NUMERICAL SEMIGROUPS
 \& KUNZ POLYTOPES

OSAKA UNIVERSITY
AUGUST 2018

Introduction

Introduction

Question:

In how many ways can we remove g positive integers from \mathbb{N}_{0} so that the remaining set is additively closed?

Introduction

Question:

In how many ways can we remove g positive integers from \mathbb{N}_{0} so that the remaining set is additively closed?

Answer:

I don’t know!

Introduction

- A numerical semigroup is an additive sub-monoid of $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ whose complement is finite.

Introduction

- A numerical semigroup is an additive sub-monoid of $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ whose complement is finite.
- The genus of S is the number of gaps, i.e. the cardinality of its complement.

Introduction

- A numerical semigroup is an additive sub-monoid of $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ whose complement is finite.
- The genus of S is the number of gaps, i.e. the cardinality of its complement.
- The multiplicity of S is the smallest nonzero element in S.

Introduction

- A numerical semigroup is an additive sub-monoid of $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ whose complement is finite.
- The genus of S is the number of gaps, i.e. the cardinality of its complement.
- The multiplicity of S is the smallest nonzero element in S.
- The embedding dimension of S is the size of its minimal generating set.

Introduction

- A numerical semigroup is an additive sub-monoid of $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ whose complement is finite.
- The genus of S is the number of gaps, i.e. the cardinality of its complement.
- The multiplicity of S is the smallest nonzero element in S.
- The embedding dimension of S is the size of its minimal generating set.
- The Frobenius number of S is the largest number NOT in S.

Example

Example

$$
\begin{aligned}
S & =\{0,3,6,8,9,11,12,14,15,16, \ldots\} \\
& =\mathbb{N}_{0} \backslash\{1,2,4,5,7,10,13\} \\
& =\langle 3,8\rangle
\end{aligned}
$$

Example

$$
\begin{aligned}
& S=\{0,3,6,8,9,11,12,14,15,16, \ldots\} \\
&=\mathbb{N}_{0} \backslash\{1,2,4,5,7,10,13\} \\
&=<3,8\rangle \\
& g(S)=7
\end{aligned}
$$

Example

$$
\begin{aligned}
& S=\{0,3,6,8,9,11,12,14,15,16, \ldots\} \\
&=\mathbb{N}_{0} \backslash\{1,2,4,5,7,10,13\} \\
&=<3,8\rangle \\
& g(S)=7 \\
& m(S)=3
\end{aligned}
$$

Example

$$
\begin{aligned}
& S=\{0,3,6,8,9,11,12,14,15,16, \ldots\} \\
&=\mathbb{N}_{0} \backslash\{1,2,4,5,7,10,13\} \\
&=<3,8> \\
& g(S)=7 \\
& m(S)=3 \\
& F(S)=13
\end{aligned}
$$

Example

$$
\begin{aligned}
& S=\{0,3,6,8,9,11,12,14,15,16, \ldots\} \\
&=\mathbb{N}_{0} \backslash\{1,2,4,5,7,10,13\} \\
&=<3,8> \\
& g(S)=7 \\
& m(S)=3 \\
& F(S)=13 \\
& e(S)=2
\end{aligned}
$$

Applications

Applications

- Diophantine Equations:

Nonnegative integer solutions to equations of the form $a_{1} x_{1}+\ldots+a_{n} x_{n}=b$, where a_{1}, \ldots, a_{n} and b are natural numbers with gcd $\left(a_{1}, \ldots, a_{n}\right)=1$

Applications

- Diophantine Equations:

Nonnegative integer solutions to equations of the form $a_{1} x_{1}+\ldots+a_{n} x_{n}=b$, where a_{1}, \ldots, a_{n} and b are natural numbers with gcd $\left(a_{1}, \ldots, a_{n}\right)=1$

- Commutative Algebra:

Families of numerical semigroups yielding complete intersection and thus Gorenstein semigroup rings of the form $\mathrm{K}\left[\mathrm{t}^{\mathrm{a}}\right.$: a in S]

Applications

- Diophantine Equations:

