・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Lattice 3-polytopes: quantum jumps and interior points

Mónica Blanco

July 31, 2018

Summer Workshop on Lattice Polytopes University of Osaka, Japan

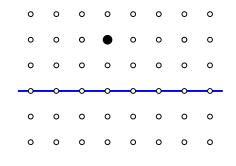
LATTICE DISTANCE(s)

Lattice distance between a *point* to a *hyperplane*

- Our ambient lattice will always be \mathbb{Z}^d .
- Lattice polytope $P := \text{convex hull of a finite set of points in } \mathbb{Z}^d$.
- In this talk, P is always a lattice polytope in \mathbb{R}^d .
- $f : \mathbb{R}^d \to \mathbb{R}$ affine *integer* functional. It is primitive if $f(\mathbb{Z}^d) = \mathbb{Z}$.
- The <u>lattice distance</u> between point x ∈ Z^d and lattice hyperplane H ⊂ ℝ^d is

 $\mathsf{dist}(x,H) = |f(x)|$

where f is a primitive functional with f(H) = 0.



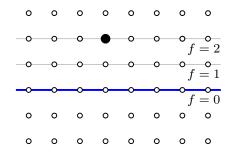
イロト 不得 トイヨト イヨト ヨー ろくで

Lattice distance between a *point* to a *hyperplane*

- Our ambient lattice will always be \mathbb{Z}^d .
- Lattice polytope $P := \text{convex hull of a finite set of points in } \mathbb{Z}^d$.
- In this talk, P is always a lattice polytope in \mathbb{R}^d .
- $f : \mathbb{R}^d \to \mathbb{R}$ affine *integer* functional. It is primitive if $f(\mathbb{Z}^d) = \mathbb{Z}$.
- The <u>lattice distance</u> between point x ∈ Z^d and lattice hyperplane H ⊂ R^d is

 $\mathsf{dist}(x,H) = |f(x)|$

where f is a primitive functional with f(H) = 0.



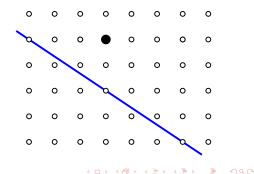
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Lattice distance between a *point* to a *hyperplane*

- Our ambient lattice will always be \mathbb{Z}^d .
- Lattice polytope $P := \text{convex hull of a finite set of points in } \mathbb{Z}^d$.
- In this talk, P is always a lattice polytope in \mathbb{R}^d .
- $f : \mathbb{R}^d \to \mathbb{R}$ affine *integer* functional. It is primitive if $f(\mathbb{Z}^d) = \mathbb{Z}$.
- The <u>lattice distance</u> between point x ∈ Z^d and lattice hyperplane H ⊂ ℝ^d is

 $\operatorname{dist}(x,H) = |f(x)|$

where f is a primitive functional with f(H) = 0.



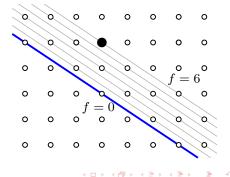
э

Lattice distance between a *point* to a *hyperplane*

- Our ambient lattice will always be \mathbb{Z}^d .
- Lattice polytope $P := \text{convex hull of a finite set of points in } \mathbb{Z}^d$.
- In this talk, P is always a lattice polytope in \mathbb{R}^d .
- $f : \mathbb{R}^d \to \mathbb{R}$ affine integer functional. It is primitive if $f(\mathbb{Z}^d) = \mathbb{Z}$.
- The lattice distance between point $x \in \mathbb{Z}^d$ and lattice hyperplane $H \subset \mathbb{R}^d$ is

dist(x, H) = |f(x)|

where f is a primitive functional with f(H) = 0.

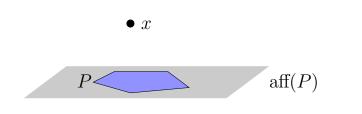


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Distances between ... and ...

• point and (d-1)-dim polytope: $P \subset \mathbb{R}^d$, dim(P) = d-1; $x \in \mathbb{Z}^d \setminus aff(P)$:

$$dist(x, P) := dist(x, aff(P))$$



Distances between ... and ...

