Lattice 3-polytopes: quantum jumps and interior points

Mónica Blanco

July 31, 2018

Summer Workshop on Lattice Polytopes
University of Osaka, Japan

LATTICE DISTANCE(s)

Lattice distance between a point to a hyperplane

- Our ambient lattice will always be \mathbb{Z}^{d}.
- Lattice polytope $P:=$ convex hull of a finite set of points in \mathbb{Z}^{d}.
- In this talk, P is always a lattice polytope in \mathbb{R}^{d}.
- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ affine integer functional. It is primitive if $f\left(\mathbb{Z}^{d}\right)=\mathbb{Z}$.
- The lattice distance between point $x \in \mathbb{Z}^{d}$ and lattice hyperplane $H \subset \mathbb{R}^{d}$ is

$$
\operatorname{dist}(x, H)=|f(x)|
$$

where f is a primitive functional with $f(H)=0$.

Lattice distance between a point to a hyperplane

- Our ambient lattice will always be \mathbb{Z}^{d}.
- Lattice polytope $P:=$ convex hull of a finite set of points in \mathbb{Z}^{d}.
- In this talk, P is always a lattice polytope in \mathbb{R}^{d}.
- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ affine integer functional. It is primitive if $f\left(\mathbb{Z}^{d}\right)=\mathbb{Z}$.
- The lattice distance between point $x \in \mathbb{Z}^{d}$ and lattice hyperplane $H \subset \mathbb{R}^{d}$ is

$$
\operatorname{dist}(x, H)=|f(x)|
$$

where f is a primitive functional with $f(H)=0$.

Lattice distance between a point to a hyperplane

- Our ambient lattice will always be \mathbb{Z}^{d}.
- Lattice polytope $P:=$ convex hull of a finite set of points in \mathbb{Z}^{d}.
- In this talk, P is always a lattice polytope in \mathbb{R}^{d}.
- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ affine integer functional. It is primitive if $f\left(\mathbb{Z}^{d}\right)=\mathbb{Z}$.
- The lattice distance between point $x \in \mathbb{Z}^{d}$ and lattice hyperplane $H \subset \mathbb{R}^{d}$ is

$$
\operatorname{dist}(x, H)=|f(x)|
$$

where f is a primitive functional with $f(H)=0$.

Lattice distance between a point to a hyperplane

- Our ambient lattice will always be \mathbb{Z}^{d}.
- Lattice polytope $P:=$ convex hull of a finite set of points in \mathbb{Z}^{d}.
- In this talk, P is always a lattice polytope in \mathbb{R}^{d}.
- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ affine integer functional. It is primitive if $f\left(\mathbb{Z}^{d}\right)=\mathbb{Z}$.
- The lattice distance between point $x \in \mathbb{Z}^{d}$ and lattice hyperplane $H \subset \mathbb{R}^{d}$ is

$$
\operatorname{dist}(x, H)=|f(x)|
$$

where f is a primitive functional with $f(H)=0$.

Distances between . . . and . . .

- point and $(d-1)$-dim polytope: $P \subset \mathbb{R}^{d}, \operatorname{dim}(P)=d-1$; $x \in \mathbb{Z}^{d} \backslash \operatorname{aff}(P)$:

$$
\operatorname{dist}(x, P):=\operatorname{dist}(x, \operatorname{aff}(P))
$$

- x

$\operatorname{aff}(P)$

Distances between . . . and . . .

- lattice hyperplanes: $H_{1}, H_{2} \subset \mathbb{R}^{d}$ lattice hyperplanes, parallel $\left(H_{1} \cap H_{2}=\emptyset\right)$:

$$
\operatorname{dist}\left(H_{1}, H_{2}\right):=\operatorname{dist}\left(x, H_{2}\right), \text { for any } x \in H_{1}
$$

H_{1}

$$
H_{2}
$$

Distances between . . . and . . .