Nonnegative integer solutions to equations of the form $\mathrm{a}_{1} \mathrm{X}_{1}+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}$, where a_{1}, \ldots, a_{n} and b are natural numbers with gcd $\left(a_{1}, \ldots, a_{n}\right)=1$

- Commutative Algebra:

Families of numerical semigroups yielding complete intersection and thus Gorenstein semigroup rings of the form $\mathrm{K}\left[\mathrm{t}^{\mathrm{a}}\right.$: a in S]

- Algebraic Geometry:

The local intersection multiplicities of formal power series form a numerical semigroup under some conditions

Applications

- Algebraic Codes:

Classification of Weierstrass numerical semigroups in coding theory and cryptography

Applications

- Algebraic Codes:

Classification of Weierstrass numerical semigroups in coding theory and cryptography

- Moreover:

Factorization of monoids
Singularities of plane algebraic curves
One-dimensional analytically irreducible local domains
etc...

The Problem

The Problem

Combinatorial Question:

In how many ways can we remove g positive integers from \mathbb{N}_{0} so that the remaining set is additively closed?

The Problem

Combinatorial Question:

In how many ways can we remove g positive integers from \mathbb{N}_{0} so that the remaining set is additively closed?

Equivalently:
What is the number $\mathrm{N}(\mathrm{g})$ of numerical semigroups with genus g ?

Tree Structure

Tree Structure

Tree Structure

Tree Structure

Tree Structure

Tree Structure

Tree Structure

Tree Structure

Numerical Computation

Numerical Computation

- $N(10)=204$
- $\mathrm{N}(20)=37,396$
- $\mathrm{N}(30)=5,646,773$
- $\mathrm{N}(40)=774,614,284$
- $\mathrm{N}(50)=101,090,300,128$
- $\mathrm{N}(67)=377,866,907,506,273$

Bounds

Bounds

- Bras Amoros `08:
$N(g) \leq \frac{1}{g+1}\binom{2 g}{g}$

Bounds

- Bras Amoros `08:
$\mathrm{N}(\mathrm{g}) \leq \frac{1}{g+1}\binom{2 g}{g}$
- Bras Amoros `08, Elizalde `10:
$\mathrm{F}_{\mathrm{g}+2}-1 \leq \mathrm{N}(\mathrm{g}) \leq 1+3.2^{\mathrm{g}-3}$

Asymptotical Behavior

Asymptotical Behavior

- Conjecture (Bras-Amoros `08):

1) $\lim _{g \rightarrow \infty} \frac{N(g-1)+N(g-2)}{N(g)}=1$
2) $\lim _{g \rightarrow \infty} \frac{N(g)}{N(g-1)}=\varphi$, the golden ratio.

Asymptotical Behavior

- Conjecture (Bras-Amoros `08):

1) $\lim _{g \rightarrow \infty} \frac{N(g-1)+N(g-2)}{N(g)}=1$
2) $\lim _{g \rightarrow \infty} \frac{N(g)}{N(g-1)}=\varphi$, the golden ratio.

- Theorem (Zhai `13):
$\lim _{g \rightarrow \infty} \frac{N(g)}{\varphi^{g}}=\mathrm{K}$ for some constant K,

Asymptotical Behavior

- Conjecture (Bras-Amoros `08):

1) $\lim _{g \rightarrow \infty} \frac{N(g-1)+N(g-2)}{N(g)}=1$
2) $\lim _{g \rightarrow \infty} \frac{N(g)}{N(g-1)}=\varphi$, the golden ratio.

- Theorem (Zhai `13):
$\lim _{g \rightarrow \infty} \frac{N(g)}{\varphi^{g}}=\mathrm{K}$ for some constant K , hence 1) and 2) hold.

Nonetheless

Nonetheless.

- Strong Genus Conjecture:

$$
N(g) \geq N(g-1)+N(g-2) \text { for all } g \geq 2
$$

Nonetheless.

