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The notion of connectivity

Definition
We say that a graph G having more than m vertices is m-connected
whenever it is impossible to disconnect it by removing fewer than m
vertices together with their incident edges.

Facts:
I Any connected graph G is 1-connected.
I Any tree T is 1-connected but not 2-connected.
I The cycle graph Cn is 2-connected.
I The complete bipartite graph Km,n is (min{m, n})-connected.
I The complete graph Kn is (n − 1)-connected
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Yes, but where are the polytopes?

Definition
The skeleton of a polytope P is the (abstract) graph G whose vertices
are the vertices of P, and the edges are the edges of P.

Theorem (Steinitz, 1922)
A graph G is the skeleton of a 3-dimensional polytope if and only if G is
a 3-connected planar graph.

Theorem (Balinski, 1961)
The skeleton of a d-dimensional polytope is d-connected.
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Simplicial complexes
Definition
A simplicial complex ∆ on the vertex set [n] := {1, . . . , n} is a collection
of subsets (faces) of [n] such that such that
I ∅ ∈ ∆,
I F ∈ ∆ and G ⊆ F ⇒ G ∈ ∆.

dim(F ) := |F | − 1, dim(∆) := max
F∈∆

dim(F )

4
2

3

1

We call ∆ pure if all the maximal faces (facets) have the same
dimension.
We can think to a (d + 1)-dimensional simplicial polytope P as the pure
d-dimensional simplicial complex whose faces are the proper faces of P.
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Pseudomanifolds

Definition
A pure d-dimensional simplicial complex ∆ is a simplicial
pseudomanifold if
I every (d − 1)-dimensional faces is contained in exactly two facets,
I ∆ is strongly connected, i.e. it is possible to move between every

pair of facets without touching any face of dimension ≤ d − 2,

Theorem (Barnette, 1982)
The skeleton of a d-dimensional simplicial pseudomanifold is
(d + 1)-connected.
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Flagness

A minimal nonface F of a simplicial complex ∆ is a subset of [n] such
that F is not a face of ∆ but all the proper faces of F are in ∆.

Definition
A simplicial complex ∆ is flag if all the minimal nonfaces of ∆ are
1-dimensional.

4
2

3

1

flag

4
2

3

1

not flag

Theorem (Athanasiadis, 2011)
The skeleton of a flag simplicial d-pseudomanifold is 2d-connected.
Goal: Prove (and maybe improve) the results by Barnette and
Athanasiadis.

7 / 17



Flagness

A minimal nonface F of a simplicial complex ∆ is a subset of [n] such
that F is not a face of ∆ but all the proper faces of F are in ∆.

Definition
A simplicial complex ∆ is flag if all the minimal nonfaces of ∆ are
1-dimensional.

4
2

3

1

flag

4
2

3

1

not flag

Theorem (Athanasiadis, 2011)
The skeleton of a flag simplicial d-pseudomanifold is 2d-connected.
Goal: Prove (and maybe improve) the results by Barnette and
Athanasiadis.

7 / 17



Flagness

A minimal nonface F of a simplicial complex ∆ is a subset of [n] such
that F is not a face of ∆ but all the proper faces of F are in ∆.

Definition
A simplicial complex ∆ is flag if all the minimal nonfaces of ∆ are
1-dimensional.

4
2

3

1

flag

4
2

3

1

not flag

Theorem (Athanasiadis, 2011)
The skeleton of a flag simplicial d-pseudomanifold is 2d-connected.

Goal: Prove (and maybe improve) the results by Barnette and
Athanasiadis.

7 / 17



Flagness

A minimal nonface F of a simplicial complex ∆ is a subset of [n] such
that F is not a face of ∆ but all the proper faces of F are in ∆.

Definition
A simplicial complex ∆ is flag if all the minimal nonfaces of ∆ are
1-dimensional.

4
2

3

1

flag

4
2

3

1

not flag

Theorem (Athanasiadis, 2011)
The skeleton of a flag simplicial d-pseudomanifold is 2d-connected.
Goal: Prove (and maybe improve) the results by Barnette and
Athanasiadis.

7 / 17



Let’s use commutative algebra!
Let ∆ be a simplicial complex on n vertices.
Let k be any field and S the polynomial ring S = k[x1, . . . , xn].

Definition
The Stanley-Reisner ring k[∆] associated to ∆ is the quotient
k[∆] = S/I∆, where

I∆ = (xi1 · · · xis |{i1, . . . , is} /∈ ∆) ⊂ S.

Example: Let S = k[x1, x2, x3, x4]

2

13

44

I∆ =

It is enough to use the minimal nonfaces.
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Let’s do algebra: free resolution
Let M be a finitely generated graded S-module. Hilbert’s Syzygy
Theorem grants the existence of a minimal graded free resolution of
M, i.e. a chain complex F of graduated free modules of minimal rank
with degree-preserving maps such that F→ M → 0 is exact.