- lattice lines in \mathbb{R}^{3} : let $\ell_{1}, \ell_{2} \subset \mathbb{R}^{3}$ lattice lines s. t . $\operatorname{aff}\left(\operatorname{conv}\left(\ell_{1} \cup \ell_{2}\right)\right)=\mathbb{R}^{3}:$

$$
\operatorname{dist}\left(\ell_{1}, \ell_{2}\right):=\operatorname{dist}\left(H_{1}, H_{2}\right)
$$

where H_{1}, H_{2} are the unique pair of parallel lattice hyperplanes such that $\ell_{i} \subset H_{i}$.

Distances between . . . and . . .

- lattice segments in \mathbb{R}^{3} : let $s_{1}, s_{2} \subset \mathbb{R}^{3}$ lattice segments s. t. $\operatorname{aff}\left(\operatorname{conv}\left(s_{1} \cup s_{2}\right)\right)=\mathbb{R}^{3}$:

$$
\operatorname{dist}\left(s_{1}, s_{2}\right):=\operatorname{dist}\left(\operatorname{aff}\left(s_{1}\right), \operatorname{aff}\left(s_{2}\right)\right)
$$

Distances between . . . and . . .

- point and (d-1)-dim polytope
- lattice hyperplanes
- lattice lines in \mathbb{R}^{3}
- lattice segments in \mathbb{R}^{3}
- ...

In general, if $R:=\operatorname{conv}(P \cup Q) \subset \mathbb{R}^{d}$ is not full-dim, the distance is measured in the lattice $\operatorname{aff}(R) \cap \mathbb{Z}^{d} \cong \mathbb{Z}^{\operatorname{dim}(R)}$

Distance to full-dim polytopes

$P \subset \mathbb{R}^{d}$ full-dimensional, $x \in \mathbb{Z}^{d}$ $x \notin P \Longrightarrow \operatorname{dist}(x, P)$???

Definition

F facet of P is visible from x if aff (F) strictly separates x from P.

We consider two different distances:

- The minimum facet distance

$$
d_{x}(P):=\min \{\operatorname{dist}(x, \operatorname{aff}(F)) \mid F \text { facet visible from } x\}
$$

- The maximum facet distance

$$
D_{x}(P):=\max \{\operatorname{dist}(x, \operatorname{aff}(F)) \mid F \text { facet visible from } x\}
$$

In example, $d_{x}(P)=1$ and $D_{x}(P)=2$.

Distance to full-dim polytopes

$P \subset \mathbb{R}^{d}$ full-dimensional, $x \in \mathbb{Z}^{d}$ $x \notin P \Longrightarrow \operatorname{dist}(x, P)$???

Definition

F facet of P is visible from x if aff (F) strictly separates x from P.

We consider two different distances:

- The minimum facet distance

$$
d_{x}(P):=\min \{\operatorname{dist}(x, \operatorname{aff}(F)) \mid F \text { facet visible from } x\}
$$

- The maximum facet distance

$$
D_{x}(P):=\max \{\operatorname{dist}(x, \operatorname{aff}(F)) \mid F \text { facet visible from } x\}
$$

In example, $d_{x}(P)=1$ and $D_{x}(P)=2$.

Distance to full-dim polytopes

$P \subset \mathbb{R}^{d}$ full-dimensional, $x \in \mathbb{Z}^{d}$ $x \notin P \Longrightarrow \operatorname{dist}(x, P)$???

Definition

F facet of P is visible from x if $\operatorname{aff}(F)$ strictly separates x from P.

We consider two different distances:

- The minimum facet distance

$$
d_{x}(P):=\min \{\operatorname{dist}(x, \operatorname{aff}(F)) \mid F \text { facet visible from } x\}
$$

- The maximum facet distance

$$
D_{x}(P):=\max \{\operatorname{dist}(x, \operatorname{aff}(F)) \mid F \text { facet visible from } x\}
$$

In example, $d_{x}(P)=1$ and $D_{x}(P)=2$.