- Strong Genus Conjecture:

$$
N(g) \geq N(g-1)+N(g-2) \text { for all } g \geq 2
$$

- Weak Genus Conjecture:
$N(g) \geq N(g-1)$ for all $g \geq 1$

Apéry Sets

Apéry Sets

- Let S be a numerical semigroup with multiplicity m. The Apéry set of S with respect to m is defined as
$A p(S, m)=\{0, w(1), w(2), \ldots, w(m-1)\}$,
where $\mathrm{w}(\mathrm{i})=\mathrm{k}_{\mathrm{i}} \mathrm{m}+\mathrm{i}$ is the smallest element in S that is congruent to $\mathrm{i} \bmod \mathrm{m}$.

Apéry Sets

- Let S be a numerical semigroup with multiplicity m. The Apéry set of S with respect to m is defined as
$A p(S, m)=\{0, w(1), w(2), \ldots, w(m-1)\}$,
where $\mathrm{w}(\mathrm{i})=\mathrm{k}_{\mathrm{i}} \mathrm{m}+\mathrm{i}$ is the smallest element in S that is congruent to $\mathrm{i} \bmod \mathrm{m}$.
- Theorem (Selmer `77):

1) $g(S)=k_{1}+k_{2}+\ldots+k_{m-1}$

Apéry Sets

- Let S be a numerical semigroup with multiplicity m. The Apéry set of S with respect to m is defined as
$A p(S, m)=\{0, w(1), w(2), \ldots, w(m-1)\}$,
where $\mathrm{w}(\mathrm{i})=\mathrm{k}_{\mathrm{i}} \mathrm{m}+\mathrm{i}$ is the smallest element in S that is congruent to $\mathrm{i} \bmod \mathrm{m}$.
- Theorem (Selmer `77):

1) $g(S)=k_{1}+k_{2}+\ldots+k_{m-1}$
2) $F(S)=\max [A p(S, m)]-m$

From N(g) to N(m,g)

From $\mathbf{N}(\mathrm{g})$ to $\mathbf{N}(\mathrm{m}, \mathrm{g})$

- Let $N(m, g)$ be the number of numerical semigroups with genus g and multiplicity m.

From $\mathrm{N}(\mathrm{g})$ to $\mathrm{N}(\mathrm{m}, \mathrm{g})$

- Let $N(m, g)$ be the number of numerical semigroups with genus g and multiplicity m. Clearly, $\mathrm{N}(\mathrm{g})=\mathrm{N}(1, g)+\mathrm{N}(2, g)+\ldots+\mathrm{N}(\mathrm{g}, \mathrm{g})+\mathrm{N}(\mathrm{g}+1, \mathrm{~g})$.

From $\mathbf{N}(\mathrm{g})$ to $\mathrm{N}(\mathrm{m}, \mathrm{g})$

- Let $N(m, g)$ be the number of numerical semigroups with genus g and multiplicity m. Clearly, $\mathrm{N}(\mathrm{g})=\mathrm{N}(1, g)+\mathrm{N}(2, g)+\ldots+\mathrm{N}(\mathrm{g}, \mathrm{g})+\mathrm{N}(\mathrm{g}+1, g)$.
- Theorem (Kunz `87, Rosales et al. `02):

There is a one-to-one correspondence between the set of numerical semigroups of genus g and multiplicity m and the integer points satisfying the following conditions:

$$
\begin{aligned}
x_{i} & \geq 1, \\
x_{i}+x_{i}-x_{i+j} & \geq 0 \\
x_{i}+x_{i}-x_{i+j-m} & \geq-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { for all } \mathrm{i}=1,2, \ldots, \mathrm{~m}-1 \\
& \text { for all } 1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{m}-1 \& i+j \leq m-1 \\
& \text { for all } 1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{m}-1 \& \mathrm{i}+\mathrm{j} \geq \mathrm{m}+1
\end{aligned}
$$

From $\mathbf{N}(\mathrm{g})$ to $\mathrm{N}(\mathrm{m}, \mathrm{g})$

- Let $N(m, g)$ be the number of numerical semigroups with genus g and multiplicity m. Clearly, $\mathrm{N}(\mathrm{g})=\mathrm{N}(1, g)+\mathrm{N}(2, g)+\ldots+\mathrm{N}(\mathrm{g}, \mathrm{g})+\mathrm{N}(\mathrm{g}+1, g)$.
- Theorem (Kunz `87, Rosales et al. `02):

