Classification of Minimal Polygons with Specified Singularity Content

Daniel Cavey

(Joint work with Edwin Kutas)

University of Nottingham

2018

## Fano Varieties

A projective manifold, or a variety X over  $\mathbb{C}$  comes equipped with a notion of curvature. We use this to place X into one of three classes:



It is natural to ask for a classification of smooth Fano varieties in dimension n.

## Fano Varieties

Smooth varieties (manifolds) are classified up to dimension 3.

| Dimension | Number of Smooth | Examples                                               |
|-----------|------------------|--------------------------------------------------------|
|           | Fano Varieties   |                                                        |
| 1         | 1                | $\mathbb{P}^1$                                         |
| 2         | 10               | $\mathbb{P}^2$ , $\mathbb{P}^1 	imes \mathbb{P}^1$ and |
|           |                  | blow-up of $\mathbb{P}^2$ in $\leq$ 8 points           |
| 3         | 105              | $\mathbb{P}^3$ , etc.                                  |

The 2-dimensional classification is due to del Pezzo in 1880s and the 3-dimensional classification due to Mori–Mukai in 1980s. We do not know much in dimension greater or equal than 4.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Fano Polytopes

Let N be a lattice. A polytope P in  $N_{\mathbb{R}} = N \otimes \mathbb{R}$  is a set of the form

$$P = \Big\{ \sum_{u \in S} \lambda_u u : \lambda_u > 0 \text{ and } \sum_{u \in S} \lambda_u = 1 \Big\},$$

where  $S \subset N_{\mathbb{R}}$  is a finite set of points. A Fano polytope is a full-dimensional convex polytope such that

- the vertices  $\mathcal{V}(P) \in N$  are all primitive.
- ▶ the origin lies in the strict interior of *P*.

When N is a rank-two lattice P is known as a Fano polygon. We consider polytopes up to GL(N)-equivalence.

$$\stackrel{\bullet}{\longrightarrow} \cong \stackrel{\bullet}{\longrightarrow}$$
 via the change of basis  $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$  on  $N$ .

### Fano Polytopes

The span of each face *E* of a Fano polygon *P*, by which we mean  $\mathbb{R}_{\geq 0}E$ , defines a cone. We obtain a fan in  $N_{\mathbb{R}}$  corresponding to *P*.



This determines a *toric* del Pezzo surface  $X_P$ .



Many properties of  $X_P$  have combinatorial analogues in the Fano polygon P; examples include the singularities and the anticanonical degree  $(-K_{X_P})^2$ .

## Mirror Symmetry

Smooth Fano Variety



# Mirror Symmetry

Given a Fano manifold X, mirror symmetry tells us (conjecturally) how to associate a Laurent polynomial f which is said to be *mirror* dual to X.

- Choice of mirror dual is not necessarily unique.
- Can transform f via a mutation (a special birational transformation φ : (ℂ<sup>×</sup>)<sup>n</sup> → (ℂ<sup>×</sup>)<sup>n</sup>) to obtain another Laurent polynomial g
- ▶ g also mirror dual to X.
- This notion of a mutation is captured when we move to the Fano polytopes Newt(f) and Newt(g).

#### Mutation of Polygons

Let  $P \subset N_{\mathbb{R}}$  be a polygon, and E be an edge of P. Consider the primitive inward pointing normal  $\omega_E \in M = \text{Hom}(N, \mathbb{Z})$  of this edge. This vector can be thought of as a grading function on the polygon P. For  $h \in \mathbb{Z}$ , define

$$\omega_h(P) = \operatorname{conv}\{v \in N \cap P : \omega_E(v) = h\}.$$



#### Mutation of Polygons

Choose  $v_E$  to be a primitive vector of the lattice N such that  $\omega_E(v_E) = 0$ . Set  $F = \operatorname{conv}\{\mathbf{0}, v_E\}$ . For all h < 0, suppose that there exists  $G_h \subset N_{\mathbb{R}}$  such that

$$\{v \in \mathcal{V}(P) : \omega_E(v) = h\} \subseteq G_h + |h|F \subseteq \omega_h(P).$$

Then we define the *mutation* of P given by  $\omega_E$ , F and  $G_h$  to be

$$\operatorname{mut}_{(\omega_E,F)}(P) = \operatorname{conv}\Big(\bigcup_{h<0} G_h \cup \bigcup_{h\geq 0} (\omega_h(P) + hF)\Big) \subset N_{\mathbb{R}}$$



## Mutation of Polygons

#### Lemma

Let E be an edge of a Fano polygon P with primitive inner normal vector  $\omega_E \in M$ . Then P admits a mutation with respect to  $\omega$  if and only if  $|E \cap N| - 1 \ge |\omega(E)|$ .

We can use mutations to define an equivalence relation on the set of Fano polygons.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Cyclic Quotient Singularities

A quotient singularity  $\frac{1}{R}(a, b)$  is given by the action of  $\mu_R$  on  $\mathbb{C}^2$  by  $(x, y) \mapsto (\epsilon^a x, \epsilon^b y)$  where  $\epsilon$  is an  $R^{\text{th}}$  root of unity, and considering  $Z = \text{Spec}(\mathbb{C}[x, y]^{\mu_R})$ . The germ of the origin is the singularity.

For example consider a  $\frac{1}{2}(1,1)$  singularity. Let  $G = \mathbb{Z}/2\mathbb{Z}$  and  $\epsilon = -1$ . We consider the action of G on  $\mathbb{C}^2$  described by

$$-1\cdot(x,y)=(-x,-y).$$

We have

$$Z = \operatorname{Spec}(\mathbb{C}[x, y]^G)$$
  
= Spec( $\mathbb{C}[x^2, xy, y^2]$ )  
= Spec( $\mathbb{C}[u, v, w]/(uw - v^2)$ )  
=  $\mathbb{V}(uw - v^2) \subset \mathbb{C}^3$ .