Distance to full-dim polytopes

$P \subset \mathbb{R}^{d}$ full-dimensional, $x \in \mathbb{Z}^{d}$ $x \notin P \Longrightarrow \operatorname{dist}(x, P)$???

Definition

F facet of P is visible from x if aff (F) strictly separates x from P.

We consider two different distances:

- The minimum facet distance

$$
d_{x}(P):=\min \{\operatorname{dist}(x, \operatorname{aff}(F)) \mid F \text { facet visible from } x\}
$$

- The maximum facet distance

$$
D_{x}(P):=\max \{\operatorname{dist}(x, \operatorname{aff}(F)) \mid F \text { facet visible from } x\}
$$

In example, $d_{x}(P)=1$ and $D_{x}(P)=2$.

Distance to full-dim polytopes

$P \subset \mathbb{R}^{d}$ full-dimensional, $x \in \mathbb{Z}^{d}$ $x \notin P \Longrightarrow \operatorname{dist}(x, P)$???

Definition

F facet of P is visible from x if $\operatorname{aff}(F)$ strictly separates x from P.

We consider two different distances:

- The minimum facet distance

$$
d_{x}(P):=\min \{\operatorname{dist}(x, \operatorname{aff}(F)) \mid F \text { facet visible from } x\}
$$

- The maximum facet distance

$$
D_{x}(P):=\max \{\operatorname{dist}(x, \operatorname{aff}(F)) \mid F \text { facet visible from } x\}
$$

In example, $d_{x}(P)=1$ and $D_{x}(P)=2$.

Quantum jumps and unions

Quantum jumps \& unions

Definition

- $P \subset \mathbb{R}^{d}$ not necessarilly full-dimensional, $x \in \mathbb{Z}^{d}$. We say that the pair (P, x) is a quantum jump if

$$
\operatorname{conv}(P \cup\{x\}) \cap \mathbb{Z}^{d}=\left(P \cap \mathbb{Z}^{d}\right) \cup\{x\}
$$

- $P, Q \subset \mathbb{R}^{d}$ not necessarilly full-dimensional. We say that the pair (P, Q) is a quantum union if

$$
\operatorname{conv}(P \cup Q) \cap \mathbb{Z}^{d} \quad=\quad\left(P \cap \mathbb{Z}^{d}\right) \cup\left(Q \cap \mathbb{Z}^{d}\right)
$$

(That is, if $p \in \operatorname{conv}(P \cup Q) \cap \mathbb{Z}^{d}$, then $p \in P$ or $p \in Q$)
Quantum " $=$ " convex hull does not add more lattice points
Why the name: Used by Bruns-Gubeladze-Michałek (with slight differences) ... but mainly because it sounds cool!!!

Quantum jumps distances

Let $P \subset \mathbb{R}^{d}$ be a lattice d-polytope and let $v \in \operatorname{vert}(P)$. Denote

$$
P^{v}:=\operatorname{conv}\left(P \backslash\{v\} \cap \mathbb{Z}^{d}\right) \subset \mathbb{R}^{d}
$$

We study, for each dimension d :

$$
\left\{\operatorname{dist}\left(v, P^{v}\right) \mid P \text { lattice } d \text {-polytope, } v \in \operatorname{vert}(P)\right\}
$$

WHY??

Plenty of information already from previous research (classification of lattice 3-polytopes with small number of lattice points)... APPLICATIONS???

Quantum jumps distances DIM 1 and 2

$\underline{d=1}:(\bullet, \bullet)$ is quantum jump $\Longleftrightarrow \operatorname{dist}(\bullet, \bullet)=1$ in \mathbb{R}
$\left\{\operatorname{dist}\left(v, P^{v}\right) \mid P\right.$ lattice segment, $\left.v \in \operatorname{vert}(P)\right\}=\{1\}$
$\underline{d=2}:(\bullet)$ is quantum jump $\Longleftrightarrow \operatorname{dist}(\bullet, \quad)=1$ in \mathbb{R}^{2}
$\left\{\operatorname{dist}\left(v, P^{v}\right) \mid P\right.$ lattice polygon, $\left.v \in \operatorname{vert}(P)\right\}=\{1\}$