There is a one-to-one correspondence between the set of numerical semigroups of genus g and multiplicity m and the integer points satisfying the following conditions:

$$
\begin{aligned}
x_{i} & \geq 1 \\
x_{i}+x_{i}-x_{i+j} & \geq 0 \\
x_{i}+x_{i}-x_{i+j-m} & \geq-1 \\
x_{1}+\ldots+x_{m-1} & =g
\end{aligned}
$$

$$
\begin{aligned}
& \text { for all } i=1,2, \ldots, m-1 \\
& \text { for all } 1 \leq i \leq j \leq m-1 \& i+j \leq m-1 \\
& \text { for all } 1 \leq i \leq j \leq m-1 \& i+j \geq m+1
\end{aligned}
$$

From $\mathbf{N}(\mathrm{g})$ to $\mathrm{N}(\mathrm{m}, \mathrm{g})$ to $\operatorname{MED}(\mathrm{m}, \mathrm{g})$

From $\mathbf{N}(\mathrm{g})$ to $\mathrm{N}(\mathrm{m}, \mathrm{g})$ to $\operatorname{MED}(\mathrm{m}, \mathrm{g})$

- Let MED (m, g) be the number of maximal embedding dimension numerical semigroups with genus g and multiplicity m, i.e. $e(S)=m(S)$.

From $\mathbf{N}(\mathrm{g})$ to $\mathrm{N}(\mathrm{m}, \mathrm{g})$ to $\operatorname{MED}(\mathrm{m}, \mathrm{g})$

- Let MED (m, g) be the number of maximal embedding dimension numerical semigroups with genus g and multiplicity m, i.e. $e(S)=m(S)$.
Clearly, $\operatorname{MED}(\mathrm{g})=\operatorname{MED}(1, \mathrm{~g})+\operatorname{MED}(2, \mathrm{~g})+\ldots+\operatorname{MED}(\mathrm{g}, \mathrm{g})+\operatorname{MED}(\mathrm{g}+1, \mathrm{~g})$.

From $\mathbf{N}(\mathrm{g})$ to $\mathrm{N}(\mathrm{m}, \mathrm{g})$ to $\operatorname{MED}(\mathrm{m}, \mathrm{g})$

- Let MED (m, g) be the number of maximal embedding dimension numerical semigroups with genus g and multiplicity m, i.e. $e(S)=m(S)$.
Clearly, $\operatorname{MED}(\mathrm{g})=\operatorname{MED}(1, \mathrm{~g})+\operatorname{MED}(2, \mathrm{~g})+\ldots+\operatorname{MED}(\mathrm{g}, \mathrm{g})+\operatorname{MED}(\mathrm{g}+1, \mathrm{~g})$.

- Theorem (Kunz `87, Rosales et al. `02):

There is a one-to-one correspondence between the set of maximal embedding dimension numerical semigroups of genus g and multiplicity m and the integer points satisfying the following conditions:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{i}} \geq 1 \\
& \mathrm{x}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}+\mathrm{j}} \geq 1 \\
& \mathrm{x}_{\mathrm{i}}+\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{i}+\mathrm{j}-\mathrm{m}} \geq 0 \\
& \mathrm{x}_{1}+\ldots+\mathrm{X}_{\mathrm{m}-1}=\mathrm{g}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for all } \mathrm{i}=1,2, \ldots, \mathrm{~m}-1 \\
& \text { for all } 1 \leq \mathrm{i} \leq \mathrm{j} \leq m-1 \& i+j \leq m-1 \\
& \text { for all } 1 \leq \mathrm{i} \leq j \leq m-1 \& i+j \geq m+1
\end{aligned}
$$

Polyhedral Structure

Polyhedral Structure

- Let P_{N} be the polytope corresponding to $\mathrm{N}(\mathrm{m}, \mathrm{g})$ and $\mathrm{P}_{\mathrm{MED}}$ the polytope corresponding to $\operatorname{MED}(\mathrm{m}, \mathrm{g})$. Define P to be the polytope satisfying the same inequalities with 0 on the right hand side.

