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Summary: "In this note we generalize and unify two results on connectivity of graphs: one by Balinsky
and Barnette, one by Athanasiadis. This is done through a simple proof using commutative algebra tools.
In particular we use bounds for the Castelnuovo-Mumford regularity of their Stanley-Reisner rings. As a
result, if A is a simplicial d-pseudomanifold and s is the largest integer such that A has a missing face of
size s, then the 1-skeleton of A is [@] -connected. We also show that this value is tight."
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The notion of connectivity

Definition
We say that a graph G having more than m vertices is m-connected
whenever it is impossible to disconnect it by removing fewer than m

vertices together with their incident edges.
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The notion of connectivity

Definition

We say that a graph G having more than m vertices is m-connected
whenever it is impossible to disconnect it by removing fewer than m
vertices together with their incident edges.

Facts:
» Any connected graph G is 1-connected.
» Any tree T is 1-connected but not 2-connected.
» The cycle graph C, is 2-connected.
» The complete bipartite graph K, » is (min{m, n})-connected.
» The complete graph K, is (n — 1)-connected
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Yes, but where are the polytopes?

Definition
The skeleton of a polytope P is the (abstract) graph G whose vertices
are the vertices of P, and the edges are the edges of P.
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Yes, but where are the polytopes?

Definition
The skeleton of a polytope P is the (abstract) graph G whose vertices
are the vertices of P, and the edges are the edges of P.

Theorem (Steinitz, 1922)

A graph G is the skeleton of a 3-dimensional polytope if and only if G is
a 3-connected planar graph.

Theorem (Balinski, 1961)

The skeleton of a d-dimensional polytope is d-connected.
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Simplicial complexes

Definition
A simplicial complex A on the vertex set [n] := {1,...,n} is a collection
of subsets (faces) of [n] such that such that

> oc A,
» FeAand GC F = GeA.
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Simplicial complexes

Definition
A simplicial complex A on the vertex set [n] := {1,...,n} is a collection
of subsets (faces) of [n] such that such that

> oc A,
» FeAand GC F = GeA.

dim(F) = |F| -1, dim(A) := maxdim(F)

FeA
4
D—. 1

3

We call A pure if all the maximal faces (facets) have the same
dimension.
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Simplicial complexes

Definition
A simplicial complex A on the vertex set [n] := {1,...,n} is a collection
of subsets (faces) of [n] such that such that

> g e,

» FeAand GC F = GeA.

dim(F) = |F| -1, dim(A) := maxdim(F)

FeA
4
D—. 1

3

We call A pure if all the maximal faces (facets) have the same
dimension.

We can think to a (d 4 1)-dimensional simplicial polytope P as the pure
d-dimensional simplicial complex whose faces are the proper faces of P.
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Pseudomanifolds

Definition
A pure d-dimensional simplicial complex A is a simplicial
pseudomanifold if

» every (d — 1)-dimensional faces is contained in exactly two facets,

> A is strongly connected, i.e. it is possible to move between every
pair of facets without touching any face of dimension < d — 2,
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Pseudomanifolds

Definition
A pure d-dimensional simplicial complex A is a simplicial
pseudomanifold if
» every (d — 1)-dimensional faces is contained in exactly two facets,
> A is strongly connected, i.e. it is possible to move between every
pair of facets without touching any face of dimension < d — 2,

Theorem (Barnette, 1982)

The skeleton of a d-dimensional simplicial pseudomanifold is
(d + 1)-connected.
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Flagness

A minimal nonface F of a simplicial complex A is a subset of [n] such
that F is not a face of A but all the proper faces of F are in A.
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A simplicial complex A is flag if all the minimal nonfaces of A are
1-dimensional.

2 2
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Flagness

A minimal nonface F of a simplicial complex A is a subset of [n] such
that F is not a face of A but all the proper faces of F are in A.

Definition

A simplicial complex A is flag if all the minimal nonfaces of A are
1-dimensional.

2 2

flag not flag
Theorem (Athanasiadis, 2011)

The skeleton of a flag simplicial d-pseudomanifold is 2d-connected.
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Flagness

A minimal nonface F of a simplicial complex A is a subset of [n] such
that F is not a face of A but all the proper faces of F are in A.
Definition

A simplicial complex A is flag if all the minimal nonfaces of A are
1-dimensional.

2 2

flag not flag
Theorem (Athanasiadis, 2011)

The skeleton of a flag simplicial d-pseudomanifold is 2d-connected.

Goal: Prove (and maybe improve) the results by Barnette and
Athanasiadis.
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Let's use commutative algebral

Let A be a simplicial complex on n vertices.
Let k be any field and S the polynomial ring S = K[x1, ..., x,].
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k[A] = S/Ia, where
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Let's use commutative algebral

Let A be a simplicial complex on n vertices.
Let k be any field and S the polynomial ring S = K[x1, ..., x,].

Definition
The Stanley-Reisner ring k[A] associated to A is the quotient
k[A] = S/Ia, where

In=(xx|{it,....is} ¢ A) C S.