Quantum jumps distances DIM 3

What about dimension 3???
$\left\{\operatorname{dist}\left(v, P^{v}\right) \mid P\right.$ lattice 3-polytope, $\left.v \in \operatorname{vert}(P)\right\}=? ? ?$

- "2dim to 3 dim": Distances $\operatorname{dist}\left(v, P^{v}\right)$ for the quantum jump (v, P^{v}), when P^{v} is 2-dimensional.
- "3dim to 3 dim": Distances $\operatorname{dist}\left(v, P^{v}\right)$ for the quantum jump $\left(v, P^{v}\right)$, when P^{v} is 3-dimensional.

Quantum jumps distances "2dim to 3dim"

Previous research:

(*) Unbounded

Lemma

Let $Q \subset \mathbb{R}^{2}$ be a lattice polygon. Then Q contains \quad ? or is equal to:

Previous research:

(*) Unbounded

Previous research.... EXTENDED

$\left(^{*}\right)$ Unbounded... but distances bounded for quantum unions...

EXTRA: distance of quantum union

$\left.{ }^{*}\right)$ Unbounded cases:
-(ఏ., $)$ quantum jump \Longleftrightarrow empty tetrahedron \Longleftrightarrow
$\Longleftrightarrow(0, \varrho)$ quantum union at distance 1 (White, '64)
$\bullet(\bullet . \bullet)$ quantum jump \Longleftrightarrow
$\Longleftrightarrow($... $)$ quantum union at distance 1 (B.-Santos, ' 16)

Lemma

Let $s_{1}, s_{2} \subset \mathbb{R}^{3}$ lattice segments, at least one of them non-primitive $\left(s_{1}, s_{2}\right)$ is a quantum union $\Longleftrightarrow \operatorname{dist}\left(s_{1}, s_{2}\right)=1$

Quantum jumps "3dim to 3dim"

DATABASE: P lattice 3 -polytope of width >1 and ≤ 11 lattice points.
216, 453

- $\left(D_{v}\left(P^{v}\right)\right)_{v \in \text { vert }(P), P^{v} \text { full-dim }}=: \bar{D}_{P}$
- $\left(d_{v}\left(P^{v}\right)\right)_{v \in \text { vert }(P),} P^{v}$ full-dim $=: \bar{d}_{P}$

Three cases:
BEST $\bar{d}_{P}=(1,1, \ldots, 1), \bar{D}_{P}=(1,1, \ldots, 1)$
5, 796 (any vertex v of P is at distance 1 from all the visible facets of P^{v})
MEH... $\bar{d}_{P}=(1,1, \ldots, 1), \bar{D}_{P} \neq(1,1, \ldots, 1)$
77, 443 (any vertex v of P is at distance 1 from at least one of the visible facets of P^{v})
WORST $\bar{d}_{P} \neq(1,1, \ldots, 1), \bar{D}_{P} \neq(1,1, \ldots, 1)$ 133, 214
(a vertex v of P is at distance >1 from all the visible facets of P^{v})
Moreover, the highest values in the \bar{d}_{P} 's and the \bar{D}_{P} 's are 37 and 43 , respectively.

WHY??

Recall: if for some v the only visible facet of P^{v} from v is or $\because \quad$, the distance is $d_{v}\left(P^{v}\right)=D_{v}\left(P^{v}\right)$ unbounded!!!

$$
\left\{\operatorname{dist}\left(v, P^{v}\right) \mid P 3-\operatorname{dim}, v \in \operatorname{vert}(P), P^{v} \text { full-dim }\right\}=\mathbb{N}
$$

Let's go back in time...