Polyhedral Structure

- Let P_{N} be the polytope corresponding to $\mathrm{N}(\mathrm{m}, \mathrm{g})$ and $\mathrm{P}_{\text {MED }}$ the polytope corresponding to $\operatorname{MED}(\mathrm{m}, \mathrm{g})$. Define P to be the polytope satisfying the same inequalities with 0 on the right hand side.
- Clearly, $\mathrm{P}_{\text {MED }} \subseteq \mathrm{P} \subseteq \mathrm{P}_{\mathrm{N}}$ and they all are ($\mathrm{m}-2$)-dimensional.

Polyhedral Structure

- Let P_{N} be the polytope corresponding to $\mathrm{N}(\mathrm{m}, \mathrm{g})$ and $\mathrm{P}_{\text {MED }}$ the polytope corresponding to $\operatorname{MED}(\mathrm{m}, \mathrm{g})$. Define P to be the polytope satisfying the same inequalities with 0 on the right hand side.
- Clearly, $\mathrm{P}_{\text {MED }} \subseteq \mathrm{P} \subseteq \mathrm{P}_{\mathrm{N}}$ and they all are ($\mathrm{m}-2$)-dimensional.
- Embedding the last equation into the previous inequalities, we can write these polytopes in the form $A \cdot x \geq b(g)$ where A is a matrix with integer entries and b is a vector whose coordinates are linear functions in terms of g. We mention some of the properties of P_{N} :

Polyhedral Structure

1) The matrix A has $\left\lfloor\frac{m^{2}-1}{2}\right\rfloor$ rows.

Polyhedral Structure

1) The matrix A has $\left\lfloor\frac{m^{2}-1}{2}\right\rfloor$ rows.
2) The coordinates of $b(g)$ belong to the set $\{0,1,-1, g,-g+1,-g-1,-2 g-1\}$.

Polyhedral Structure

1) The matrix A has $\left\lfloor\frac{m^{2}-1}{2}\right\rfloor$ rows.
2) The coordinates of $\mathrm{b}(\mathrm{g})$ belong to the set $\{0,1,-1, \mathrm{~g},-\mathrm{g}+1,-\mathrm{g}-1,-2 \mathrm{~g}-1\}$.
3) For $\mathrm{g} \geq(\mathrm{m}-1)^{2}$, the polytope P "stabilizes", i.e. $\varphi(\mathrm{m})$ inequalities become redundant.

The Case $\mathrm{m}=4$

The Case $\mathrm{m}=4$

Combinatorial Structure

Combinatorial Structure

- Let $\mathrm{p}(\mathrm{g})$ be the number of integer points in P .

Since $\mathrm{P}_{\text {MED }} \subseteq \mathrm{P} \subseteq \mathrm{P}_{\mathrm{N}}$, it follows that $\operatorname{MED}(\mathrm{m}, \mathrm{g}) \leq \mathrm{p}(\mathrm{g}) \leq \mathrm{N}(\mathrm{m}, \mathrm{g})$

Combinatorial Structure

- Let $\mathrm{p}(\mathrm{g})$ be the number of integer points in P .

Since $\mathrm{P}_{\mathrm{MED}} \subseteq \mathrm{P} \subseteq \mathrm{P}_{\mathrm{N}}$, it follows that $\operatorname{MED}(\mathrm{m}, \mathrm{g}) \leq \mathrm{p}(\mathrm{g}) \leq \mathrm{N}(\mathrm{m}, \mathrm{g})$

- Theorem (Kaplan `12):

For fixed $m, N(m, g)$ agrees eventually with a quasipolynomial in g of degree $m-2$, with period depending on m . The same holds for $\operatorname{MED}(\mathrm{m}, \mathrm{g})$.

Combinatorial Structure

- Let $\mathrm{p}(\mathrm{g})$ be the number of integer points in P .

