:

N(g) ≥ N(g – 1) for all g ≥ 1
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Apéry Sets

• Let S be a numerical semigroup with multiplicity m. The Apéry set of S with respect to 
m is defined as 

Ap(S,m) = {0, w(1), w(2),…, w(m-1)}, 

where w(i) = ki m + i is the smallest element in S that is congruent to i mod m.
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Apéry Sets

• Let S be a numerical semigroup with multiplicity m. The Apéry set of S with respect to 
m is defined as 

Ap(S,m) = {0, w(1), w(2),…, w(m-1)}, 

where w(i) = ki m + i is the smallest element in S that is congruent to i mod m.

• Theorem (Selmer `77):

1) g(S) = k1 + k2 + … + km-1
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Apéry Sets

• Let S be a numerical semigroup with multiplicity m. The Apéry set of S with respect to 
m is defined as 

Ap(S,m) = {0, w(1), w(2),…, w(m-1)}, 

where w(i) = ki m + i is the smallest element in S that is congruent to i mod m.

• Theorem (Selmer `77):

1) g(S) = k1 + k2 + … + km-1

2) F(S) = max [Ap(S,m)] – m
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From N(g) to N(m,g)

• Let N(m,g) be the number of numerical semigroups with genus g and multiplicity m.
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From N(g) to N(m,g)

• Let N(m,g) be the number of numerical semigroups with genus g and multiplicity m.
Clearly, N(g) = N(1,g) + N(2,g) + … + N(g,g) + N(g+1,g).
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From N(g) to N(m,g)

• Let N(m,g) be the number of numerical semigroups with genus g and multiplicity m.
Clearly, N(g) = N(1,g) + N(2,g) + … + N(g,g) + N(g+1,g).

• Theorem (Kunz `87, Rosales et al. `02):

There is a one-to-one correspondence between the set of numerical semigroups of genus 
g and multiplicity m and the integer points satisfying the following conditions:

xi ≥ 1, for all i = 1,2,…,m – 1
xi + xi – xi+j ≥ 0 for all 1 ≤ i ≤ j ≤ m – 1 & i + j ≤ m – 1 

xi + xi – xi+j-m ≥ -1 for all 1 ≤ i ≤ j ≤ m – 1 & i + j ≥ m + 1
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From N(g) to N(m,g)

• Let N(m,g) be the number of numerical semigroups with genus g and multiplicity m.
Clearly, N(g) = N(1,g) + N(2,g) + … + N(g,g) + N(g+1,g).

• Theorem (Kunz `87, Rosales et al. `02):

There is a one-to-one correspondence between the set of numerical semigroups of genus 
g and multiplicity m and the integer points satisfying the following conditions:

xi ≥ 1, for all i = 1,2,…,m – 1
xi + xi – xi+j ≥ 0 for all 1 ≤ i ≤ j ≤ m – 1 & i + j ≤ m – 1 

xi + xi – xi+j-m ≥ -1 for all 1 ≤ i ≤ j ≤ m – 1 & i + j ≥ m + 1
x1 + … + xm-1 = g
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From N(g) to N(m,g) to MED(m,g)
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From N(g) to N(m,g) to MED(m,g)

• Let MED(m,g) be the number of maximal embedding dimension numerical semigroups 
with genus g and multiplicity m, i.e. e(S) = m(S).
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From N(g) to N(m,g) to MED(m,g)

• Let MED(m,g) be the number of maximal embedding dimension numerical semigroups 
with genus g and multiplicity m, i.e. e(S) = m(S).
Clearly, MED(g) = MED(1,g) + MED(2,g) + … + MED(g,g) + MED(g+1,g).
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From N(g) to N(m,g) to MED(m,g)

• Let MED(m,g) be the number of maximal embedding dimension numerical semigroups 
with genus g and multiplicity m, i.e. e(S) = m(S).
Clearly, MED(g) = MED(1,g) + MED(2,g) + … + MED(g,g) + MED(g+1,g).

