

NUMERICAL SEMIGROUPS & KUNZ POLYTOPES

OSAKA UNIVERSITY AUGUST 2018

Question:

In how many ways can we remove g positive integers from \mathbb{N}_0 so that the remaining set is additively closed?

Question:

In how many ways can we remove g positive integers from \mathbb{N}_0 so that the remaining set is additively closed?

Answer:

I don't know!

A numerical semigroup is an additive sub-monoid of N₀ = {0,1,2,3,...} whose complement is finite.

- A numerical semigroup is an additive sub-monoid of N₀ = {0,1,2,3,...} whose complement is finite.
- The genus of S is the number of gaps, i.e. the cardinality of its complement.

- A numerical semigroup is an additive sub-monoid of N₀ = {0,1,2,3,...} whose complement is finite.
- The genus of S is the number of gaps, i.e. the cardinality of its complement.
- The multiplicity of S is the smallest nonzero element in S.

- A numerical semigroup is an additive sub-monoid of N₀ = {0,1,2,3,...} whose complement is finite.
- The genus of S is the number of gaps, i.e. the cardinality of its complement.
- The multiplicity of S is the smallest nonzero element in S.
- The embedding dimension of S is the size of its minimal generating set.

- A numerical semigroup is an additive sub-monoid of N₀ = {0,1,2,3,...} whose complement is finite.
- The genus of S is the number of gaps, i.e. the cardinality of its complement.
- The multiplicity of S is the smallest nonzero element in S.
- The embedding dimension of S is the size of its minimal generating set.
- The Frobenius number of S is the largest number NOT in S.

- $S = \{0,3,6,8,9,11,12,14,15,16,\dots\}$ $= \mathbb{N}_0 \setminus \{1,2,4,5,7,10,13\}$
 - = < 3,8 >

 $S = \{0,3,6,8,9,11,12,14,15,16,\dots\}$ $= \mathbb{N}_0 \setminus \{1,2,4,5,7,10,13\}$ = < 3,8 >

g(S) = 7

 $S = \{0,3,6,8,9,11,12,14,15,16,...\}$ $= \mathbb{N}_0 \setminus \{1,2,4,5,7,10,13\}$ = < 3,8 >g(S) = 7m(S) = 3

 $S = \{0,3,6,8,9,11,12,14,15,16,...\}$ $= \mathbb{N}_0 \setminus \{1,2,4,5,7,10,13\}$ = < 3,8 >g(S) = 7m(S) = 3F(S) = 13

$\mathbf{S} = \{0,3,6,8,9,11,12,14,15,16,\dots\}$
$= \mathbb{N}_0 \setminus \{1, 2, 4, 5, 7, 10, 13\}$
= < 3,8 >
g(S) = 7
m(S) = 3
F(S) = 13
e(S) = 2

• **Diophantine Equations:**

Nonnegative integer solutions to equations of the form $a_1x_1 + ... + a_nx_n = b$, where $a_1,...,a_n$ and b are natural numbers with gcd $(a_1,...,a_n) = 1$

• **Diophantine Equations:**

Nonnegative integer solutions to equations of the form $a_1x_1 + ... + a_nx_n = b$, where $a_1,...,a_n$ and b are natural numbers with gcd $(a_1,...,a_n) = 1$

<u>Commutative Algebra:</u>

Families of numerical semigroups yielding complete intersection and thus Gorenstein semigroup rings of the form $K[t^a : a \text{ in } S]$

• **Diophantine Equations:**

Nonnegative integer solutions to equations of the form $a_1x_1 + ... + a_nx_n = b$, where $a_1,...,a_n$ and b are natural numbers with gcd $(a_1,...,a_n) = 1$

<u>Commutative Algebra:</u>

Families of numerical semigroups yielding complete intersection and thus Gorenstein semigroup rings of the form $K[t^a : a \text{ in } S]$

• Algebraic Geometry:

The local intersection multiplicities of formal power series form a numerical semigroup under some conditions

• <u>Algebraic Codes:</u>

Classification of Weierstrass numerical semigroups in coding theory and cryptography

Algebraic Codes:

Classification of Weierstrass numerical semigroups in coding theory and cryptography

• Moreover:

Factorization of monoids Singularities of plane algebraic curves One-dimensional analytically irreducible local domains etc...