Once upon a time in Oberwolfach

Theorem (Averkov-Balletti-B.-Nill-Soprunov, Sep. 2017)

Let $P \subseteq \mathbb{R}^{3}$ be a lattice 3-polytope with $I_{P}:=\operatorname{int}(P) \cap \mathbb{Z}^{3}$ a lattice segment of lattice length $k>0$ ($k+1$ collinear lattice points).
Let $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the lattice projection that maps I_{P} to the origin. If $k \geq 2, \pi(P)$ is a reflexive polygon.

dimension 3

dimension 2

Once upon a time in Oberwolfach

Theorem (Averkov-Balletti-B.-Nill-Soprunov, Sep. 2017)

Let $P \subseteq \mathbb{R}^{3}$ be a lattice 3-polytope with $I_{P}:=\operatorname{int}(P) \cap \mathbb{Z}^{3}$ a lattice segment of lattice length $k>0$ ($k+1$ collinear lattice points).
Let $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the lattice projection that maps I_{P} to the origin. If $k \geq 2, \pi(P)$ is a reflexive polygon.
dimension 3
dimension 2

Once upon a time in Oberwolfach

Theorem (Averkov-Balletti-B.-Nill-Soprunov, Sep. 2017)

Let $P \subseteq \mathbb{R}^{3}$ be a lattice 3-polytope with $I_{P}:=\operatorname{int}(P) \cap \mathbb{Z}^{3}$ a lattice segment of lattice length $k>0$ ($k+1$ collinear lattice points). Let $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the lattice projection that maps I_{P} to the origin. If $k \geq 2, \pi(P)$ is a reflexive polygon.

dimension 3

dimension 2

Once upon a time in Oberwolfach

Theorem (Averkov-Balletti-B.-Nill-Soprunov, Sep. 2017)

Let $P \subseteq \mathbb{R}^{3}$ be a lattice 3-polytope with $I_{P}:=\operatorname{int}(P) \cap \mathbb{Z}^{3}$ a lattice segment of lattice length $k>0$ ($k+1$ collinear lattice points).
Let $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the lattice projection that maps I_{P} to the origin. If $k \geq 2, \pi(P)$ is a reflexive polygon.

dimension 3

dimension 2

Quantum "inner" jumps distances

Let $P \subset \mathbb{R}^{d}$ be a lattice d-polytope, denote

$$
I_{P}:=\operatorname{conv}\left(\operatorname{int}(P) \cap \mathbb{Z}^{d}\right) \subset \mathbb{R}^{d}
$$

the inner polytope of P.

We study, for each dimension d :

$$
\left\{\operatorname{dist}\left(v, I_{P}\right) \mid P \text { lattice } d \text {-polytope, } v \in \operatorname{vert}(P)\right\}
$$

Why is this better?

Why do we expect to get smaller distances?

I_{P} closed subset of $\operatorname{int}(P) \Longrightarrow \exists \epsilon>0$ such that $I_{P}+\epsilon \mathcal{B}_{d} \subset \operatorname{int}(P)$
Then: $\left(v, I_{P}\right)$ quantum jump $\Longleftrightarrow\left(v, I_{P}+\epsilon \mathcal{B}_{d}\right)$ quantum jump.
That is, there are EXTRA RESTRICTIONS hidden in the fact that we are looking at the distance with the inner polytope.
(Also for quantum unions)

Why is this better?

Why do we expect to get smaller distances?

I_{P} closed subset of $\operatorname{int}(P) \Longrightarrow \exists \epsilon>0$ such that $I_{P}+\epsilon \mathcal{B}_{d} \subset \operatorname{int}(P)$
Then: $\left(v, I_{P}\right)$ quantum jump $\Longleftrightarrow\left(v, I_{P}+\epsilon \mathcal{B}_{d}\right)$ quantum jump.
That is, there are EXTRA RESTRICTIONS hidden in the fact that we are looking at the distance with the inner polytope.
(Also for quantum unions)

Why is this better?

Why do we expect to get smaller distances?

