How connected is the skeleton of a polytope?

Gabriele Balletti

Stockholm University
July 30, 2018

Introduction

```
MR3589889 Reviewed
Balletti, Gabriele(S-STOC)
```

Connectivity through bounds for the Castelnuovo-Mumford regularity.
From References: 0
(English summary)
J. Combin. Theory Ser. A 147 (2017), 46-54.
57M15 (05E45 13F55 55U10 57Q05)
Review PDF | Clipboard Journal| Article | Make Link

Summary: "In this note we generalize and unify two results on connectivity of graphs: one by Balinsky and Barnette, one by Athanasiadis. This is done through a simple proof using commutative algebra tools. In particular we use bounds for the Castelnuovo-Mumford regularity of their Stanley-Reisner rings. As a result, if Δ is a simplicial d-pseudomanifold and s is the largest integer such that Δ has a missing face of size s, then the 1 -skeleton of Δ is $\left\lceil\frac{(s+1) d}{s}\right\rceil$-connected. We also show that this value is tight."

Introduction

Citations
 From References: 0
 From Reviews: 0

The notion of connectivity

Definition
We say that a graph G having more than m vertices is m-connected whenever it is impossible to disconnect it by removing fewer than m vertices together with their incident edges.

The notion of connectivity

Definition

We say that a graph G having more than m vertices is m-connected whenever it is impossible to disconnect it by removing fewer than m vertices together with their incident edges.

Facts:

- Any connected graph G is 1 -connected.
- Any tree T is 1 -connected but not 2 -connected.
- The cycle graph C_{n} is 2-connected.
- The complete bipartite graph $K_{m, n}$ is $(\min \{m, n\})$-connected.
- The complete graph K_{n} is $(n-1)$-connected

Yes, but where are the polytopes?

Definition

The skeleton of a polytope P is the (abstract) graph G whose vertices are the vertices of P, and the edges are the edges of P.

Yes, but where are the polytopes?

Definition

The skeleton of a polytope P is the (abstract) graph G whose vertices are the vertices of P, and the edges are the edges of P.

Theorem (Steinitz, 1922)
A graph G is the skeleton of a 3-dimensional polytope if and only if G is a 3-connected planar graph.

Yes, but where are the polytopes?

Definition

The skeleton of a polytope P is the (abstract) graph G whose vertices are the vertices of P, and the edges are the edges of P.

Theorem (Steinitz, 1922)
A graph G is the skeleton of a 3-dimensional polytope if and only if G is a 3-connected planar graph.

Theorem (Balinski, 1961)
The skeleton of a d-dimensional polytope is d-connected.

Simplicial complexes

Definition

A simplicial complex Δ on the vertex set $[n]:=\{1, \ldots, n\}$ is a collection of subsets (faces) of $[n]$ such that such that

- $\varnothing \in \Delta$,
- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$.

Simplicial complexes

Definition

A simplicial complex Δ on the vertex set $[n]:=\{1, \ldots, n\}$ is a collection of subsets (faces) of $[n]$ such that such that

- $\varnothing \in \Delta$,
- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$.

$$
\operatorname{dim}(F):=|F|-1, \quad \operatorname{dim}(\Delta):=\max _{F \in \Delta} \operatorname{dim}(F)
$$

Simplicial complexes

Definition

A simplicial complex Δ on the vertex set $[n]:=\{1, \ldots, n\}$ is a collection of subsets (faces) of $[n]$ such that such that

- $\varnothing \in \Delta$,
- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$.

$$
\operatorname{dim}(F):=|F|-1, \quad \operatorname{dim}(\Delta):=\max _{F \in \Delta} \operatorname{dim}(F)
$$

Simplicial complexes

Definition

A simplicial complex Δ on the vertex set $[n]:=\{1, \ldots, n\}$ is a collection of subsets (faces) of $[n]$ such that such that

- $\varnothing \in \Delta$,
- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$.

$$
\operatorname{dim}(F):=|F|-1, \quad \operatorname{dim}(\Delta):=\max _{F \in \Delta} \operatorname{dim}(F)
$$

We call Δ pure if all the maximal faces (facets) have the same dimension.