Example: Let S = k[xy, x2, X3, X4]

N

4 2
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Let's use commutative algebral
Let A be a simplicial complex on n vertices.
Let k be any field and S the polynomial ring S = K[x1, ..., x,].

Definition
The Stanley-Reisner ring k[A] associated to A is the quotient
Kk[A] = 5/Ia, where

In = (X,‘1 "'Xis|{i1,...,i5} ¢ A) CS.
Example: Let S = k[xq, x2, X3, Xq]

3

VAN

4 2

In = (x2x3x4,
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Let's use commutative algebral
Let A be a simplicial complex on n vertices.
Let k be any field and S the polynomial ring S = K[x1, ..., x,].

Definition
The Stanley-Reisner ring k[A] associated to A is the quotient
Kk[A] = 5/Ia, where

In = (X,‘1 "'Xis|{i1,...,i5} ¢ A) CS.
Example: Let S = k[xq, x2, X3, Xq]

1

o

4
In = (x2x3x4, X1Xa)
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Let's use commutative algebral
Let A be a simplicial complex on n vertices.
Let k be any field and S the polynomial ring S = K[x1, ..., x,].

Definition
The Stanley-Reisner ring k[A] associated to A is the quotient
Kk[A] = 5/Ia, where

Ian = (X,‘1 .- 'Xisl{ila .. .,fs} ¢ A) CS.
Example: Let S = k[xq, x2, X3, Xq]
4 2

In = (xoXx3xa, x1%X)

It is enough to use the minimal nonfaces.
8/17



Let's do algebra: free resolution

Let M be a finitely generated graded S-module. Hilbert's Syzygy
Theorem grants the existence of a minimal graded free resolution of
M, i.e. a chain complex F of graduated free modules of minimal rank
with degree-preserving maps such that F — M — 0 is exact.

0= PSP 25 2 @PS(—) 2 @PS(—j) =0

JeN JjeEN JjeN

where the shifts j are chosen to let the ¢; preserve the degree.
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where the shifts j are chosen to let the ¢; preserve the degree.
The exponents j3; ; are called Betti numbers.
We store the Betti numbers in the Betti table
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Let's do algebra: free resolution

Let M be a finitely generated graded S-module. Hilbert's Syzygy
Theorem grants the existence of a minimal graded free resolution of
M, i.e. a chain complex F of graduated free modules of minimal rank
with degree-preserving maps such that F — M — 0 is exact.

0= PSP 25 2 @PS(—) 2 @PS(—j) =0
JEN JEN JEN

where the shifts j are chosen to let the ¢; preserve the degree.
The exponents j3; ; are called Betti numbers.
We store the Betti numbers in the Betti table

Boo Pii Boz2 - Bss
Bo1 Bi2 P2z 0 Bssti
B(M) = Bo2 B3z Poa - Bsst2

projdim(M) = # columns of S(M) — 1 reg(M) = # rows of 3(M)
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Hochster Formula
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Hochster Formula

Theorem (Hochster, 1977)

The Betti numbers of k[A] can be calculated studying the homology of
A'.
Bij(k[A]) = Z dimy Hi—i—1(Al7; k).

» The reduced homology Fl,-( - ; k) is like the usual homology, but in
degree 0 it “counts” the connected components minus one.

» Alr denotes the restriction of A to T.
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Example: the algebraic way

AV
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Example: the algebraic way

3 4

In = (x1%2X3, X2Xa, X3X4)
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Example: the algebraic way

3 4

2 1

In = (x1%2X3, X2Xa, X3X4)

00— S(=3)®S(—4) —2 S(—3)® S(~-2)> —%» 5§~ K[A] 0
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Example: the algebraic way

In = (x1%2X3, X2Xa, X3X4)

0 —— S(-3)® S(—4) 2 5(—3)@5y S %4 K[A] 0
ker ¢1 / In
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Example: the combinatorial way

Bij(k[A]) = Y dimy Hii_1 (Al k).
TC[n]
[TI=/
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Example: the combinatorial way

BiyK[A) = > dimy Hi_i1(A] 7 k).
TCl[n]
[T|=j

In = (x1%2x3, X2Xa, X3X4)

pk[A]) =

O O
~N N O

~ N O
—_ 1
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Example: the combinatorial way

Bii(k[A]) = dim Hj—i—1(A|; k).
TC[n]
| T|=j

In = (X1X0X3, X2X4, X3X4)

2 1
T ={1,2,3} = dimg Hy(A|7;k) =1 = B13 — +1

100
Bk[A)=1|0 ? ? ]
017
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Example: the combinatorial way

Bii(k[A]) = dim Hj—i—1(A|; k).
TC[n]
| T|=j

In = (X1X0X3, X2X4, X3X4)

2
T ={2,4} = dimi Ho(A|7:k) =1 = Byp — +1

100
Bk[A)=| 0 1 ? ]
017
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Example: the combinatorial way

Bii(k[A]) = dim Hj—i—1(A|; k).
TC[n]
| T|=j

In = (X1X0X3, X2X4, X3X4)

T = {3,4} = dimi Ho(A|7:k) =1 = By — +1

100
pKk[A]) = 02?]
01 7
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Example: the combinatorial way