• lattice hyperplanes: $H_1, H_2 \subset \mathbb{R}^d$ lattice hyperplanes, parallel $(H_1 \cap H_2 = \emptyset)$:

$$dist(H_1, H_2) := dist(x, H_2)$$
, for any $x \in H_1$



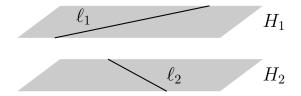
▲ロト ▲理 ト ▲ヨト ▲ヨト ヨー シタペ

Distances between ... and ...

• lattice lines in \mathbb{R}^3 : let $\ell_1, \ell_2 \subset \mathbb{R}^3$ lattice lines s. t. aff(conv($\ell_1 \cup \ell_2$)) = \mathbb{R}^3 :

$$\mathsf{dist}(\ell_1,\ell_2):=\mathsf{dist}(H_1,H_2)$$

where H_1, H_2 are the unique pair of <u>parallel</u> lattice hyperplanes such that $\ell_i \subset H_i$.

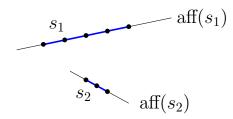


▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Distances between ... and ...

• lattice segments in \mathbb{R}^3 : let $s_1, s_2 \subset \mathbb{R}^3$ lattice segments s. t. aff $(\operatorname{conv}(s_1 \cup s_2)) = \mathbb{R}^3$:

 $\mathsf{dist}(s_1, s_2) := \mathsf{dist}\left(\mathsf{aff}(s_1), \mathsf{aff}(s_2)\right)$



▲ロト ▲理 ト ▲ヨト ▲ヨト ヨー シタペ

Distances between ... and ...

- point and (d-1)-dim polytope
- lattice hyperplanes
- \bullet lattice lines in \mathbb{R}^3
- \bullet lattice segments in \mathbb{R}^3
- . . .

In general, if $R := \operatorname{conv}(P \cup Q) \subset \mathbb{R}^d$ is not full-dim, the distance is measured in the lattice $\operatorname{aff}(R) \cap \mathbb{Z}^d \cong \mathbb{Z}^{\dim(R)}$

 $P \subset \mathbb{R}^d \text{ full-dimensional, } x \in \mathbb{Z}^d$ $x \notin P \Longrightarrow \operatorname{dist}(x, P) ???$

Definition

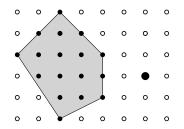
F facet of P is **visible** from x if aff(F) strictly separates x from P.

We consider two different *distances*:

• The minimum facet distance

 $d_x(P) := \min \{ dist(x, aff(F)) \mid F \text{ facet visible from } x \}$

 The maximum facet distance D_x(P) := max {dist(x, aff(F)) | F facet visible from x} In example, d_x(P) = 1 and D_x(P) = 2.



 $P \subset \mathbb{R}^d \text{ full-dimensional, } x \in \mathbb{Z}^d$ $x \notin P \Longrightarrow \operatorname{dist}(x, P) ???$

Definition

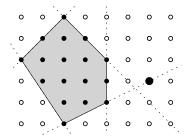
F facet of P is **visible** from x if aff(F) strictly separates x from P.

We consider two different *distances*:

• The *minimum facet distance*

 $d_x(P) := \min \{ dist(x, aff(F)) \mid F \text{ facet visible from } x \}$

 The maximum facet distance D_x(P) := max {dist(x, aff(F)) | F facet visible from x} In example, d_x(P) = 1 and D_x(P) = 2.



 $P \subset \mathbb{R}^d \text{ full-dimensional, } x \in \mathbb{Z}^d$ $x \notin P \Longrightarrow \operatorname{dist}(x, P) ???$

Definition

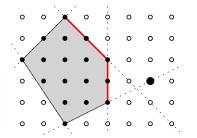
F facet of P is **visible** from x if aff(F) strictly separates x from P.

We consider two different *distances*:

• The *minimum facet distance*

 $d_x(P) := \min \{ dist(x, aff(F)) \mid F \text{ facet visible from } x \}$

 The maximum facet distance D_x(P) := max {dist(x, aff(F)) | F facet visible from x} In example, d_x(P) = 1 and D_x(P) = 2.



