Classification of Minimal Polygons with Specified Singularity Content

Daniel Cavey
(Joint work with Edwin Kutas)

University of Nottingham

2018

Fano Varieties

A projective manifold, or a variety X over \mathbb{C} comes equipped with a notion of curvature. We use this to place X into one of three classes:

Negative Curvature Infinitely Many

Calabi - Yau

Flat
Unknown

Positive Curvature Finitely Many

It is natural to ask for a classification of smooth Fano varieties in dimension n.

Fano Varieties

Smooth varieties (manifolds) are classified up to dimension 3.

Dimension	Number of Smooth Fano Varieties	Examples
1	1	\mathbb{P}^{1}
2	10	$\mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}$ and blow-up of \mathbb{P}^{2} in ≤ 8 points
3	105	\mathbb{P}^{3}, etc.

The 2-dimensional classification is due to del Pezzo in 1880s and the 3 -dimensional classification due to Mori-Mukai in 1980s. We do not know much in dimension greater or equal than 4.

Fano Polytopes

Let N be a lattice. A polytope P in $N_{\mathbb{R}}=N \otimes \mathbb{R}$ is a set of the form

$$
P=\left\{\sum_{u \in S} \lambda_{u} u: \lambda_{u}>0 \text { and } \sum_{u \in S} \lambda_{u}=1\right\},
$$

where $S \subset N_{\mathbb{R}}$ is a finite set of points. A Fano polytope is a full-dimensional convex polytope such that

- the vertices $\mathcal{V}(P) \in N$ are all primitive.
- the origin lies in the strict interior of P.

When N is a rank-two lattice P is known as a Fano polygon. We consider polytopes up to $G L(N)$-equivalence.

Fano Polytopes

The span of each face E of a Fano polygon P, by which we mean $\mathbb{R}_{\geq 0} E$, defines a cone. We obtain a fan in $N_{\mathbb{R}}$ corresponding to P.

This determines a toric del Pezzo surface X_{P}.

Many properties of X_{P} have combinatorial analogues in the Fano polygon P; examples include the singularities and the anticanonical degree $\left(-K_{X_{P}}\right)^{2}$.

Mirror Symmetry

Smooth Fano Variety

Toric Fano Variety
Fano Polytope

Mirror Symmetry

Given a Fano manifold X, mirror symmetry tells us (conjecturally) how to associate a Laurent polynomial f which is said to be mirror dual to X.

- Choice of mirror dual is not necessarily unique.
- Can transform f via a mutation (a special birational transformation $\left.\phi:\left(\mathbb{C}^{\times}\right)^{n} \rightarrow\left(\mathbb{C}^{\times}\right)^{n}\right)$ to obtain another Laurent polynomial g
- g also mirror dual to X.
- This notion of a mutation is captured when we move to the Fano polytopes $\operatorname{Newt}(f)$ and $\operatorname{Newt}(g)$.

Mutation of Polygons

Let $P \subset N_{\mathbb{R}}$ be a polygon, and E be an edge of P. Consider the primitive inward pointing normal $\omega_{E} \in M=\operatorname{Hom}(N, \mathbb{Z})$ of this edge. This vector can be thought of as a grading function on the polygon P. For $h \in \mathbb{Z}$, define

$$
\omega_{h}(P)=\operatorname{conv}\left\{v \in N \cap P: \omega_{E}(v)=h\right\} .
$$

Mutation of Polygons

Choose v_{E} to be a primitive vector of the lattice N such that $\omega_{E}\left(v_{E}\right)=0$. Set $F=\operatorname{conv}\left\{\mathbf{0}, v_{E}\right\}$. For all $h<0$, suppose that there exists $G_{h} \subset N_{\mathbb{R}}$ such that

$$
\left\{v \in \mathcal{V}(P): \omega_{E}(v)=h\right\} \subseteq G_{h}+|h| F \subseteq \omega_{h}(P)
$$