The Problem

The Problem

Combinatorial Question:

In how many ways can we remove g positive integers from \mathbb{N}_0 so that the remaining set is additively closed?

The Problem

Combinatorial Question:

In how many ways can we remove g positive integers from \mathbb{N}_0 so that the remaining set is additively closed?

Equivalently:

What is the number N(g) of numerical semigroups with genus g?

 $\langle 1 \rangle$

Elie Alhajjar

United States Military Academy

United States Military Academy

Elie Alhajjar

United States Military Academy

United States Military Academy

Numerical Computation

Numerical Computation

- N(10) = 204
- N(20) = 37,396
- N(30) = 5,646,773
- N(40) = 774,614,284
- N(50) = 101,090,300,128
- N(67) = 377,866,907,506,273

Bounds

Bounds

Bras Amoros `08:

$$\mathbf{N}(\mathbf{g}) \leq \frac{1}{g+1} \binom{2g}{g}$$

Bounds

Bras Amoros `08:

$$\mathbf{N}(\mathbf{g}) \leq \frac{1}{g+1} \binom{2g}{g}$$

Bras Amoros `08, Elizalde `10:

 $F_{g+2} - 1 \le N(g) \le 1 + 3.2^{g-3}$

• <u>Conjecture (Bras-Amoros `08):</u>

1)
$$\lim_{g \to \infty} \frac{N(g-1) + N(g-2)}{N(g)} = 1$$

2)
$$\lim_{g \to \infty} \frac{N(g)}{N(g-1)} = \varphi$$
, the golden ratio.

• <u>Conjecture (Bras-Amoros `08):</u>

1)
$$\lim_{g \to \infty} \frac{N(g-1) + N(g-2)}{N(g)} = 1$$

2)
$$\lim_{g \to \infty} \frac{N(g)}{N(g-1)} = \varphi$$
, the golden ratio.

• <u>Theorem (Zhai `13):</u>

$$\lim_{g \to \infty} \frac{N(g)}{\varphi^g} = K \text{ for some constant } K,$$

• <u>Conjecture (Bras-Amoros `08):</u>

1)
$$\lim_{g \to \infty} \frac{N(g-1) + N(g-2)}{N(g)} = 1$$

2)
$$\lim_{g \to \infty} \frac{N(g)}{N(g-1)} = \varphi$$
, the golden ratio.

• Theorem (Zhai `13):

 $\lim_{g \to \infty} \frac{N(g)}{\varphi^g} = K \text{ for some constant K, hence 1) and 2) hold.}$

Nonetheless...

Nonetheless...

• <u>Strong Genus Conjecture:</u>

 $N(g) \ge N(g-1) + N(g-2)$ for all $g \ge 2$

Nonetheless...

• **<u>Strong Genus Conjecture:</u>**

 $N(g) \ge N(g-1) + N(g-2)$ for all $g \ge 2$

• <u>Weak Genus Conjecture:</u>

 $N(g) \ge N(g-1)$ for all $g \ge 1$

Apéry Sets

• Let S be a numerical semigroup with multiplicity m. The Apéry set of S with respect to m is defined as

 $Ap(S,m) = \{0, w(1), w(2), ..., w(m-1)\},\$

where $w(i) = k_i m + i$ is the smallest element in S that is congruent to i mod m.

Apéry Sets

• Let S be a numerical semigroup with multiplicity m. The Apéry set of S with respect to m is defined as

 $Ap(S,m) = \{0, w(1), w(2), ..., w(m-1)\},\$

where $w(i) = k_i m + i$ is the smallest element in S that is congruent to i mod m.

• <u>Theorem (Selmer `77):</u>

1) $g(S) = k_1 + k_2 + \ldots + k_{m-1}$

Apéry Sets

• Let S be a numerical semigroup with multiplicity m. The Apéry set of S with respect to m is defined as

 $Ap(S,m) = \{0, w(1), w(2), ..., w(m-1)\},\$

where $w(i) = k_i m + i$ is the smallest element in S that is congruent to i mod m.

- <u>Theorem (Selmer `77):</u>
 - 1) $g(S) = k_1 + k_2 + \ldots + k_{m-1}$
 - 2) F(S) = max [Ap(S,m)] m

• Let N(m,g) be the number of numerical semigroups with genus g and multiplicity m.