Since $\mathrm{P}_{\text {MED }} \subseteq \mathrm{P} \subseteq \mathrm{P}_{\mathrm{N}}$, it follows that $\operatorname{MED}(\mathrm{m}, \mathrm{g}) \leq \mathrm{p}(\mathrm{g}) \leq \mathrm{N}(\mathrm{m}, \mathrm{g})$

- Theorem (Kaplan `12):

For fixed $m, N(m, g)$ agrees eventually with a quasipolynomial in g of degree $m-2$, with period depending on m . The same holds for $\operatorname{MED}(\mathrm{m}, \mathrm{g})$.

- Theorem (Blanco et al. `11):

For fixed $m, N(m, g)$ and $\operatorname{MED}(m, g)$ can be computed in polynomial time. Consequently, the same holds for $\mathrm{N}(\mathrm{g})$ and MED (g).

Combinatorial Structure

- Theorem:

$$
\lim _{g \rightarrow \infty} \frac{N(m, g)}{g^{m-2}}=\lim _{g \rightarrow \infty} \frac{M E D(m, g)}{g^{m-2}}=\operatorname{Vol}(P)
$$

Combinatorial Structure

- Theorem:

$$
\lim _{g \rightarrow \infty} \frac{N(m, g)}{g^{m-2}}=\lim _{g \rightarrow \infty} \frac{M E D(m, g)}{g^{m-2}}=\operatorname{Vol}(P)
$$

- For small values of m , the volume of P is computed:

$$
\frac{1}{3}, \frac{1}{12}, \frac{1}{135}, \frac{71}{81,648}, \frac{1,633}{36,288,000}, \frac{12,256,093}{3,923,023,104,000}, \ldots
$$

Combinatorial Structure

- Theorem:

$$
N(m, g) \leq M E D(m, g+m-1) \text { for all } g \geq 0 \text { and } m \geq 2 .
$$

Combinatorial Structure

- Theorem:

$$
N(m, g) \leq \operatorname{MED}(m, g+m-1) \text { for all } g \geq 0 \text { and } m \geq 2 .
$$

Equality holds when m is prime and $\mathrm{g}>\frac{(m-1)(m-2)}{2}$.

The Case $\mathrm{m}=4$ (continued)

The Case m = 4 (continued)

$$
\mathrm{N}(4, g)=\left\{\begin{array}{c}
\frac{g^{2}}{12}+\frac{g}{2} \\
\frac{g^{2}}{12}+\frac{g}{2}-\frac{7}{12} \\
\frac{g^{2}}{12}+\frac{g}{2}-\frac{1}{3} \\
\frac{g^{2}}{12}+\frac{g}{2}-\frac{1}{4}
\end{array}\right.
$$

The Case $m=4$ (continued)

$$
\mathrm{N}(4, g)=\left\{\begin{array}{l}
\frac{g^{2}}{12}+\frac{g}{2} \\
\frac{g^{2}}{12}+\frac{g}{2}-\frac{7}{12} \\
\frac{g^{2}}{12}+\frac{g}{2}-\frac{1}{3} \\
\frac{g^{2}}{12}+\frac{g}{2}-\frac{1}{4}
\end{array} \quad \operatorname{MED}(4, g)=\left\{\begin{array}{c}
\frac{g^{2}}{12} \\
\frac{g^{2}}{12}-\frac{1}{12} \\
\frac{g^{2}}{12}-\frac{1}{3} \\
\frac{g^{2}}{12}+\frac{1}{4}
\end{array}\right.\right.
$$

The Case m = 4 (continued)