• Theorem (Kunz `87, Rosales et al. `02):

There is a one-to-one correspondence between the set of maximal embedding dimension 
numerical semigroups of genus g and multiplicity m and the integer points satisfying the 
following conditions:

xi ≥ 1, for all i = 1,2,…,m – 1
xi + xi – xi+j ≥ 1 for all 1 ≤ i ≤ j ≤ m – 1 & i + j ≤ m – 1 

xi + xi – xi+j-m ≥ 0 for all 1 ≤ i ≤ j ≤ m – 1 & i + j ≥ m + 1
x1 + … + xm-1 = g
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Polyhedral Structure

• Let PN be the polytope corresponding to N(m,g) and PMED the polytope corresponding to 
MED(m,g). Define P to be the polytope satisfying the same inequalities with 0 on the 
right hand side. 
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Polyhedral Structure

• Let PN be the polytope corresponding to N(m,g) and PMED the polytope corresponding to 
MED(m,g). Define P to be the polytope satisfying the same inequalities with 0 on the 
right hand side. 

• Clearly, PMED ⊆ P ⊆ PN and they all are (m – 2)-dimensional.
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Polyhedral Structure

• Let PN be the polytope corresponding to N(m,g) and PMED the polytope corresponding to 
MED(m,g). Define P to be the polytope satisfying the same inequalities with 0 on the 
right hand side. 

• Clearly, PMED ⊆ P ⊆ PN and they all are (m – 2)-dimensional.

• Embedding the last equation into the previous inequalities, we can write these polytopes 
in the form A.x ≥ b(g) where A is a matrix with integer entries and b is a vector whose 
coordinates are linear functions in terms of g. We mention some of the properties of PN:
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Polyhedral Structure

1) The matrix A has 𝑚𝑚
2−1
2

rows.
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Polyhedral Structure

1) The matrix A has 𝑚𝑚
2−1
2

rows.

2) The coordinates of b(g) belong to the set {0,1,-1,g,-g+1,-g-1,-2g-1}.
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Polyhedral Structure

1) The matrix A has 𝑚𝑚
2−1
2

rows.

2) The coordinates of b(g) belong to the set {0,1,-1,g,-g+1,-g-1,-2g-1}.

3) For g ≥ (m – 1)2, the polytope P “stabilizes”, i.e. φ(m) inequalities become redundant.
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The Case m = 4
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The Case m = 4
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Combinatorial Structure
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Combinatorial Structure

• Let p(g) be the number of integer points in P.
Since PMED ⊆ P ⊆ PN , it follows that MED(m,g) ≤ p(g) ≤ N(m,g)
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Combinatorial Structure

• Let p(g) be the number of integer points in P.
Since PMED ⊆ P ⊆ PN , it follows that MED(m,g) ≤ p(g) ≤ N(m,g)

• Theorem (Kaplan `12):
For fixed m, N(m,g) agrees eventually with a quasipolynomial in g of degree m – 2, with 
period depending on m. The same holds for MED(m,g).
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Combinatorial Structure

• Let p(g) be the number of integer points in P.
Since PMED ⊆ P ⊆ PN , it follows that MED(m,g) ≤ p(g) ≤ N(m,g)

• Theorem (Kaplan `12):
For fixed m, N(m,g) agrees eventually with a quasipolynomial in g of degree m – 2, with 
period depending on m. The same holds for MED(m,g).

• Theorem (Blanco et al. `11):
For fixed m, N(m,g) and MED(m,g) can be computed in polynomial time.
Consequently, the same holds for N(g) and MED(g).
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Combinatorial Structure

• Theorem:

lim
𝑔𝑔→∞

𝑁𝑁 𝑚𝑚,𝑔𝑔
𝑔𝑔𝑚𝑚−2 = lim

𝑔𝑔→∞

𝑀𝑀𝑀𝑀𝑀𝑀 𝑚𝑚,𝑔𝑔
𝑔𝑔𝑚𝑚−2 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑃𝑃 .
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Combinatorial Structure

• Theorem:

lim
𝑔𝑔→∞

𝑁𝑁 𝑚𝑚,𝑔𝑔
𝑔𝑔𝑚𝑚−2 = lim

𝑔𝑔→∞

𝑀𝑀𝑀𝑀𝑀𝑀 𝑚𝑚,𝑔𝑔
𝑔𝑔𝑚𝑚−2 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑃𝑃 .

