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Lattice distance between a point to a hyperplane

Our ambient lattice will always be Zd .

Lattice polytope P := convex hull of a finite set of points in Zd .

In this talk, P is always a lattice polytope in Rd .

f : Rd → R affine integer functional. It is primitive if f (Zd) = Z.

The lattice distance between

point x ∈ Zd and lattice

hyperplane H ⊂ Rd is

dist(x ,H) = |f (x)|

where f is a primitive functional
with f (H) = 0.
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Distances between . . . and . . .

point and (d − 1)-dim polytope: P ⊂ Rd , dim(P) = d − 1;
x ∈ Zd \ aff(P):

dist(x ,P) := dist(x , aff(P))

x

P aff(P )
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Distances between . . . and . . .

lattice hyperplanes: H1,H2 ⊂ Rd lattice hyperplanes, parallel
(H1 ∩ H2 = ∅):

dist(H1,H2) := dist(x ,H2), for any x ∈ H1

H2

H1
x
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Distances between . . . and . . .

lattice lines in R3: let `1, `2 ⊂ R3 lattice lines s. t.
aff(conv(`1 ∪ `2)) = R3:

dist(`1, `2) := dist(H1,H2)

where H1,H2 are the unique pair of parallel lattice hyperplanes such
that `i ⊂ Hi .

H2

H1
`1

`2
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Distances between . . . and . . .

lattice segments in R3: let s1, s2 ⊂ R3 lattice segments s. t.
aff(conv(s1 ∪ s2)) = R3:

dist(s1, s2) := dist (aff(s1), aff(s2))

aff(s1)s1

s2 aff(s2)
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Distances between . . . and . . .

point and (d − 1)-dim polytope

lattice hyperplanes

lattice lines in R3

lattice segments in R3

. . .

In general, if R := conv(P ∪ Q) ⊂ Rd is not full-dim, the distance is

measured in the lattice aff(R) ∩ Zd ∼= Zdim(R)
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Distance to full-dim polytopes

P ⊂ Rd full-dimensional, x ∈ Zd

x 6∈ P =⇒ dist(x ,P) ???

Definition

F facet of P is visible from x if
aff(F ) strictly separates x from
P.

We consider two different distances:

The minimum facet distance

dx(P) := min {dist(x , aff(F )) | F facet visible from x}

The maximum facet distance

Dx(P) := max {dist(x , aff(F )) | F facet visible from x}

In example, dx(P) = 1 and Dx(P) = 2.
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Quantum jumps & unions

Definition

P ⊂ Rd not necessarilly full-dimensional, x ∈ Zd . We say that the
pair (P, x) is a quantum jump if

conv(P ∪ {x}) ∩ Zd =
(
P ∩ Zd

)
∪ {x}

P,Q ⊂ Rd not necessarilly full-dimensional. We say that the pair
(P,Q) is a quantum union if

conv(P ∪ Q) ∩ Zd = (P ∩ Zd) ∪ (Q ∩ Zd)

(That is, if p ∈ conv(P ∪ Q) ∩ Zd , then p ∈ P or p ∈ Q)

Quantum “=” convex hull does not add more lattice points

Why the name: Used by Bruns–Gubeladze–Micha lek (with slight differences) ...
but mainly because it sounds cool!!!
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Quantum jumps distances

Let P ⊂ Rd be a lattice d-polytope and let v ∈ vert(P). Denote

Pv := conv(P \ {v} ∩ Zd) ⊂ Rd

P v

v

P

We study, for each dimension d :{
dist(v ,Pv ) | P lattice d-polytope, v ∈ vert(P)

}
WHY??
Plenty of information already from previous research (classification of
lattice 3-polytopes with small number of lattice points)...
APPLICATIONS???
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Quantum jumps distances DIM 1 and 2

d = 1: ( , ) is quantum jump⇐⇒ dist ( , ) = 1 in R{
dist(v ,Pv ) | P lattice segment, v ∈ vert(P)

}
= {1}

d = 2:

(
,

)
is quantum jump⇐⇒ dist

(
,

)
= 1 in R2{

dist(v ,Pv ) | P lattice polygon, v ∈ vert(P)

}
= {1}
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Quantum jumps distances DIM 3

What about dimension 3???

{
dist(v ,Pv ) | P lattice 3-polytope, v ∈ vert(P)

}
= ???

“2dim to 3dim”: Distances dist(v ,Pv ) for the quantum jump
(v ,Pv ), when Pv is 2-dimensional.

“3dim to 3dim”: Distances dist(v ,Pv ) for the quantum jump
(v ,Pv ), when Pv is 3-dimensional.
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Quantum jumps distances “2dim to 3dim”

Previous research:

quantum jump distance

∪ (*)

∪ 1

∪ 1 or 2

∪ 1 or 2

quantum jump distance

∪ (*)

∪ 1

∪ 1 or 3

(*) Unbounded... but distances bounded for quantum unions...
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Lemma

Let Q ⊂ R2 be a lattice polygon. Then Q contains or is equal to:

o (k, 0)

(k, 0)o

(k, 0)o

o (k, 0)(−k′, 0)



Distances Quantum Jumps Inner polytopes

Previous research:

quantum jump distance

∪ (*)

∪ 1

∪ 1 or 2

∪ 1 or 2

quantum jump distance

∪ (*)

∪ 1

∪ 1 or 3

(*) Unbounded... but distances bounded for quantum unions...