Simplicial complexes

Definition

A simplicial complex Δ on the vertex set $[n]:=\{1, \ldots, n\}$ is a collection of subsets (faces) of $[n]$ such that such that

- $\varnothing \in \Delta$,
- $F \in \Delta$ and $G \subseteq F \Rightarrow G \in \Delta$.

$$
\operatorname{dim}(F):=|F|-1, \quad \operatorname{dim}(\Delta):=\max _{F \in \Delta} \operatorname{dim}(F)
$$

We call Δ pure if all the maximal faces (facets) have the same dimension.
We can think to a $(d+1)$-dimensional simplicial polytope P as the pure d-dimensional simplicial complex whose faces are the proper faces of P.

Pseudomanifolds

Definition

A pure d-dimensional simplicial complex Δ is a simplicial pseudomanifold if

- every ($d-1$)-dimensional faces is contained in exactly two facets,
- Δ is strongly connected, i.e. it is possible to move between every pair of facets without touching any face of dimension $\leq d-2$,

Pseudomanifolds

Definition

A pure d-dimensional simplicial complex Δ is a simplicial pseudomanifold if

- every ($d-1$)-dimensional faces is contained in exactly two facets,
- Δ is strongly connected, i.e. it is possible to move between every pair of facets without touching any face of dimension $\leq d-2$,

Theorem (Barnette, 1982)
The skeleton of a d-dimensional simplicial pseudomanifold is ($d+1$)-connected.

Flagness

A minimal nonface F of a simplicial complex Δ is a subset of $[n]$ such that F is not a face of Δ but all the proper faces of F are in Δ.

Flagness

A minimal nonface F of a simplicial complex Δ is a subset of $[n]$ such that F is not a face of Δ but all the proper faces of F are in Δ.

Definition

A simplicial complex Δ is flag if all the minimal nonfaces of Δ are 1-dimensional.

flag

not flag

Flagness

A minimal nonface F of a simplicial complex Δ is a subset of $[n]$ such that F is not a face of Δ but all the proper faces of F are in Δ.
Definition
A simplicial complex Δ is flag if all the minimal nonfaces of Δ are 1-dimensional.

flag

not flag

Theorem (Athanasiadis, 2011)
The skeleton of a flag simplicial d-pseudomanifold is $2 d$-connected.

Flagness

A minimal nonface F of a simplicial complex Δ is a subset of $[n]$ such that F is not a face of Δ but all the proper faces of F are in Δ.

Definition

A simplicial complex Δ is flag if all the minimal nonfaces of Δ are 1-dimensional.

flag

not flag

Theorem (Athanasiadis, 2011)
The skeleton of a flag simplicial d-pseudomanifold is $2 d$-connected.
Goal: Prove (and maybe improve) the results by Barnette and Athanasiadis.

Let's use commutative algebra!

Let Δ be a simplicial complex on n vertices.
Let \mathbb{k} be any field and S the polynomial ring $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.

Let's use commutative algebra!

Let Δ be a simplicial complex on n vertices.
Let \mathbb{k} be any field and S the polynomial ring $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.
Definition
The Stanley-Reisner ring $\mathbb{k}[\Delta]$ associated to Δ is the quotient $\mathbb{k}[\Delta]=S / I_{\Delta}$, where

$$
I_{\Delta}=\left(x_{i_{1}} \cdots x_{i_{s}} \mid\left\{i_{1}, \ldots, i_{s}\right\} \notin \Delta\right) \subset S .
$$

Let's use commutative algebra!

Let Δ be a simplicial complex on n vertices.
Let \mathbb{k} be any field and S the polynomial ring $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.
Definition
The Stanley-Reisner ring $\mathbb{k}[\Delta]$ associated to Δ is the quotient $\mathbb{k}[\Delta]=S / I_{\Delta}$, where

$$
I_{\Delta}=\left(x_{i_{1}} \cdots x_{i_{s}} \mid\left\{i_{1}, \ldots, i_{s}\right\} \notin \Delta\right) \subset S .
$$

Example: Let $S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$

Let's use commutative algebra!

Let Δ be a simplicial complex on n vertices.
Let \mathbb{k} be any field and S the polynomial ring $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.

Definition

The Stanley-Reisner ring $\mathbb{k}[\Delta]$ associated to Δ is the quotient $\mathbb{k}_{k}[\Delta]=S / I_{\Delta}$, where

$$
I_{\Delta}=\left(x_{i_{1}} \cdots x_{i_{s}} \mid\left\{i_{1}, \ldots, i_{s}\right\} \notin \Delta\right) \subset S .
$$

Example: Let $S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$

$$
I_{\Delta}=\left(x_{2} x_{3} x_{4},\right.
$$

Let's use commutative algebra!