 $P \subset \mathbb{R}^d \text{ full-dimensional, } x \in \mathbb{Z}^d$ $x \notin P \Longrightarrow \operatorname{dist}(x, P) ???$

Definition

F facet of P is **visible** from x if aff(F) strictly separates x from P.

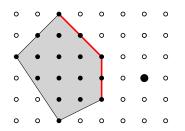
We consider two different *distances*:

• The *minimum facet distance*

 $d_x(P) := \min \{ dist(x, aff(F)) \mid F \text{ facet visible from } x \}$

The maximum facet distance
 D_x(P) := max {dist(x, aff(F)) | F facet visible from x}
 e example d (P) = 1 and D (P) = 2

In example, $d_x(P) = 1$ and $D_x(P) = 2$.



 $P \subset \mathbb{R}^d \text{ full-dimensional, } x \in \mathbb{Z}^d$ $x \notin P \Longrightarrow \operatorname{dist}(x, P) ???$

Definition

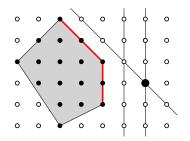
F facet of P is **visible** from x if aff(F) strictly separates x from P.

We consider two different *distances*:

• The minimum facet distance

 $d_x(P) := \min \{ dist(x, aff(F)) \mid F \text{ facet visible from } x \}$

 The maximum facet distance D_x(P) := max {dist(x, aff(F)) | F facet visible from x} In example, d_x(P) = 1 and D_x(P) = 2.



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Quantum jumps and unions

Quantum jumps & unions

Definition

P ⊂ ℝ^d not necessarilly full-dimensional, *x* ∈ ℤ^d. We say that the pair (*P*, *x*) is a quantum jump if

$$\operatorname{conv}(P \cup \{x\}) \cap \mathbb{Z}^d = (P \cap \mathbb{Z}^d) \cup \{x\}$$

• $P, Q \subset \mathbb{R}^d$ not necessarilly full-dimensional. We say that the pair (P, Q) is a **quantum union** if

$$\operatorname{conv}(P \cup Q) \cap \mathbb{Z}^d = (P \cap \mathbb{Z}^d) \cup (Q \cap \mathbb{Z}^d)$$

 $(\mathsf{That} \mathsf{ is, if } p \in \mathsf{conv}(P \cup Q) \cap \mathbb{Z}^d, \mathsf{ then } p \in P \mathsf{ or } p \in Q)$

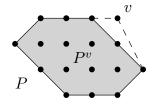
Quantum "=" convex hull does not add more lattice points

Why the name: Used by Bruns-Gubeladze-Michałek (with slight differences) ... but mainly because it sounds cool!!!

Quantum jumps distances

Let $P \subset \mathbb{R}^d$ be a lattice *d*-polytope and let $v \in \text{vert}(P)$. Denote

$$P^{\mathsf{v}} := \operatorname{conv}(P \setminus \{\mathsf{v}\} \cap \mathbb{Z}^d) \subset \mathbb{R}^d$$



We study, for each dimension d:

$$\left\{ \mathsf{dist}(v, P^v) \mid P \; \mathsf{lattice} \; d\mathsf{-polytope}, \; v \in \mathsf{vert}(P) \right\}$$

WHY??

Plenty of information already from previous research (classification of lattice 3-polytopes with small number of lattice points)...
APPLICATIONS???

Quantum jumps distances DIM 1 and 2

$$d = 1: (\bullet, \bullet) \text{ is quantum jump} \iff \text{dist}(\bullet, \bullet) = 1 \text{ in } \mathbb{R}$$

$$\left\{ \text{ dist}(v, P^{v}) \mid P \text{ lattice } \underline{\text{segment}}, v \in \text{vert}(P) \right\} = \{1\}$$

$$d = 2: (\bullet, \checkmark) \text{ is quantum jump} \iff \text{dist}(\bullet, \checkmark) = 1 \text{ in } \mathbb{R}^{2}$$

$$\left\{ \text{ dist}(v, P^{v}) \mid P \text{ lattice } \underline{\text{polygon}}, v \in \text{vert}(P) \right\} = \{1\}$$