0 −→
⊕
j∈N

S(−j)βs,j φs−→ · · · φ2−→
⊕
j∈N

S(−j)β1,j φ1−→
⊕
j∈N

S(−j)β0,j −→ 0

where the shifts j are chosen to let the φi preserve the degree.

The exponents βi,j are called Betti numbers.
We store the Betti numbers in the Betti table

β(M) =


β0,0 β1,1 β2,2 · · · βs,s
β0,1 β1,2 β2,3 · · · βs,s+1
β0,2 β1,3 β2,4 · · · βs,s+2

...
...

...
...


projdim(M) = # columns of β(M)− 1 reg(M) = # rows of β(M)
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Hochster Formula

Theorem (Hochster, 1977)
The Betti numbers of k[∆] can be calculated studying the homology of
∆:

βi,j(k[∆]) =
∑

T⊆[n]
|T |=j

dimk H̃j−i−1(∆|T ;k).

I The reduced homology H̃i ( · ;k) is like the usual homology, but in
degree 0 it “counts” the connected components minus one.

I ∆|T denotes the restriction of ∆ to T .
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Example: the algebraic way

1

43

2

I∆ = (x1x2x3, x2x4, x3x4)

0 S(−3)⊕ S(−4) S(−3)⊕ S(−2)2 S k[∆] 0

ker φ1 I∆

φ2 φ1 φ0

β(k[∆]) =

 1 0 0
0 2 1
0 1 1



11 / 17
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Example: the combinatorial way

βi,j(k[∆]) =
∑

T⊆[n]
|T |=j

dimk H̃j−i−1(∆|T ;k).

1

43

2

β(k[∆]) =

 1 0 0
0 ? ?
0 ? ?


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The Castelnuovo-Mumford regularity

reg(k[∆]) = # rows of β(k[∆])

β(k[∆]) =


β0,0 β1,1 β2,2 · · · βs,s
β0,1 β1,2 β2,3 · · · βs,s+1
β0,2 β1,3 β2,4 · · · βs,s+2

...
...

...
...



βi,j(k[∆]) =
∑

T⊆[n]
|T |=j

dimk H̃j−i−1(∆|T ;k).

I In every row the homological degree is fixed.
I The Castelnuovo-Mumford regularity equals the highest homological

degree with nontrivial homology.
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Lemma
Let ∆ be a d-dimensional simplicial pseudomanifold and let T ⊆ ∆ such
that ∆|[n]\T is disconnected. Then reg(k[∆|T ]) ≥ d.
Proof: use Hochster Formula and Mayer-Vietoris sequence.

Lemma
Let I ⊆ S a monomial ideal generated by monomials of degree at most s.
Then

reg(S/I) ≤ n(s − 1)
s .

Proof: use Taylor resolution.

Let ∆ a d-dimensional pseudomanifold such that ∆|[n]\T is disconnected.
Lets N := |T |

reg(k[∆|T ]) ≤ N(s − 1)
s

N ≥ s
s − 1 reg(k[∆|T ]) ≥ sd

s − 1
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Main theorem

Theorem (B., 2015)
Let ∆ be a d-dimensional simplicial pseudomanifold. Let s be the
dimension of the largest minimal non-face of ∆. Then the skeleton G∆ of
∆ is d sd

s−1e-connected.

As a corollary we get:
I G∆ is d-connected (Barnette Theorem)
I if ∆ is flag then G∆ is 2d-connected (Athanasiadis Theorem)

It works under weaker hypotheses: we do not need ∆ to be a
d-dimensional pseudomanifold, but just to be a vertex minimal d-cycle,
i.e. for some field k, H̃d (∆|T ;k) 6= 0 if and only if T = [n].

It is a sharp result (simplicial join are the extremal objects)
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We can keep having fun!
Theorem (Dao-Huneke-Schweig, 2013)
Let I ⊆ S a monomial ideal generated in degree 2 such that I is k-step
linear. Then

reg(S/I) ≤ min
{

log k+4
2

(n − 1
k + 1

)
+ 2, log k+4

2

(
(n − 1) ln( k+4

2 )
k + 1 + 2

k + 4

)
+ 2
}

.

β(I) =


1 0 0 · · · 0 0 · · ·
0 β1,2 β2,3 · · · βk,k+1 βk+1,k+2 · · ·
0 0 0 · · · 0 βk+1,k+3 · · ·
...

...
...

...
...

 ,

The bold zeroes corresponds (by Hochster Formula) to homological
degree one → We are just counting cycles!

Theorem (B., 2015)
Let ∆ be a d-dimensional simplicial pseudomanifold such that its skeleton
G∆ has no induced k-cycles for k ≥ 4. Then G∆ is d( k

2 )d−1e-connected.
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Find your own result on connectivity

I Take a good bound for the regularity

I Translate the hypothesis into combinatorics
I Now you have your result on connectivity!
I Cite my paper!!

Thank you!
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