Let Δ be a simplicial complex on n vertices.
Let \mathbb{k} be any field and S the polynomial ring $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.

Definition

The Stanley-Reisner ring $\mathbb{k}[\Delta]$ associated to Δ is the quotient $\mathbb{k}_{k}[\Delta]=S / I_{\Delta}$, where

$$
I_{\Delta}=\left(x_{i_{1}} \cdots x_{i_{s}} \mid\left\{i_{1}, \ldots, i_{s}\right\} \notin \Delta\right) \subset S .
$$

Example: Let $S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$

Let's use commutative algebra!

Let Δ be a simplicial complex on n vertices.
Let \mathbb{k} be any field and S the polynomial ring $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.

Definition

The Stanley-Reisner ring $\mathbb{k}[\Delta]$ associated to Δ is the quotient $\mathbb{k}[\Delta]=S / I_{\Delta}$, where

$$
I_{\Delta}=\left(x_{i_{1}} \cdots x_{i_{s}}\left\{\left\{i_{1}, \ldots, i_{s}\right\} \notin \Delta\right) \subset S .\right.
$$

Example: Let $S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$

$$
I_{\Delta}=\left(x_{2} x_{3} x_{4}, x_{1} x_{4}\right)
$$

It is enough to use the minimal nonfaces.

Let's do algebra: free resolution

Let M be a finitely generated graded S-module. Hilbert's Syzygy Theorem grants the existence of a minimal graded free resolution of M, i.e. a chain complex \mathbf{F} of graduated free modules of minimal rank with degree-preserving maps such that $\mathbf{F} \rightarrow M \rightarrow 0$ is exact.

$$
0 \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{s, j}} \xrightarrow{\phi_{s}} \cdots \xrightarrow{\phi_{2}} \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{1, j}} \xrightarrow{\phi_{1}} \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{0, j}} \rightarrow 0
$$

where the shifts j are chosen to let the ϕ_{i} preserve the degree.

Let's do algebra: free resolution

Let M be a finitely generated graded S-module. Hilbert's Syzygy Theorem grants the existence of a minimal graded free resolution of M, i.e. a chain complex \mathbf{F} of graduated free modules of minimal rank with degree-preserving maps such that $\mathbf{F} \rightarrow M \rightarrow 0$ is exact.

$$
0 \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{s, j}} \xrightarrow{\phi_{s}} \cdots \xrightarrow{\phi_{2}} \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{1, j}} \xrightarrow{\phi_{1}} \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{0, j}} \rightarrow 0
$$

where the shifts j are chosen to let the ϕ_{i} preserve the degree.
The exponents $\beta_{i, j}$ are called Betti numbers.

Let's do algebra: free resolution

Let M be a finitely generated graded S-module. Hilbert's Syzygy Theorem grants the existence of a minimal graded free resolution of M, i.e. a chain complex \mathbf{F} of graduated free modules of minimal rank with degree-preserving maps such that $\mathbf{F} \rightarrow M \rightarrow 0$ is exact.

$$
0 \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{s, j}} \xrightarrow{\phi_{s}} \cdots \xrightarrow{\phi_{2}} \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{1, j}} \xrightarrow{\phi_{1}} \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{0, j}} \rightarrow 0
$$

where the shifts j are chosen to let the ϕ_{i} preserve the degree.
The exponents $\beta_{i, j}$ are called Betti numbers.
We store the Betti numbers in the Betti table

$$
\beta(M)=\left[\begin{array}{ccccc}
\beta_{0,0} & \beta_{1,1} & \beta_{2,2} & \cdots & \beta_{s, s} \\
\beta_{0,1} & \beta_{1,2} & \beta_{2,3} & \cdots & \beta_{s, s+1} \\
\beta_{0,2} & \beta_{1,3} & \beta_{2,4} & \cdots & \beta_{s, s+2} \\
\vdots & \vdots & \vdots & & \vdots
\end{array}\right]
$$

Let's do algebra: free resolution

Let M be a finitely generated graded S-module. Hilbert's Syzygy Theorem grants the existence of a minimal graded free resolution of M, i.e. a chain complex \mathbf{F} of graduated free modules of minimal rank with degree-preserving maps such that $\mathbf{F} \rightarrow M \rightarrow 0$ is exact.