Then we define the mutation of P given by ω_{E}, F and G_{h} to be

$$
\operatorname{mut}_{\left(\omega_{E}, F\right)}(P)=\operatorname{conv}\left(\bigcup_{h<0} G_{h} \cup \bigcup_{h \geq 0}\left(\omega_{h}(P)+h F\right)\right) \subset N_{\mathbb{R}}
$$

Choosing $v_{E}=(1,-1)$
$\xrightarrow{\text { and } G_{-1}=\{(0,1)\}}$

Mutation of Polygons

Lemma

Let E be an edge of a Fano polygon P with primitive inner normal vector $\omega_{E} \in M$. Then P admits a mutation with respect to ω if and only if $|E \cap N|-1 \geq|\omega(E)|$.
We can use mutations to define an equivalence relation on the set of Fano polygons.

Cyclic Quotient Singularities

A quotient singularity $\frac{1}{R}(a, b)$ is given by the action of μ_{R} on \mathbb{C}^{2} by $(x, y) \mapsto\left(\epsilon^{a} x, \epsilon^{b} y\right)$ where ϵ is an $R^{\text {th }}$ root of unity, and considering $Z=\operatorname{Spec}\left(\mathbb{C}[x, y]^{\mu_{R}}\right)$. The germ of the origin is the singularity.
For example consider a $\frac{1}{2}(1,1)$ singularity. Let $G=\mathbb{Z} / 2 \mathbb{Z}$ and $\epsilon=-1$. We consider the action of G on \mathbb{C}^{2} described by

$$
-1 \cdot(x, y)=(-x,-y)
$$

We have

$$
\begin{aligned}
Z & =\operatorname{Spec}\left(\mathbb{C}[x, y]^{G}\right) \\
& =\operatorname{Spec}\left(\mathbb{C}\left[x^{2}, x y, y^{2}\right]\right) \\
& =\operatorname{Spec}\left(\mathbb{C}[u, v, w] /\left(u w-v^{2}\right)\right) \\
& =\mathbb{V}\left(u w-v^{2}\right) \subset \mathbb{C}^{3} .
\end{aligned}
$$

Cyclic Quotient Singularities

A quotient singularity $\frac{1}{R}(a, b)$ is cyclic if:

$$
\operatorname{gcd}(R, a)=\operatorname{gcd}(R, b)=1
$$

Set:

$$
k=\operatorname{gcd}(a+b, R)
$$

So:

$$
a+b=k c \text { and } R=k r .
$$

We can write the cyclic quotient singularity as

$$
\frac{1}{k r}(1, k c-1) .
$$

Cyclic Quotient Singularities

We have two types of singularities here:

- A cyclic quotient singularity $\frac{1}{k r}(1, k c-1)$ is a T-singularity if $r \mid k$.
- A T-singularity admits a qG-smoothing. (Kollar-Shepherd-Barron)
- A cyclic quotient singularity $\frac{1}{k r}(1, k c-1)$ is an R-singularity if $k<r$.
- An R-singularity is rigid under qG-deformation. (Kollar-Shepherd-Barron)

Singularity Content

Consider an arbitrary cyclic quotient singularity $\sigma=\frac{1}{k r}(1, k c-1)$. By the Euclidean Algorithm there exists unique non-negative integers n and k_{0} such that:

$$
k=n r+k_{0} .
$$

If $k_{0}>0$, then σ is qG -deformation equivalent to a $\frac{1}{k_{0} r}\left(1, k_{0} c-1\right)$ cyclic quotient singularity. The residue of σ is given by:

$$
\operatorname{res}(\sigma)= \begin{cases}\varnothing & , \text { if } k_{0}=0 \\ \frac{1}{k_{0} r}\left(1, k_{0} c-1\right), \text { otherwise }\end{cases}
$$

The singularity content of σ is given by the pair:

$$
\mathrm{SC}(\sigma)=(n, \operatorname{res}(\sigma))
$$

Singularity Content

Consider a cone C corresponding to an edge E of a polygon:

By the Euclidean algorithm:

$$
I=h n+r .
$$

We divide C into separate sub-cones C_{0}, \cdots, C_{n} where C_{1}, \cdots, C_{n} (known as T-cones) have lattice length h, and C_{0} has lattice length r and is known as an R-cone.