#### Cyclic Quotient Singularities

A quotient singularity  $\frac{1}{R}(a, b)$  is cyclic if:

$$gcd(R, a) = gcd(R, b) = 1.$$

Set:

$$k = \gcd(a + b, R).$$

So:

$$a + b = kc$$
 and  $R = kr$ .

We can write the cyclic quotient singularity as

$$\frac{1}{kr}(1, kc - 1).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Cyclic Quotient Singularities

We have two types of singularities here:

- A cyclic quotient singularity  $\frac{1}{kr}(1, kc 1)$  is a *T*-singularity if  $r \mid k$ .
  - A T-singularity admits a qG-smoothing. (Kollar–Shepherd-Barron)
- A cyclic quotient singularity  $\frac{1}{kr}(1, kc 1)$  is an *R*-singularity if k < r.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 An R-singularity is rigid under qG-deformation. (Kollar–Shepherd-Barron)

Consider an arbitrary cyclic quotient singularity  $\sigma = \frac{1}{kr}(1, kc - 1)$ . By the Euclidean Algorithm there exists unique non-negative integers *n* and  $k_0$  such that:

$$k = nr + k_0$$
.

If  $k_0 > 0$ , then  $\sigma$  is qG-deformation equivalent to a  $\frac{1}{k_0 r}(1, k_0 c - 1)$  cyclic quotient singularity. The *residue* of  $\sigma$  is given by:

$$\operatorname{res}(\sigma) = egin{cases} arnothing \ arn$$

The *singularity content* of  $\sigma$  is given by the pair:

$$SC(\sigma) = (n, res(\sigma)).$$

Consider a cone C corresponding to an edge E of a polygon:



By the Euclidean algorithm:

$$l = hn + r$$
.

We divide *C* into separate sub-cones  $C_0, \dots, C_n$  where  $C_1, \dots, C_n$  (known as T-cones) have lattice length *h*, and  $C_0$  has lattice length *r* and is known as an R-cone.

Each cone corresponds to a cyclic quotient singularity of the corresponding toric variety. This allows us to define the singularity content of an edge E.

Let  $P \subset N_{\mathbb{R}}$  be a polygon.

- Label the edges of *P* in clockwise order  $E_1, \cdots E_k$ .
- Each edge E<sub>i</sub> corresponds to a cyclic quotient singularity σ<sub>i</sub> corresponding to this cone.

• Let 
$$SC(E_i) = (n_i, res(\sigma_i))$$
.

• We define the *singularity content* of *P* to be:

$$SC(P) = \left(\sum_{i=1}^{k} n_i, \mathcal{B}\right),$$

where  $\mathcal{B} = \{ \operatorname{res}(\sigma_1), \cdots, \operatorname{res}(\sigma_k) \}.$ 

Consider the following polygon P.



- $E_0$  and  $E_1$  both give T-cones.
- $E_2$  gives an R-cone representing a  $\frac{1}{5}(1,1)$  singularity.
- So *P* has singularity content  $\left(2, \left\{\frac{1}{5}(1,1)\right\}\right)$

#### Singularity content is an invariant under mutation!

**Conjecture A:** There exists a bijective correspondence between the set of mutation-equivalence classes of Fano polygons and the set of qG-deformation equivalence classes of locally qG-rigid TG del Pezzo surfaces with cyclic quotient singularities.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recent results from Corti, Heuberger, Kasprzyk, Nill, Prince certainly support this conjecture.

## Classification of Fano Polygons

- ► There are precisely 10 mutation-equivalence classes of Fano polygons with singularity content (n, Ø). They are in bijective correspondence with the 10 families of smooth del Pezzo surfaces.
- ▶ There are precisely 26 qG-deformation families of del Pezzo surfaces with  $m \ge 1$  singular points of type  $\frac{1}{3}(1,1)$  admitting a toric degeneration. They are in bijective correspondence with 26 mutation-equivalence classes of Fano polygons with singularity content  $(n, \{m \times \frac{1}{3}(1,1)\}), m \ge 1$ .

$$\underbrace{\bullet}{\bullet} \overset{\bullet}{\longrightarrow} \mathbb{P}^1 \times \mathbb{P}^1$$

Kutas and C. have designed an efficient algorithm to build on the work of Kasprzyk, Nill and Prince.

**Input:** Singularity Content  $(n, \mathcal{B})$ .

**Output:** Representative of every mutation-equivalence class of Fano polygons with singularity content (n, B).

Assuming Conjecture A holds, this is equivalent to a classification of locally qG-rigid del Pezzo surfaces admitting a toric degeneration.

As a corollary to this algorithm we have the following classifications:

- ▶ There are precisely 14 mutation-equivalence classes of Fano polygons with singularity content  $\left(n, \{m_1 \times \frac{1}{3}(1,1), m_2 \times \frac{1}{6}(1,1)\}\right)$  with  $m_1 \ge 0, m_2 > 0$ .
- ► There are precisely 12 mutation-equivalence classes of Fano polygons with singularity content (n, {m × 1/5(1,1)}) with m > 0.

## Classification of Fano Polytopes



Figure 1: Minimal Representatives of Mutation-Equivalence Classes of Fano Polygons with Singularity Content  $\left(n, \{m_1 \times \frac{1}{3}(1,1), m_2 \times \frac{1}{6}(1,1)\}\right)$  where  $m_1 \ge 0, m_2 > 0$ .