• Let N(m,g) be the number of numerical semigroups with genus g and multiplicity m. Clearly, N(g) = N(1,g) + N(2,g) + ... + N(g,g) + N(g+1,g).

- Let N(m,g) be the number of numerical semigroups with genus g and multiplicity m. Clearly, N(g) = N(1,g) + N(2,g) + ... + N(g,g) + N(g+1,g).
- Theorem (Kunz `87, Rosales et al. `02):

There is a one-to-one correspondence between the set of numerical semigroups of genus g and multiplicity m and the integer points satisfying the following conditions:

$x_i \ge 1$,	for all $i = 1, 2,, m - 1$
$x_{i} + x_{i} - x_{i+j} \ge 0$	for all $1 \le i \le j \le m - 1$ & $i + j \le m - 1$
$x_i + x_i - x_{i+j-m} \ge -1$	for all $1 \le i \le j \le m - 1$ & $i + j \ge m + 1$

- Let N(m,g) be the number of numerical semigroups with genus g and multiplicity m. Clearly, N(g) = N(1,g) + N(2,g) + ... + N(g,g) + N(g+1,g).
- Theorem (Kunz `87, Rosales et al. `02):

There is a one-to-one correspondence between the set of numerical semigroups of genus g and multiplicity m and the integer points satisfying the following conditions:

$$\begin{array}{ll} x_i \geq 1, & \text{for all } i = 1, 2, \dots, m-1 \\ x_i + x_i - x_{i+j} \geq 0 & \text{for all } 1 \leq i \leq j \leq m-1 \ \& \ i+j \leq m-1 \\ x_i + x_i - x_{i+j-m} \geq -1 & \text{for all } 1 \leq i \leq j \leq m-1 \ \& \ i+j \geq m+1 \\ x_1 + \dots + x_{m-1} = g \end{array}$$

• Let MED(m,g) be the number of maximal embedding dimension numerical semigroups with genus g and multiplicity m, i.e. e(S) = m(S).

Let MED(m,g) be the number of maximal embedding dimension numerical semigroups with genus g and multiplicity m, i.e. e(S) = m(S).
Clearly, MED(g) = MED(1,g) + MED(2,g) + ... + MED(g,g) + MED(g+1,g).

Let MED(m,g) be the number of maximal embedding dimension numerical semigroups with genus g and multiplicity m, i.e. e(S) = m(S).
Clearly, MED(g) = MED(1,g) + MED(2,g) + ... + MED(g,g) + MED(g+1,g).

• <u>Theorem (Kunz `87, Rosales et al. `02):</u>

There is a one-to-one correspondence between the set of maximal embedding dimension numerical semigroups of genus g and multiplicity m and the integer points satisfying the following conditions:

$$\begin{array}{c} x_{i} \geq 1, \\ x_{i} + x_{i} - x_{i+j} \geq 1 \\ x_{i} + x_{i} - x_{i+j-m} \geq 0 \\ x_{1} + \ldots + x_{m-1} = g \end{array}$$

for all
$$i = 1, 2, ..., m - 1$$

for all $1 \le i \le j \le m - 1$ & $i + j \le m - 1$
for all $1 \le i \le j \le m - 1$ & $i + j \ge m + 1$

• Let P_N be the polytope corresponding to N(m,g) and P_{MED} the polytope corresponding to MED(m,g). Define P to be the polytope satisfying the same inequalities with 0 on the right hand side.

- Let P_N be the polytope corresponding to N(m,g) and P_{MED} the polytope corresponding to MED(m,g). Define P to be the polytope satisfying the same inequalities with 0 on the right hand side.
- Clearly, $P_{MED} \subseteq P \subseteq P_N$ and they all are (m 2)-dimensional.

- Let P_N be the polytope corresponding to N(m,g) and P_{MED} the polytope corresponding to MED(m,g). Define P to be the polytope satisfying the same inequalities with 0 on the right hand side.
- Clearly, $P_{MED} \subseteq P \subseteq P_N$ and they all are (m 2)-dimensional.
- Embedding the last equation into the previous inequalities, we can write these polytopes in the form $A.x \ge b(g)$ where A is a matrix with integer entries and b is a vector whose coordinates are linear functions in terms of g. We mention some of the properties of P_N :

1) The matrix A has $\left\lfloor \frac{m^2 - 1}{2} \right\rfloor$ rows.