Singularity Content

Each cone corresponds to a cyclic quotient singularity of the corresponding toric variety. This allows us to define the singularity content of an edge E.

Let $P \subset N_{\mathbb{R}}$ be a polygon.

- Label the edges of P in clockwise order $E_{1}, \cdots E_{k}$.
- Each edge E_{i} corresponds to a cyclic quotient singularity σ_{i} corresponding to this cone.
- Let $\operatorname{SC}\left(E_{i}\right)=\left(n_{i}, \operatorname{res}\left(\sigma_{i}\right)\right)$.
- We define the singularity content of P to be:

$$
\mathrm{SC}(P)=\left(\sum_{i=1}^{k} n_{i}, \mathcal{B}\right)
$$

where $\mathcal{B}=\left\{\operatorname{res}\left(\sigma_{1}\right), \cdots, \operatorname{res}\left(\sigma_{k}\right)\right\}$.

Singularity Content

Consider the following polygon P.

- E_{0} and E_{1} both give T-cones.
- E_{2} gives an R-cone representing a $\frac{1}{5}(1,1)$ singularity.

So P has singularity content $\left(2,\left\{\frac{1}{5}(1,1)\right\}\right)$
Singularity content is an invariant under mutation!

Classification of Fano Polygons

Conjecture A: There exists a bijective correspondence between the set of mutation-equivalence classes of Fano polygons and the set of qG-deformation equivalence classes of locally qG-rigid TG del Pezzo surfaces with cyclic quotient singularities.
Recent results from Corti, Heuberger, Kasprzyk, Nill, Prince certainly support this conjecture.

Classification of Fano Polygons

- There are precisely 10 mutation-equivalence classes of Fano polygons with singularity content (n, \emptyset). They are in bijective correspondence with the 10 families of smooth del Pezzo surfaces.
- There are precisely 26 qG-deformation families of del Pezzo surfaces with $m \geq 1$ singular points of type $\frac{1}{3}(1,1)$ admitting a toric degeneration. They are in bijective correspondence with 26 mutation-equivalence classes of Fano polygons with singularity content $\left(n,\left\{m \times \frac{1}{3}(1,1)\right\}\right), m \geq 1$.

$$
\longleftrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Classification of Fano Polygons

Kutas and C. have designed an efficient algorithm to build on the work of Kasprzyk, Nill and Prince.

Input: Singularity Content (n, \mathcal{B}).
Output: Representative of every mutation-equivalence class of Fano polygons with singularity content (n, \mathcal{B}).

Assuming Conjecture A holds, this is equivalent to a classification of locally qG-rigid del Pezzo surfaces admitting a toric degeneration.

Classification of Fano Polygons

As a corollary to this algorithm we have the following classifications:

- There are precisely 14 mutation-equivalence classes of Fano polygons with singularity content

$$
\left(n,\left\{m_{1} \times \frac{1}{3}(1,1), m_{2} \times \frac{1}{6}(1,1)\right\}\right) \text { with } m_{1} \geq 0, m_{2}>0 .
$$

- There are precisely 12 mutation-equivalence classes of Fano polygons with singularity content $\left(n,\left\{m \times \frac{1}{5}(1,1)\right\}\right)$ with $m>0$.

Classification of Fano Polytopes

Figure 1: Minimal Representatives of Mutation-Equivalence Classes of Fano Polygons with Singularity Content

$$
\left(n,\left\{m_{1} \times \frac{1}{3}(1,1), m_{2} \times \frac{1}{6}(1,1)\right\}\right) \text { where } m_{1} \geq 0, m_{2}>0 .
$$