$$
0 \rightarrow \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{s, j}} \xrightarrow{\phi_{s}} \cdots \xrightarrow{\phi_{2}} \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{1, j}} \xrightarrow{\phi_{1}} \bigoplus_{j \in \mathbb{N}} S(-j)^{\beta_{0, j}} \rightarrow 0
$$

where the shifts j are chosen to let the ϕ_{i} preserve the degree.
The exponents $\beta_{i, j}$ are called Betti numbers.
We store the Betti numbers in the Betti table

$$
\beta(M)=\left[\begin{array}{ccccc}
\beta_{0,0} & \beta_{1,1} & \beta_{2,2} & \cdots & \beta_{s, s} \\
\beta_{0,1} & \beta_{1,2} & \beta_{2,3} & \cdots & \beta_{s, s+1} \\
\beta_{0,2} & \beta_{1,3} & \beta_{2,4} & \cdots & \beta_{s, s+2} \\
\vdots & \vdots & \vdots & & \vdots
\end{array}\right]
$$

$\operatorname{projdim}(M)=\#$ columns of $\beta(M)-1 \quad \operatorname{reg}(M)=\#$ rows of $\beta(M)$

Hochster Formula

Hochster Formula

Theorem (Hochster, 1977)
The Betti numbers of $\mathbb{k}[\Delta]$ can be calculated studying the homology of
Δ :

$$
\beta_{i, j}(\mathbb{k}[\Delta])=\sum_{\substack{T \subseteq[n] \\|T|=j}} \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{j-i-1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right)
$$

- The reduced homology $\widetilde{H}_{i}(\cdot ; \mathbb{k})$ is like the usual homology, but in degree 0 it "counts" the connected components minus one.
- $\left.\Delta\right|_{T}$ denotes the restriction of Δ to T.

Example: the algebraic way

Example: the algebraic way

Example: the algebraic way

$$
I_{\Delta}=\left(x_{1} x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}\right)
$$

Example: the algebraic way

$$
I_{\Delta}=\left(x_{1} x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}\right)
$$

$$
\beta(\mathbb{k}[\Delta])=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Example: the combinatorial way

$$
\beta_{i, j}(\mathbb{k}[\Delta])=\sum_{\substack{T \subseteq[n] \\|T|=j}} \operatorname{dim}_{k} \widetilde{H}_{j-i-1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right)
$$

Example: the combinatorial way

$$
\begin{aligned}
\beta_{i, j}(\mathbb{k}[\Delta]) & =\sum_{\substack{T \subseteq[n] \\
|T|=j}} \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{j-i-1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right) \\
I_{\Delta} & =\left(x_{1} x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}\right)
\end{aligned}
$$

Example: the combinatorial way

$$
\begin{gathered}
\beta_{i, j}(\mathbb{k}[\Delta])=\sum_{\substack{T \subseteq[n] \\
|T|=j}} \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{j-i-1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right) . \\
I_{\Delta}=\left(x_{1} x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}\right) \\
\beta(\mathbb{k}[\Delta])=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & ? & ? \\
0 & ? & ?
\end{array}\right]
\end{gathered}
$$

Example: the combinatorial way

$$
\begin{aligned}
\beta_{i, j}(\mathbb{k}[\Delta]) & =\sum_{\substack{T \subseteq[n] \\
|T|=j}} \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{j-i-1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right) \\
I_{\Delta} & =\left(x_{1} x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}\right)
\end{aligned}
$$

$$
T=\{1,2,3\} \Longrightarrow \operatorname{dim}_{\mathfrak{k}} \widetilde{H}_{1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right)=1 \Longrightarrow \beta_{1,3} \rightarrow+1
$$

$$
\beta(\mathbb{k}[\Delta])=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & ? & ? \\
0 & 1 & ?
\end{array}\right]
$$

Example: the combinatorial way

$$
\beta_{i, j}(\mathbb{k}[\Delta])=\sum_{\substack{T \subseteq[n] \\|T|=j}} \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{j-i-1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right)
$$

$$
I_{\Delta}=\left(x_{1} x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}\right)
$$

$$
\begin{gathered}
T=\{2,4\} \Longrightarrow \operatorname{dim}_{k} \widetilde{H}_{0}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right)=1 \Longrightarrow \beta_{1,2} \rightarrow+1 \\
\beta(\mathbb{k}[\Delta])=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & ? \\
0 & 1 & ?
\end{array}\right]
\end{gathered}
$$