1) The matrix A has $\left\lfloor \frac{m^2 - 1}{2} \right\rfloor$ rows.

2) The coordinates of b(g) belong to the set $\{0,1,-1,g,-g+1,-g-1,-2g-1\}$.

1) The matrix A has $\left\lfloor \frac{m^2 - 1}{2} \right\rfloor$ rows.

- 2) The coordinates of b(g) belong to the set $\{0,1,-1,g,-g+1,-g-1,-2g-1\}$.
- 3) For $g \ge (m 1)^2$, the polytope P "stabilizes", i.e. $\varphi(m)$ inequalities become redundant.

The Case m = 4

The Case m = 4

Elie Alhajjar

United States Military Academy

• Let p(g) be the number of integer points in P. Since $P_{MED} \subseteq P \subseteq P_N$, it follows that $MED(m,g) \le p(g) \le N(m,g)$

• Let p(g) be the number of integer points in P. Since $P_{MED} \subseteq P \subseteq P_N$, it follows that $MED(m,g) \le p(g) \le N(m,g)$

• <u>Theorem (Kaplan `12):</u>

For fixed m, N(m,g) agrees eventually with a quasipolynomial in g of degree m - 2, with period depending on m. The same holds for MED(m,g).

• Let p(g) be the number of integer points in P. Since $P_{MED} \subseteq P \subseteq P_N$, it follows that $MED(m,g) \le p(g) \le N(m,g)$

• <u>Theorem (Kaplan `12):</u>

For fixed m, N(m,g) agrees eventually with a quasipolynomial in g of degree m - 2, with period depending on m. The same holds for MED(m,g).

• <u>Theorem (Blanco et al. `11):</u>

For fixed m, N(m,g) and MED(m,g) can be computed in polynomial time. Consequently, the same holds for N(g) and MED(g).

• <u>Theorem:</u>

$$\lim_{g\to\infty}\frac{N(m,g)}{g^{m-2}}=\lim_{g\to\infty}\frac{MED(m,g)}{g^{m-2}}=Vol(P).$$

• <u>Theorem:</u>

$$\lim_{g\to\infty}\frac{N(m,g)}{g^{m-2}}=\lim_{g\to\infty}\frac{MED(m,g)}{g^{m-2}}=Vol(P).$$

• For small values of m, the volume of P is computed:

1	1	1	71	1,633	12,256,093	
3 '	12	'135	81,648	, 36,288,000	['] 3,923,023,104,000 [']	•

• <u>Theorem:</u>

 $N(m,g) \leq MED(m,g+m-1)$ for all $g \geq 0$ and $m \geq 2$.

• <u>Theorem:</u>

 $N(m,g) \leq MED(m,g+m-1)$ for all $g \geq 0$ and $m \geq 2$.

Equality holds when m is prime and $g > \frac{(m-1)(m-2)}{2}$.

$$N(4,g) = \begin{cases} \frac{g^2}{12} + \frac{g}{2} \\ \frac{g^2}{12} + \frac{g}{2} - \frac{7}{12} \\ \frac{g^2}{12} + \frac{g}{2} - \frac{1}{3} \\ \frac{g^2}{12} + \frac{g}{2} - \frac{1}{3} \\ \frac{g^2}{12} + \frac{g}{2} - \frac{1}{4} \end{cases}$$

$$N(4,g) = \begin{cases} \frac{g^2}{12} + \frac{g}{2} \\ \frac{g^2}{12} + \frac{g}{2} - \frac{7}{12} \\ \frac{g^2}{12} + \frac{g}{2} - \frac{1}{3} \\ \frac{g^2}{12} + \frac{g}{2} - \frac{1}{4} \end{cases} MED(4,g) = \begin{cases} \frac{g^2}{12} \\ \frac{g^2}{12} - \frac{1}{12} \\ \frac{g^2}{12} - \frac{1}{3} \\ \frac{g^2}{12} + \frac{1}{4} \\ \frac{g^2}{12} + \frac{1}{4} \end{cases}$$