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨー シタペ

Quantum jumps distances DIM 3

What about dimension 3???

$$\left\{ \operatorname{\mathsf{dist}}(v,P^v) \mid P \; | \; \mathsf{Ptitice 3-polytope,} \; v \in \operatorname{\mathsf{vert}}(P)
ight\} = ???$$

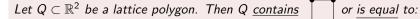
- "2dim to 3dim": Distances dist(v, P^v) for the quantum jump (v, P^v), when P^v is 2-dimensional.
- "3dim to 3dim": Distances dist(v, P^v) for the quantum jump (v, P^v), when P^v is 3-dimensional.

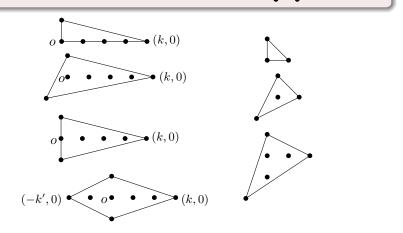
Quantum jumps distances "2dim to 3dim"

Previous research:

quantum jump		distance		quantum jump	distance
	\cup •	(*)		↓ ∪ •	(*)
	∪ •	1	_		1
					1 or 3
	∪ •	1 or 2			
	U •	1 or 2			
(*) Unbounde	b	•			

Lemma





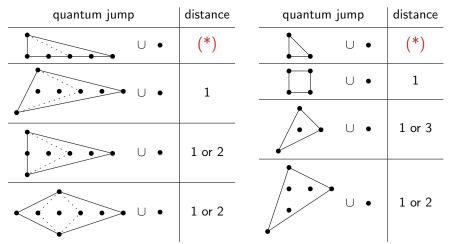
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Previous research:

quantum jump		distance	quantum jump	distance
	∪ ●	(*)		(*)
	U •	1		1
				1 or 3
	U •	1 or 2		1010
$\langle \cdot \rangle$	U •	1 or 2		

(*) Unbounded

Previous research.... EXTENDED

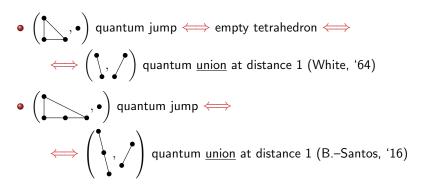


(*) Unbounded... but distances bounded for quantum unions...

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

EXTRA: distance of *quantum union*

(*) Unbounded cases:



Lemma

Let $s_1, s_2 \subset \mathbb{R}^3$ lattice segments, at least one of them non-primitive (s_1, s_2) is a quantum union $\iff \text{dist}(s_1, s_2) = 1$

Quantum jumps *"3dim t<u>o 3dim"</u>*

DATABASE: *P* lattice 3-polytope of width > 1 and ≤ 11 lattice points. 216, 453

• $(D_v(P^v))_{v \in vert(P), P^v}$ full-dim =: \overline{D}_P

•
$$(d_v(P^v))_{v \in vert(P), P^v}$$
 full-dim =: d_F

Three cases:

BEST
$$\overline{d}_P = (1, 1, ..., 1), \overline{D}_P = (1, 1, ..., 1)$$

(any vertex v of P is at distance 1 from all the visible facets of P^v)
MEH... $\overline{d}_P = (1, 1, ..., 1), \overline{D}_P \neq (1, 1, ..., 1)$
(any vertex v of P is at distance 1 from at least one of the visible facets
of P^v)
WORST $\overline{d}_P \neq (1, 1, ..., 1), \overline{D}_P \neq (1, 1, ..., 1)$
(a vertex v of P is at distance ≥ 1 from all the visible facets of P^v)
Moreover, the highest values in the \overline{d}_P 's and the \overline{D}_P 's are 37 and 43,
respectively.

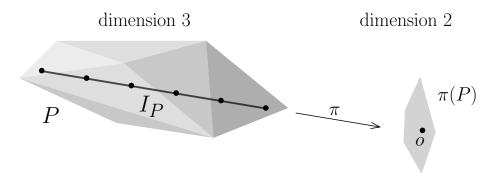
WHY??