Example: the combinatorial way

$$
\beta_{i, j}(\mathbb{k}[\Delta])=\sum_{\substack{T \subseteq[n] \\|T|=j}} \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{j-i-1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right)
$$

$$
I_{\Delta}=\left(x_{1} x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}\right)
$$

$$
\begin{gathered}
T=\{3,4\} \Longrightarrow \operatorname{dim}_{k} \widetilde{H}_{0}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right)=1 \Longrightarrow \beta_{1,2} \rightarrow+1 \\
\beta(\mathbb{k}[\Delta])=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & ? \\
0 & 1 & ?
\end{array}\right]
\end{gathered}
$$

Example: the combinatorial way

$$
\begin{aligned}
\beta_{i, j}(\mathbb{k}[\Delta]) & =\sum_{\substack{T \subseteq[n] \\
|T|=j}} \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{j-i-1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right) \\
I_{\Delta} & =\left(x_{1} x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}\right)
\end{aligned}
$$

$$
T=\{1,2,3,4\} \Longrightarrow \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right)=1 \Longrightarrow \beta_{2,4} \rightarrow+1
$$

$$
\beta(\mathbb{k}[\Delta])=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & ? \\
0 & 1 & 1
\end{array}\right]
$$

Example: the combinatorial way

$$
\begin{aligned}
\beta_{i, j}(\mathbb{k}[\Delta]) & =\sum_{\substack{T \subseteq[n] \\
|T|=j}} \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{j-i-1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right) \\
I_{\Delta} & =\left(x_{1} x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}\right)
\end{aligned}
$$

$$
T=\{2,3,4\} \Longrightarrow \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{0}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right)=1 \Longrightarrow \beta_{2,3} \rightarrow+1
$$

$$
\beta(\mathbb{k}[\Delta])=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

The Castelnuovo-Mumford regularity

$$
\begin{gathered}
\operatorname{reg}(\mathbb{k}[\Delta])=\# \text { rows of } \beta(\mathbb{k}[\Delta]) \\
\beta(\mathbb{k}[\Delta])=\left[\begin{array}{ccccc}
\beta_{0,0} & \beta_{1,1} & \beta_{2,2} & \cdots & \beta_{s, s} \\
\beta_{0,1} & \beta_{1,2} & \beta_{2,3} & \cdots & \beta_{s, s+1} \\
\beta_{0,2} & \beta_{1,3} & \beta_{2,4} & \cdots & \beta_{s, s+2} \\
\vdots & \vdots & \vdots & & \vdots
\end{array}\right]
\end{gathered}
$$

The Castelnuovo-Mumford regularity

$$
\begin{gathered}
\operatorname{reg}(\mathbb{k}[\Delta])=\# \text { rows of } \beta(\mathbb{k}[\Delta]) \\
\beta(\mathbb{k}[\Delta])=\left[\begin{array}{ccccc}
\beta_{0,0} & \beta_{1,1} & \beta_{2,2} & \cdots & \beta_{s, s} \\
\beta_{0,1} & \beta_{1,2} & \beta_{2,3} & \cdots & \beta_{s, s+1} \\
\beta_{0,2} & \beta_{1,3} & \beta_{2,4} & \cdots & \beta_{s, s+2} \\
\vdots & \vdots & \vdots & & \vdots
\end{array}\right] \\
\beta_{i, j}(\mathbb{k}[\Delta])=\sum_{\substack{T \subseteq[n] \\
|\bar{T}|=j}} \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{j-i-1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right) .
\end{gathered}
$$

The Castelnuovo-Mumford regularity

$$
\begin{gathered}
\operatorname{reg}(\mathbb{k}[\Delta])=\# \text { rows of } \beta(\mathbb{k}[\Delta]) \\
\beta(\mathbb{k}[\Delta])=\left[\begin{array}{ccccc}
\beta_{0,0} & \beta_{1,1} & \beta_{2,2} & \cdots & \beta_{s, s} \\
\beta_{0,1} & \beta_{1,2} & \beta_{2,3} & \cdots & \beta_{s, s+1} \\
\beta_{0,2} & \beta_{1,3} & \beta_{2,4} & \cdots & \beta_{s, s+2} \\
\vdots & \vdots & \vdots & & \vdots
\end{array}\right] \\
\beta_{i, j}(\mathbb{k}[\Delta])=\sum_{\substack{T \subseteq[n] \\
|T|=j}} \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{j-i-1}(\Delta \mid \tau ; \mathbb{k}) .
\end{gathered}
$$

- In every row the homological degree is fixed.