Distances Quantum Jumps Inner polytopes

Previous research.... EXTENDED

quantum jump distance

∪ (*)

∪ 1

∪ 1 or 2

∪ 1 or 2

quantum jump distance

∪ (*)

∪ 1

∪ 1 or 3

∪ 1 or 2

(*) Unbounded... but distances bounded for quantum unions...
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EXTRA: distance of quantum union

(*) Unbounded cases:(
,

)
quantum jump⇐⇒ empty tetrahedron⇐⇒

⇐⇒
(

,

)
quantum union at distance 1 (White, ‘64)(

,

)
quantum jump⇐⇒

⇐⇒
 ,

 quantum union at distance 1 (B.–Santos, ‘16)

Lemma

Let s1, s2 ⊂ R3 lattice segments, at least one of them non-primitive

(s1, s2) is a quantum union ⇐⇒ dist(s1, s2) = 1
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Quantum jumps “3dim to 3dim”

DATABASE: P lattice 3-polytope of width > 1 and ≤ 11 lattice points.
216, 453

(Dv (Pv ))v∈vert(P), Pv full-dim =: DP

(dv (Pv ))v∈vert(P), Pv full-dim =: dP

Three cases:

BEST dP=(1, 1, . . . , 1), DP=(1, 1, . . . , 1) 5, 796
(any vertex v of P is at distance 1 from all the visible facets of Pv)

MEH... dP=(1, 1, . . . , 1), DP 6=(1, 1, . . . , 1) 77, 443
(any vertex v of P is at distance 1 from at least one of the visible facets

of Pv)

WORST dP 6=(1, 1, . . . , 1), DP 6=(1, 1, . . . , 1) 133, 214
(a vertex v of P is at distance > 1 from all the visible facets of Pv)

Moreover, the highest values in the dP ’s and the DP ’s are 37 and 43,
respectively.
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WHY??

Recall: if for some v the only visible facet of Pv from v is or

, the distance is dv (Pv ) = Dv (Pv ) unbounded!!!

{
dist(v ,Pv ) | P3-dim, v ∈ vert(P),Pv full-dim

}
= N

Let’s go back in time...
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Once upon a time in Oberwolfach

Theorem (Averkov–Balletti–B.–Nill–Soprunov, Sep. 2017)

Let P ⊆ R3 be a lattice 3-polytope with IP := int(P) ∩ Z3 a lattice
segment of lattice length k > 0 (k + 1 collinear lattice points).
Let π : R3 → R2 be the lattice projection that maps IP to the origin.
If k ≥ 2, π(P) is a reflexive polygon.

P IP

dimension 3

o

π(P )
π

dimension 2
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Quantum “inner” jumps distances

Let P ⊂ Rd be a lattice d-polytope, denote

IP := conv
(
int(P) ∩ Zd

)
⊂ Rd

the inner polytope of P. IP

v

P

We study, for each dimension d :{
dist(v , IP) | P lattice d-polytope, v ∈ vert(P)

}
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Why is this better?

Why do we expect to get smaller distances?

Qv

v

IP

v

IP closed subset of int(P) =⇒ ∃ε > 0 such that IP + εBd ⊂ int(P)
Then: (v , IP) quantum jump ⇐⇒ (v , IP + εBd) quantum jump.

That is, there are EXTRA RESTRICTIONS hidden in the fact that we
are looking at the distance with the inner polytope.

(Also for quantum unions)
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Quantum “inner” jumps distances DIM 1 and 2

AGAIN: (it cannot be more restrictive than distance 1)

d = 1: {
dist(v , IP) | P lattice segment, v ∈ vert(P)

}
= {1}

d = 2: {
dist(v , IP) | P lattice polygon, v ∈ vert(P)

}
= {1}
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Quantum “inner” jumps distances DIM 3

1 interior lattice point =⇒ classification by Kasprzyk

2 interior lattice points =⇒ classification by Balletti & Kasprzyk

≥ 3 collinear interior lattice points =⇒ reflexive projection

2-dimensional inner polytope =⇒ (*)

3-dimensional inner polytope =⇒ (*)
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1-dimensional inner polytope

IP 1-dimensional =⇒ reflexive projection

P IP

dimension 3

o

π(P )
π

dimension 2
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2-dimensional inner polytope

P

IP

v

Theorem

Let P be a lattice 3-polytope of size ≥ 4 such that IP is 2-dimensional.
Then:

If IP contains a unit square ( ), then dist(v , IP) ≤ 1,

∀v ∈ vert(P).

If IP DOES NOT contain a unit square, then |IP ∩ Z3| ≤ 11.
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3-dimensional inner polytope

DATABASE: P lattice 3-polytope with ≤ 11 lattice points
and 3-dimensional IP . 15, 763

(Dv (IP))v∈vert(P) =: D
I

P (dv (IP))v∈vert(P) =: d
I

P

Three cases:

BEST d
I

P=(1, 1, . . . , 1), D
I

P=(1, 1, . . . , 1) 8, 786
(any vertex v of P is at distance 1 from all the visible facets of IP)

MEH... d
I

P=(1, 1, . . . , 1), D
I

P 6=(1, 1, . . . , 1) 5, 804
(any vertex v of P is at distance 1 from at least one of the visible facets

of IP)

WORST d
I

P 6=(1, 1, . . . , 1), D
I

P 6=(1, 1, . . . , 1) 1, 173
(a vertex v of P is at distance > 1 from all the visible facets of IP)

Also, the highest values in the d
I

P ’s and the D
I

P ’s are 4 and 6,
respectively.
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Summary of information

For polytopes with interior lattice points:

1 interior lattice point =⇒ classification by Kasprzyk

2 interior lattice points =⇒ classification by Balletti & Kasprzyk

≥ 3 collinear interior lattice points =⇒ reflexive projection

2-dimensional inner polytope =⇒ distance 1 or few interior
lattice points TO COMPLETE

3-dimensional inner polytope =⇒ MAYBE any vertex is at
distance at most 4 from the inner polytope TO COMPLETE
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Thank you for your attention!!
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