Recall: if for some v the only visible facet of
$$P^v$$
 from v is v or
, the distance is $d_v(P^v) = D_v(P^v)$ unbounded!!!

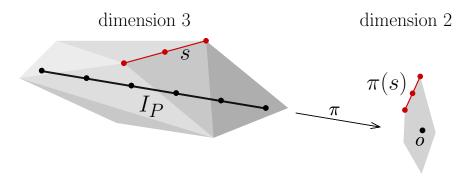
$$\left\{ \mathsf{dist}(v, P^v) \mid P3\mathsf{-dim}, \ v \in \mathsf{vert}(P), P^v \ \mathsf{full}\mathsf{-dim} \right\} = \mathbb{N}$$

Let's go back in time...

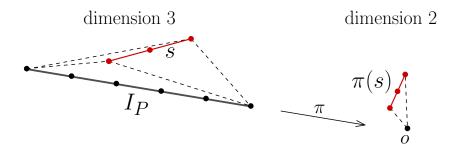
Theorem (Averkov–Balletti–B.–Nill–Soprunov, Sep. 2017)



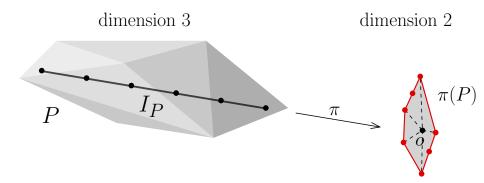
Theorem (Averkov–Balletti–B.–Nill–Soprunov, Sep. 2017)



Theorem (Averkov-Balletti-B.-Nill-Soprunov, Sep. 2017)



Theorem (Averkov-Balletti-B.-Nill-Soprunov, Sep. 2017)

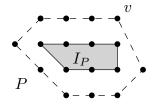


Quantum "inner" jumps distances

Let $P \subset \mathbb{R}^d$ be a lattice *d*-polytope, denote

$$I_P := \operatorname{conv}\left(\operatorname{int}(P) \cap \mathbb{Z}^d\right) \subset \mathbb{R}^d$$

the inner polytope of P.

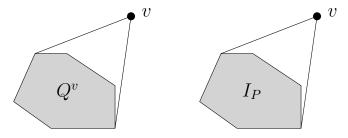


We study, for each dimension d:

 $\left\{ \mathsf{dist}(v, I_P) \mid P \; \mathsf{lattice} \; d\mathsf{-polytope}, \; v \in \mathsf{vert}(P) \right\}$

Why is this better?

Why do we expect to get smaller distances?



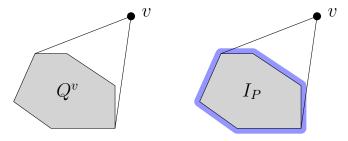
 I_P closed subset of $int(P) \Longrightarrow \exists \epsilon > 0$ such that $I_P + \epsilon \mathcal{B}_d \subset int(P)$ Then: (v, I_P) quantum jump $\iff (v, I_P + \epsilon \mathcal{B}_d)$ quantum jump.

That is, there are **EXTRA RESTRICTIONS** hidden in the fact that we are looking at the distance with the inner polytope.

(Also for quantum unions)

Why is this better?

Why do we expect to get smaller distances?



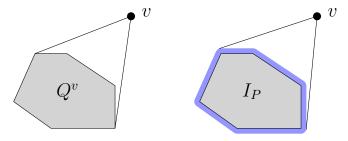
 I_P closed subset of $int(P) \Longrightarrow \exists \epsilon > 0$ such that $I_P + \epsilon \mathcal{B}_d \subset int(P)$ Then: (v, I_P) quantum jump $\iff (v, I_P + \epsilon \mathcal{B}_d)$ quantum jump.

That is, there are **EXTRA RESTRICTIONS** hidden in the fact that we are looking at the distance with the inner polytope.

(Also for quantum unions)

Why is this better?

Why do we expect to get smaller distances?