The Castelnuovo-Mumford regularity

$$
\begin{gathered}
\operatorname{reg}(\mathbb{k}[\Delta])=\# \text { rows of } \beta(\mathbb{k}[\Delta]) \\
\beta(\mathbb{k}[\Delta])=\left[\begin{array}{ccccc}
\beta_{0,0} & \beta_{1,1} & \beta_{2,2} & \cdots & \beta_{s, s} \\
\beta_{0,1} & \beta_{1,2} & \beta_{2,3} & \cdots & \beta_{s, s+1} \\
\beta_{0,2} & \beta_{1,3} & \beta_{2,4} & \cdots & \beta_{s, s+2} \\
\vdots & \vdots & \vdots & & \vdots
\end{array}\right] \\
\beta_{i, j}(\mathbb{k}[\Delta])=\sum_{\substack{T \subseteq[n] \\
|T|=j}} \operatorname{dim}_{\mathrm{k}} \widetilde{H}_{j-i-1}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right) .
\end{gathered}
$$

- In every row the homological degree is fixed.
- The Castelnuovo-Mumford regularity equals the highest homological degree with nontrivial homology.

Lemma
Let Δ be a d-dimensional simplicial pseudomanifold and let $T \subseteq \Delta$ such that $\left.\Delta\right|_{[n] \backslash T}$ is disconnected. Then $\operatorname{reg}\left(\mathbb{k}\left[\left.\Delta\right|_{T}\right]\right) \geq d$.
Proof: use Hochster Formula and Mayer-Vietoris sequence.

Lemma
Let Δ be a d-dimensional simplicial pseudomanifold and let $T \subseteq \Delta$ such that $\left.\Delta\right|_{[n] \backslash T}$ is disconnected. Then $\operatorname{reg}\left(\mathbb{k}\left[\left.\Delta\right|_{T}\right]\right) \geq d$.
Proof: use Hochster Formula and Mayer-Vietoris sequence.

Lemma

Let $I \subseteq S$ a monomial ideal generated by monomials of degree at most s. Then

$$
\operatorname{reg}(S / I) \leq \frac{n(s-1)}{s}
$$

Proof: use Taylor resolution.

Lemma
Let Δ be a d-dimensional simplicial pseudomanifold and let $T \subseteq \Delta$ such that $\left.\Delta\right|_{[n] \backslash T}$ is disconnected. Then $\operatorname{reg}\left(\mathbb{k}\left[\left.\Delta\right|_{T}\right]\right) \geq d$.
Proof: use Hochster Formula and Mayer-Vietoris sequence.

Lemma

Let $I \subseteq S$ a monomial ideal generated by monomials of degree at most s. Then

$$
\operatorname{reg}(S / I) \leq \frac{n(s-1)}{s}
$$

Proof: use Taylor resolution.

Let Δ a d-dimensional pseudomanifold such that $\left.\Delta\right|_{[n] \backslash T}$ is disconnected. Lets $N:=|T|$

$$
\begin{gathered}
\operatorname{reg}\left(\mathbb{k}\left[\left.\Delta\right|_{T}\right]\right) \leq \frac{N(s-1)}{s} \\
N \geq \frac{s}{s-1} \operatorname{reg}\left(\mathbb{k}\left[\left.\Delta\right|_{T}\right]\right) \geq \frac{s d}{s-1}
\end{gathered}
$$

Main theorem

Theorem (B., 2015)
Let Δ be a d-dimensional simplicial pseudomanifold. Let s be the dimension of the largest minimal non-face of Δ. Then the skeleton G_{Δ} of Δ is $\left\lceil\frac{s d}{s-1}\right\rceil$-connected.