I_{P} closed subset of $\operatorname{int}(P) \Longrightarrow \exists \epsilon>0$ such that $I_{P}+\epsilon \mathcal{B}_{d} \subset \operatorname{int}(P)$
Then: $\left(v, I_{P}\right)$ quantum jump $\Longleftrightarrow\left(v, I_{P}+\epsilon \mathcal{B}_{d}\right)$ quantum jump.
That is, there are EXTRA RESTRICTIONS hidden in the fact that we are looking at the distance with the inner polytope.
(Also for quantum unions)

Quantum "inner" jumps distances DIM 1 and 2

AGAIN: (it cannot be more restrictive than distance 1)

$$
\begin{aligned}
& \underline{d=1}: \\
& \\
& \underline{d=2}: \\
& \\
&
\end{aligned} \quad\left\{\operatorname{dist}\left(v, I_{P}\right) \mid P \text { lattice } \underline{\text { segment }}, v \in \operatorname{vert}(P)\right\}=\{1\}
$$

Quantum "inner" jumps distances DIM 3

- 1 interior lattice point \Longrightarrow classification by Kasprzyk
- 2 interior lattice points \Longrightarrow classification by Balletti \& Kasprzyk
- ≥ 3 collinear interior lattice points \Longrightarrow reflexive projection
- 2-dimensional inner polytope $\Longrightarrow\left(^{*}\right)$
- 3-dimensional inner polytope $\Longrightarrow\left(^{*}\right)$

1-dimensional inner polytope

I_{P} 1-dimensional \Longrightarrow reflexive projection dimension 3
dimension 2

2-dimensional inner polytope

Theorem

Let P be a lattice 3-polytope of size ≥ 4 such that I_{P} is 2 -dimensional. Then:

- If I_{P} contains a unit square (\quad), then $\operatorname{dist}\left(v, I_{P}\right) \leq 1$, $\forall v \in \operatorname{vert}(P)$.
- If I_{P} DOES NOT contain a unit square, then $\left|I_{P} \cap \mathbb{Z}^{3}\right| \leq 11$.

3-dimensional inner polytope

DATABASE: P lattice 3 -polytope with ≤ 11 lattice points and 3-dimensional I_{P}.

- $\left(D_{v}\left(I_{P}\right)\right)_{v \in \operatorname{vert}(P)}=: \bar{D}_{P}^{\prime}$
- $\left(d_{v}\left(I_{P}\right)\right)_{v \in \operatorname{vert}(P)}=: \bar{d}_{P}^{\prime}$

Three cases:
BEST $\bar{d}_{P}^{\prime}=(1,1, \ldots, 1), \bar{D}_{P}^{\prime}=(1,1, \ldots, 1)$
8, 786 (any vertex v of P is at distance 1 from all the visible facets of I_{P})
MEH... $\bar{d}_{P}^{\prime}=(1,1, \ldots, 1), \bar{D}_{P}^{\prime} \neq(1,1, \ldots, 1)$ 5, 804 (any vertex v of P is at distance 1 from at least one of the visible facets of I_{P})
WORST $\bar{d}_{P}^{\prime} \neq(1,1, \ldots, 1), \bar{D}_{P}^{\prime} \neq(1,1, \ldots, 1)$
1, 173
(a vertex v of P is at distance ≥ 1 from all the visible facets of I_{P})
Also, the highest values in the \bar{d}_{P}^{\prime} 's and the \bar{D}_{P}^{\prime} 's are 4 and $\mathbf{6}$, respectively.

Summary of information

For polytopes with interior lattice points:

- 1 interior lattice point \Longrightarrow classification by Kasprzyk
- 2 interior lattice points \Longrightarrow classification by Balletti \& Kasprzyk
- ≥ 3 collinear interior lattice points \Longrightarrow reflexive projection
- 2-dimensional inner polytope \Longrightarrow distance 1 or few interior lattice points TO COMPLETE
- 3-dimensional inner polytope \Longrightarrow MAYBE any vertex is at distance at most 4 from the inner polytope TO COMPLETE

Thank you for your attention!!