Bii(k[A]) = dim Hj—i—1(A|; k).
TC[n]
| T|=j

In = (X1X0X3, X2X4, X3X4)

2 1

T={1,2,3,4} = dimy Hi(A|7;k) =1 = Bo4 — +1

1 00
Ban= |0 2 2
0 1 1
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Example: the combinatorial way

Bii(K[A]) = Y dimi Hj—ioa (A7 k),
TC[n]
ITI=j

In = (x1%2x3, X2Xa, X3Xa)

2

T = {2 3 4} — dimy, Ho(A|T

A(K[A]) =
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The Castelnuovo-Mumford regularity

reg(k[A]) = # rows of G(k[A])

Boo Bii P22 0 PBsgs
Bo1 Bi2 P2z 0 Bssti
A(K[A]) = Bo2 B3 P24 -0 Bssi2
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The Castelnuovo-Mumford regularity

reg(k[A]) = # rows of G(k[A])

Boo Bii P22 0 PBsgs
Bo1 Bi2 P2z 0 Bssti
A(K[A]) = Bo2 P13 Poa - Bsst2

Bij(k[A]) = Y dimy Hii_1 (Al k).
TCln]
| T|=j

» In every row the homological degree is fixed.
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The Castelnuovo-Mumford regularity

reg(k[A]) = # rows of G(k[A])

Boo Bii P22 0 PBsgs
Bo1 Bi2 P2z 0 Bssti
A(K[A]) = Bo2 P13 Poa - Bsst2

Bij(k[A]) = Y dimy Hii_1 (Al k).
TC[n]
ITI=i

» In every row the homological degree is fixed.

» The Castelnuovo-Mumford regularity equals the highest homological
degree with nontrivial homology.

13/17



Lemma
Let A be a d-dimensional simplicial pseudomanifold and let T C A such
that Al 7 is disconnected. Then reg(k[A[7]) > d.

Proof: use Hochster Formula and Mayer-Vietoris sequence.
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Lemma
Let A be a d-dimensional simplicial pseudomanifold and let T C A such
that Al 7 is disconnected. Then reg(k[A[7]) > d.

Proof: use Hochster Formula and Mayer-Vietoris sequence.

Lemma

Let | €S a monomial ideal generated by monomials of degree at most s.

Then )
rea(s/1) < "2,

Proof: use Taylor resolution.

Let A a d-dimensional pseudomanifold such that A|, 7 is disconnected.

Lets N .= |T| NGs — 1)
5§ —

reg(K[Al7]) < =

s sd
>
—reg(K[Al7]) >

N >
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Main theorem

Theorem (B., 2015)

Let A be a d-dimensional simplicial pseudomanifold. Let s be the
dimension of the largest minimal non-face of A. Then the skeleton Ga of

A is [ 227 -connected.
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It works under weaker hypotheses: we do not need A to be a
d-dimensional pseudomanifold, but just to be a vertex minimal d-cycle,
i.e. for some field k, Hy(A|7;k) # 0 if and only if T = [n].
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Main theorem

Theorem (B., 2015)

Let A be a d-dimensional simplicial pseudomanifold. Let s be the
dimension of the largest minimal non-face of A. Then the skeleton Ga of

A is [ 227 -connected.

As a corollary we get:
» Gp is d-connected (Barnette Theorem)
» if A is flag then Gp is 2d-connected (Athanasiadis Theorem)

It works under weaker hypotheses: we do not need A to be a
d-dimensional pseudomanifold, but just to be a vertex minimal d-cycle,
i.e. for some field k, Hy(A|7;k) # 0 if and only if T = [n].

It is a sharp result (simplicial join are the extremal objects)
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We can keep having fun!

Theorem (Dao-Huneke-Schweig, 2013)

Let | C'S a monomial ideal generated in degree 2 such that | is k-step
linear. Then

. n—1 (n—=1)In(*3*) 2
reg(S/1) < mln{logk# (m> +2,Iog# ( k+1 + k+4 +20.

1 0 0 . 0 0
0 Bio P2z - Brksr  Brtik+2
B =1 o

0 0o - 0 Br+1k+3 0 |
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We can keep having fun!
Theorem (Dao-Huneke-Schweig, 2013)

Let | C'S a monomial ideal generated in degree 2 such that | is k-step
linear. Then

reg(S/I)gmin{Iogkf (Z_1>+2,Iog# ((n_l)ln(k?‘)_i_ 2 )+2}.

+1 k+1 k+4

1 0 0 cee 0 0
0 B2 Po3z - Biksr Brtik+2
B =1 o

0 0o - 0 Br+1k+3 0 |

The bold zeroes corresponds (by Hochster Formula) to homological
degree one — We are just counting cycles!

Theorem (B., 2015)

Let A be a d-dimensional simplicial pseudomanifold such that its skeleton
Ga has no induced k-cycles for k > 4. Then Gp is [(%)91]-connected.
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Find your own result on connectivity

» Take a good bound for the regularity
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Find your own result on connectivity

» Take a good bound for the regularity
» Translate the hypothesis into combinatorics
» Now you have your result on connectivity!

> Cite my paper!!

Thank you!
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