$$N(4,g) = \begin{cases} \frac{g^2}{12} + \frac{g}{2} \\ \frac{g^2}{12} + \frac{g}{2} - \frac{7}{12} \\ \frac{g^2}{12} + \frac{g}{2} - \frac{1}{3} \\ \frac{g^2}{12} + \frac{g}{2} - \frac{1}{4} \end{cases} MED(4,g) = \begin{cases} \frac{g^2}{12} \\ \frac{g^2}{12} - \frac{1}{12} \\ \frac{g^2}{12} - \frac{1}{3} \\ \frac{g^2}{12} + \frac{g}{2} - \frac{1}{4} \end{cases} p(g) = \begin{cases} \frac{g^2}{12} + \frac{g}{12} - \frac{1}{6} \\ \frac{g^2}{12} + \frac{g}{12} - \frac{1}{6} \\ \frac{g^2}{12} + \frac{g}{12} - \frac{1}{6} \\ \frac{g^2}{12} + \frac{g}{12} + \frac{g}{12} \\ \frac{g^2}{12} + \frac{g}{12} + \frac{g}{12} \\ \frac{g^2}{12} + \frac{g}{12} + \frac{1}{2} \\ \frac{g^2}{12} + \frac{g}{12} + \frac{1}{2} \\ \frac{g^2}{12} + \frac{g}{12} + \frac{1}{2} \\ \frac{g^2}{12} + \frac{g}{12} - \frac{2}{3} \\ \frac{g^2}{12} + \frac{g}{12} - \frac{2}{3} \end{cases}$$

Special Results

Special Results

• N(4,g) = number of partitions of g + 6 into 3 parts such that the ith part is greater than i

Special Results

• N(4,g) = number of partitions of g + 6 into 3 parts such that the ith part is greater than i

• MED(4,g) = number of partitions of g + 3 into 3 distinct parts.

• Strong & Weak Genus Conjectures:

 $N(g) \ge N(g-1) + N(g-2)$ for all $g \ge 2$ & $N(g) \ge N(g-1)$ for all $g \ge 1$

• Strong & Weak Genus Conjectures:

 $N(g) \ge N(g-1) + N(g-2)$ for all $g \ge 2$ & $N(g) \ge N(g-1)$ for all $g \ge 1$

• Nondecreasing Sequences:

 $N(m,g) \ge N(m,g-1)$ & $MED(m,g) \ge MED(m,g-1)$ for all $m \ge 2$

• Strong & Weak Genus Conjectures:

 $N(g) \ge N(g-1) + N(g-2)$ for all $g \ge 2$ & $N(g) \ge N(g-1)$ for all $g \ge 1$

• Nondecreasing Sequences:

 $N(m,g) \ge N(m,g-1)$ & MED $(m,g) \ge MED(m,g-1)$ for all $m \ge 2$

• Other types of numerical semigroups:

One can define symmetric, pseudo-symmetric, Arf, irreducible, saturated, etc... numerical semigroups and ask the same questions!! What properties does a 'generic' numerical semigroup have, for large g???

g∖m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	N(g)
0	1																										1
1		1																									1
2		1	1																								2
3		1	2	1																							4
4		1	2	3	1																						7
5		1	2	4	4	1																					12
6		1	3	6	7	5	1																				23
7		1	3	7	10	11	6	1																			39
8		1	3	9	13	17	16	7	1																		67
9		1	4	11	16	27	28	22	8	1																	118
10		1	4	13	22	37	44	44	29	9	1																204
11		1	4	15	24	49	64	72	66	37	10	1															343
12		1	5	18	32	66	85	116	116	95	46	11	1														592
13		1	5	20	35	85	112	172	188	182	132	56	12	1													1001
14		1	5	23	43	106	148	239	288	304	277	178	67	13	1												1693
15		1	6	26	51	133	191	325	409	492	486	409	234	79	14	1											2857
16		1	6	29	61	163	237	441	559	754	796	763	587	301	92	15	1										4806
17		1	6	32	68	196	301	573	750	1094	1246	1282	1172	821	380	106	16	1									8045
18		1	7	36	80	236	369	737	1015	1534	1841	2074	2045	1759	1122	472	121	17	1								13467
19		1	7	39	89	282	444	945	1334	2106	2601	3227	3356	32 17	2580	1502	578	137	18	1							22464
20		1	7	43	104	3 30	541	1193	1737	2840	3561	4812	5301	5401	4976	3702	1974	699	154	19	1	1					37396