$$
\mathrm{N}(4, \mathrm{~g})=\left\{\begin{array}{c}
\frac{g^{2}}{12}+\frac{g}{2} \\
\frac{g^{2}}{12}+\frac{g}{2}-\frac{7}{12} \\
\frac{g^{2}}{12}+\frac{g}{2}-\frac{1}{3} \\
\frac{g^{2}}{12}+\frac{g}{2}-\frac{1}{4}
\end{array} \quad \mathrm{MED}(4, \mathrm{~g})=\left\{\begin{array}{c}
\frac{g^{2}}{12} \\
\frac{g^{2}}{12}-\frac{1}{12} \\
\frac{g^{2}}{12}-\frac{1}{3} \\
\frac{g^{2}}{12}+\frac{g^{2}}{12}+\frac{1}{4}-\frac{1}{6}
\end{array} \quad \mathrm{p}(\mathrm{~g})=\left\{\begin{array}{l}
\frac{g^{2}}{12}+\frac{5 g}{12}-\frac{1}{6} \\
\frac{g^{2}}{12}+\frac{g}{12} \\
\frac{g^{2}}{12}+\frac{g}{12}+\frac{1}{2} \\
\frac{g^{2}}{12}+\frac{5 g}{12}+\frac{1}{2} \\
\frac{g^{2}}{12}+\frac{g}{12}-\frac{2}{3} \\
\frac{g^{2}}{12}+\frac{5 g}{12}+\frac{1}{3}
\end{array}\right.\right.\right.
$$

Special Results

Special Results

- $N(4, g)=$ number of partitions of $g+6$ into 3 parts such that the $\mathrm{i}^{\text {th }}$ part is greater than i

Special Results

- $\mathrm{N}(4, \mathrm{~g})=$ number of partitions of $\mathrm{g}+6$ into 3 parts such that the $\mathrm{i}^{\text {th }}$ part is greater than i
- $\operatorname{MED}(4, g)=$ number of partitions of $g+3$ into 3 distinct parts.

Future Directions

Future Directions

- Strong \& Weak Genus Conjectures:

$$
N(g) \geq N(g-1)+N(g-2) \text { for all } g \geq 2 \& N(g) \geq N(g-1) \text { for all } g \geq 1
$$

Future Directions

- Strong \& Weak Genus Conjectures:

$$
N(g) \geq N(g-1)+N(g-2) \text { for all } g \geq 2 \& N(g) \geq N(g-1) \text { for all } g \geq 1
$$

- Nondecreasing Sequences:

$$
N(m, g) \geq N(m, g-1) \& \operatorname{MED}(m, g) \geq \operatorname{MED}(m, g-1) \text { for all } m \geq 2
$$

Future Directions

- Strong \& Weak Genus Conjectures:

$$
N(g) \geq N(g-1)+N(g-2) \text { for all } g \geq 2 \& N(g) \geq N(g-1) \text { for all } g \geq 1
$$

- Nondecreasing Sequences:
$N(m, g) \geq N(m, g-1) \& \operatorname{MED}(m, g) \geq \operatorname{MED}(m, g-1)$ for all $m \geq 2$
- Other types of numerical semigroups:

One can define symmetric, pseudo-symmetric, Arf, irreducible, saturated, etc... numerical semigroups and ask the same questions!!
What properties does a 'generic' numerical semigroup have, for large g???

Future Directions

$g \backslash m$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	$N(\mathrm{~g})$
0	1																										1
1		1																									1
2		1	1																								2
3		1	2	1																							4
4		1	2	3	1																						7
5		1	2	4	4	1																					12
6		1	3	6	7	5	1																				23
7		1	3	7	10	11	6	1																			39
8		1	3	9	13	17	16	7	1																		67
9		1	4	11	16	27	28	22	8	1																	118
10		1	4	13	22	37	44	44	29	9	1																204
11		1	4	15	24	49	64	72	66	37	10	1															343
12		1	5	18	32	66	85	116	116	95	46	11	1														592
13		1	5	20	35	85	112	172	188	182	132	56	12	1													1001
14		1	5	23	43	106	148	239	288	304	277	178	67	13	1												1693
15		1	6	26	51	133	191	325	409	492	486	409	234	79	14	1											2857
16		1	6	29	61	163	237	441	559	754	796	763	587	301	92	15	1										4806
17		1	6	32	68	196	301	573	750	1094	1246	1282	1172	821	380	106	16	1									8045
18		1	7	36	80	236	369	737	1015	1534	1841	2074	2045	1759	1122	472	121	17	1								13467
19		1	7	39	89	282	444	945	1334	2106	2601	3227	3356	3217	2580	1502	578	137	18	1							22464
20		1	7	43	104	330	541	1193	1737	2840	3561	4812	5301	5401	4976	3702	1974	699	154	19		1					37396