 I_P closed subset of $int(P) \Longrightarrow \exists \epsilon > 0$ such that $I_P + \epsilon \mathcal{B}_d \subset int(P)$ Then: (v, I_P) quantum jump $\iff (v, I_P + \epsilon \mathcal{B}_d)$ quantum jump.

That is, there are **EXTRA RESTRICTIONS** hidden in the fact that we are looking at the distance with the inner polytope.

(Also for quantum unions)

Inner polytopes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Quantum "inner" jumps distances DIM 1 and 2

AGAIN: (it cannot be more restrictive than distance 1)

d = 1:

$$\left\{ \mathsf{dist}(v, \mathit{I}_{\mathit{P}}) \mid \mathit{P} \; \mathsf{lattice} \; \underline{\mathsf{segment}}, \; v \in \mathsf{vert}(\mathit{P}) \right\} = \{1\}$$

 $\underline{d=2}$:

$$\left\{ \mathsf{dist}(v, \mathit{I_P}) \mid \textit{P} \; \mathsf{lattice} \; \underline{\mathsf{polygon}}, \; v \in \mathsf{vert}(\textit{P}) \right\} = \{1\}$$

▲ロト ▲理 ト ▲ヨト ▲ヨト ヨー シタペ

Quantum "inner" jumps distances DIM 3

- 1 interior lattice point \implies classification by Kasprzyk
- 2 interior lattice points \implies classification by Balletti & Kasprzyk
- \geq 3 collinear interior lattice points \implies reflexive projection
- 2-dimensional inner polytope \Longrightarrow (*)
- 3-dimensional inner polytope \Longrightarrow (*)

Inner polytopes

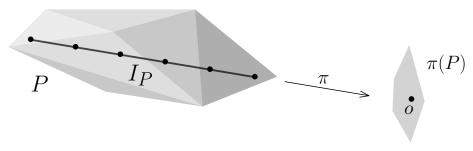
1-dimensional inner polytope

I_P 1-dimensional \implies reflexive projection

dimension 3

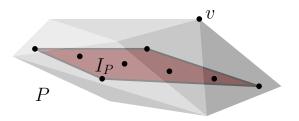
dimension 2

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで



▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

2-dimensional inner polytope



Theorem

Let P be a lattice 3-polytope of size \geq 4 such that I_P is 2-dimensional. Then:

• If I_P contains a unit square (()), then dist $(v, I_P) \le 1$, $\forall v \in vert(P)$.

• If I_P DOES NOT contain a unit square, then $|I_P \cap \mathbb{Z}^3| \leq 11$.

15,763

3-dimensional inner polytope

DATABASE: *P* lattice 3-polytope with ≤ 11 lattice points and 3-dimensional I_P .

•
$$(D_v(I_P))_{v \in \operatorname{vert}(P)} =: \overline{D}_P^l$$
 • $(d_v(I_P))_{v \in \operatorname{vert}(P)} =: \overline{d}_P^l$

Three cases:

BEST
$$\overline{d}'_P = (1, 1, \dots, 1), \ \overline{D}'_P = (1, 1, \dots, 1)$$
8,786(any vertex v of P is at distance 1 from all the visible facets of I_P)MEH... $\overline{d}'_P = (1, 1, \dots, 1), \ \overline{D}'_P \neq (1, 1, \dots, 1)$ 5,804(any vertex v of P is at distance 1 from at least one of the visible facets of I_P)WORST $\overline{d}'_P \neq (1, 1, \dots, 1), \ \overline{D}'_P \neq (1, 1, \dots, 1)$ 1,173(a vertex v of P is at distance ≥ 1 from all the visible facets of I_P)Also, the highest values in the \overline{d}'_P 's and the \overline{D}'_P 's are 4 and 6, respectively.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summary of information

For polytopes with interior lattice points:

- 1 interior lattice point \implies classification by Kasprzyk
- 2 interior lattice points \implies classification by Balletti & Kasprzyk
- \geq 3 collinear interior lattice points \implies reflexive projection
- 2-dimensional inner polytope ⇒ distance 1 or few interior lattice points TO COMPLETE
- Objective
 Objectiv

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Thank you for your attention!!