Main theorem

Theorem (B., 2015)
Let Δ be a d-dimensional simplicial pseudomanifold. Let s be the dimension of the largest minimal non-face of Δ. Then the skeleton G_{Δ} of Δ is $\left\lceil\frac{s d}{s-1}\right\rceil$-connected. As a corollary we get:

- G_{Δ} is d-connected
- if Δ is flag then G_{Δ} is $2 d$-connected

(Barnette Theorem)
(Athanasiadis Theorem)

Main theorem

Theorem (B., 2015)
Let Δ be a d-dimensional simplicial pseudomanifold. Let s be the dimension of the largest minimal non-face of Δ. Then the skeleton G_{Δ} of Δ is $\left\lceil\frac{s d}{s-1}\right\rceil$-connected.
As a corollary we get:

- G_{Δ} is d-connected
(Barnette Theorem)
- if Δ is flag then G_{Δ} is $2 d$-connected
(Athanasiadis Theorem)

It works under weaker hypotheses: we do not need Δ to be a d-dimensional pseudomanifold, but just to be a vertex minimal d-cycle, i.e. for some field $\mathbb{k}, \widetilde{H}_{d}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right) \neq 0$ if and only if $T=[n]$.

Main theorem

Theorem (B., 2015)
Let Δ be a d-dimensional simplicial pseudomanifold. Let s be the dimension of the largest minimal non-face of Δ. Then the skeleton G_{Δ} of Δ is $\left\lceil\frac{s d}{s-1}\right\rceil$-connected.
As a corollary we get:

- G_{Δ} is d-connected
(Barnette Theorem)
- if Δ is flag then G_{Δ} is $2 d$-connected
(Athanasiadis Theorem)

It works under weaker hypotheses: we do not need Δ to be a d-dimensional pseudomanifold, but just to be a vertex minimal d-cycle, i.e. for some field $\mathbb{k}, \widetilde{H}_{d}\left(\left.\Delta\right|_{T} ; \mathbb{k}\right) \neq 0$ if and only if $T=[n]$.

It is a sharp result (simplicial join are the extremal objects)

We can keep having fun!

Theorem (Dao-Huneke-Schweig, 2013)
Let $I \subseteq S$ a monomial ideal generated in degree 2 such that I is k-step linear. Then

$$
\begin{gathered}
\operatorname{reg}(S / I) \leq \min \left\{\log _{\frac{k+4}{2}}\left(\frac{n-1}{k+1}\right)+2, \log _{\frac{k+4}{2}}\left(\frac{(n-1) \ln \left(\frac{k+4}{2}\right)}{k+1}+\frac{2}{k+4}\right)+2\right\} . \\
\beta(I)=\left[\begin{array}{ccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & \cdots \\
0 & \beta_{1,2} & \beta_{2,3} & \cdots & \beta_{k, k+1} & \beta_{k+1, k+2} & \cdots \\
0 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \beta_{k+1, k+3} & \cdots \\
\vdots & \vdots & & \vdots & \vdots & & \vdots
\end{array}\right]
\end{gathered}
$$

We can keep having fun!

Theorem (Dao-Huneke-Schweig, 2013)

Let $I \subseteq S$ a monomial ideal generated in degree 2 such that I is k-step linear. Then

$$
\begin{gathered}
\operatorname{reg}(S / I) \leq \min \left\{\log _{\frac{k+4}{2}}\left(\frac{n-1}{k+1}\right)+2, \log _{\frac{k+4}{2}}\left(\frac{(n-1) \ln \left(\frac{k+4}{2}\right)}{k+1}+\frac{2}{k+4}\right)+2\right\} . \\
\beta(I)=\left[\begin{array}{ccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & \cdots \\
0 & \beta_{1,2} & \beta_{2,3} & \cdots & \beta_{k, k+1} & \beta_{k+1, k+2} & \cdots \\
0 & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \beta_{k+1, k+3} & \cdots \\
\vdots & \vdots & & \vdots & \vdots & & \vdots
\end{array}\right]
\end{gathered}
$$

The bold zeroes corresponds (by Hochster Formula) to homological degree one \rightarrow We are just counting cycles!
Theorem (B., 2015)
Let Δ be a d-dimensional simplicial pseudomanifold such that its skeleton G_{Δ} has no induced k-cycles for $k \geq 4$. Then G_{Δ} is $\left\lceil\left(\frac{k}{2}\right)^{d-1}\right\rceil$-connected.

Find your own result on connectivity

- Take a good bound for the regularity

Find your own result on connectivity

- Take a good bound for the regularity
- Translate the hypothesis into combinatorics

Find your own result on connectivity

- Take a good bound for the regularity
- Translate the hypothesis into combinatorics
- Now you have your result on connectivity!

Find your own result on connectivity

- Take a good bound for the regularity
- Translate the hypothesis into combinatorics
- Now you have your result on connectivity!
- cite my paper!!

Thank you!