• For small values of m, the volume of P is computed:

1
3

,
1

12
,

1
135

,
71

81,648
,

1,633
36,288,000

,
12,256,093

3,923,023,104,000
, …
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Combinatorial Structure

• Theorem:

N(m,g)  ≤  MED(m,g + m – 1) for all g ≥ 0 and m ≥ 2.
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Combinatorial Structure

• Theorem:

N(m,g)  ≤  MED(m,g + m – 1) for all g ≥ 0 and m ≥ 2.

Equality holds when m is prime and g > (𝑚𝑚−1)(𝑚𝑚−2)
2

.
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The Case m = 4 (continued)
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The Case m = 4 (continued)

N(4,g) = 

𝑔𝑔2

12
+ 𝑔𝑔

2
𝑔𝑔2

12
+ 𝑔𝑔

2
− 7

12
𝑔𝑔2

12
+ 𝑔𝑔

2
− 1

3
𝑔𝑔2

12
+ 𝑔𝑔

2
− 1

4
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The Case m = 4 (continued)

N(4,g) = 

𝑔𝑔2

12
+ 𝑔𝑔

2
𝑔𝑔2

12
+ 𝑔𝑔

2
− 7

12
𝑔𝑔2

12
+ 𝑔𝑔

2
− 1

3
𝑔𝑔2

12
+ 𝑔𝑔

2
− 1

4

MED(4,g) = 

𝑔𝑔2

12
𝑔𝑔2

12
− 1

12
𝑔𝑔2

12
− 1

3
𝑔𝑔2

12
+ 1

4
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The Case m = 4 (continued)

N(4,g) = 

𝑔𝑔2

12
+ 𝑔𝑔

2
𝑔𝑔2

12
+ 𝑔𝑔

2
− 7

12
𝑔𝑔2

12
+ 𝑔𝑔

2
− 1

3
𝑔𝑔2

12
+ 𝑔𝑔

2
− 1

4

MED(4,g) = 

𝑔𝑔2

12
𝑔𝑔2

12
− 1

12
𝑔𝑔2

12
− 1

3
𝑔𝑔2

12
+ 1

4

p(g) = 

𝑔𝑔2

12
+ 5𝑔𝑔

12
+ 1

𝑔𝑔2

12
+ 𝑔𝑔

12
− 1

6
𝑔𝑔2

12
+ 5𝑔𝑔

12
− 1

6
𝑔𝑔2

12
+ 𝑔𝑔

12
𝑔𝑔2

12
+ 𝑔𝑔

12
+ 1

2
𝑔𝑔2

12
+ 5𝑔𝑔

12
+ 1

2
𝑔𝑔2

12
+ 𝑔𝑔

12
− 2

3
𝑔𝑔2

12
+ 5𝑔𝑔

12
+ 1

3
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Special Results
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Special Results

• N(4,g) = number of partitions of g + 6 into 3 parts such that the ith part is greater than i
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Special Results

• N(4,g) = number of partitions of g + 6 into 3 parts such that the ith part is greater than i

• MED(4,g) = number of partitions of g + 3 into 3 distinct parts.
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Future Directions
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Future Directions

• Strong & Weak Genus Conjectures:

N(g) ≥ N(g – 1) + N(g – 2) for all g ≥ 2  &  N(g) ≥ N(g – 1) for all g ≥ 1
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Future Directions

• Strong & Weak Genus Conjectures:

N(g) ≥ N(g – 1) + N(g – 2) for all g ≥ 2  &  N(g) ≥ N(g – 1) for all g ≥ 1

• Nondecreasing Sequences:

N(m,g) ≥ N(m,g – 1)  &  MED(m,g) ≥ MED(m,g – 1) for all m ≥ 2

Elie Alhajjar                                                                                                                 United States Military Academy



Future Directions

• Strong & Weak Genus Conjectures:

N(g) ≥ N(g – 1) + N(g – 2) for all g ≥ 2  &  N(g) ≥ N(g – 1) for all g ≥ 1

• Nondecreasing Sequences:

N(m,g) ≥ N(m,g – 1)  &  MED(m,g) ≥ MED(m,g – 1) for all m ≥ 2

• Other types of numerical semigroups:

One can define symmetric, pseudo-symmetric, Arf, irreducible, saturated, etc… 
numerical semigroups and ask the same questions!!
What properties does a ‘generic’ numerical semigroup have, for large g???
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Future Directions
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