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Fano Varieties

A projective manifold, or a variety X over C comes equipped with
a notion of curvature. We use this to place X into one of three
classes:

General type Calabi — Yau Fano
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Negative Curvature Flat Positive Curvature
Infinitely Many Unknown Finitely Many

It is natural to ask for a classification of smooth Fano varieties in
dimension n.



Fano Varieties

Smooth varieties (manifolds) are classified up to dimension 3.

Dimension Number of Smooth Examples
Fano Varieties
1 1 P!
10 P?2, P! x P! and
blow-up of P2 in < 8 points
3 105 P3, etc.

The 2-dimensional classification is due to del Pezzo in 1880s and
the 3-dimensional classification due to Mori—Mukai in 1980s. We
do not know much in dimension greater or equal than 4.



Fano Polytopes

Let N be a lattice. A polytope P in Ng = N ® R is a set of the

form
P={> Au:r>0and Yo, =1},
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where S C Ny is a finite set of points. A Fano polytope is a
full-dimensional convex polytope such that

> the vertices V(P) € N are all primitive.
» the origin lies in the strict interior of P.

When N is a rank-two lattice P is known as a Fano polygon. We
consider polytopes up to GL(N)-equivalence.

-’ ] ‘ via the change of basis <é _11> on N.



Fano Polytopes

The span of each face E of a Fano polygon P, by which we mean
R>oE, defines a cone. We obtain a fan in Ng corresponding to P.

This determines a toric del Pezzo surface Xp.

Many properties of Xp have combinatorial analogues in the Fano
polygon P; examples include the singularities and the anticanonical
degree (—Kx, ).



Mirror Symmetry
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Mirror Symmetry

Given a Fano manifold X, mirror symmetry tells us (conjecturally)
how to associate a Laurent polynomial f which is said to be mirror
dual to X.

» Choice of mirror dual is not necessarily unique.

v

Can transform f via a mutation (a special birational
transformation ¢ : (C*)" — (C*)") to obtain another
Laurent polynomial g

» g also mirror dual to X.

v

This notion of a mutation is captured when we move to the
Fano polytopes Newt(f) and Newt(g).



Mutation of Polygons

Let P C Ng be a polygon, and E be an edge of P. Consider the
primitive inward pointing normal wg € M = Hom(N, Z) of this
edge. This vector can be thought of as a grading function on the
polygon P. For h € Z, define

wh(P) = conv{v € NN P :we(v) = h}.




Mutation of Polygons

Choose vg to be a primitive vector of the lattice NV such that
we(ve) = 0. Set F = conv{0, ve}. For all h < 0, suppose that
there exists G C Nk such that

{veV(P):we(v) = h} C G+ |h|F C wp(P).
Then we define the mutation of P given by wg, F and Gp, to be

mut(,. F)(P) = conv(U Gp U U (wn(P) + hF)) C Ng
h<0 h>0

Choosing ve=(1,—-1)
and G_1={(0,1)}




Mutation of Polygons

Lemma

Let E be an edge of a Fano polygon P with primitive inner normal
vector wg € M. Then P admits a mutation with respect to w if
and only if [ENN| —1> |w(E)]|.

We can use mutations to define an equivalence relation on the set
of Fano polygons.



Cyclic Quotient Singularities
A quotient singularity %(a, b) is given by the action of ug on C? by
(x,y) — (€x,€Py) where € is an R™ root of unity, and considering
Z = Spec(C|x, y]*r). The germ of the origin is the singularity.

For example consider a 3(1, 1) singularity. Let G = Z/2Z and
€ = —1. We consider the action of G on C? described by

=1-(x,y) = (=x,—y).
We have

Z = Spec(Clx, y] )

(
= Spec((C[x S XY, Y )
= Spec(C[U v, W]/(uwf v )) v
= V(uw — v?) c C3.



Cyclic Quotient Singularities

A quotient singularity %(a, b) is cyclic if:
gcd(R, a) = gcd(R, b) = 1.
Set:
k = gcd(a+ b, R).

So:
a+b=kecand R = kr.

We can write the cyclic quotient singularity as

1
—(1, kc — 1).



Cyclic Quotient Singularities

We have two types of singularities here:
» A cyclic quotient singularity %(1, kc — 1) is a T-singularity if
r| k.
» A T-singularity admits a qG-smoothing.
(Kollar=Shepherd-Barron)
» A cyclic quotient singularity %(1, kc — 1) is an R-singularity if
k<r.
» An R-singularity is rigid under qG-deformation.
(Kollar-Shepherd-Barron)



Singularity Content

Consider an arbitrary cyclic quotient singularity o = %(1, ke —1).
By the Euclidean Algorithm there exists unique non-negative
integers n and kp such that:

k = nr + ko.

If ko > 0, then o is qG-deformation equivalent to a %(1, koc — 1)
cyclic quotient singularity. The residue of o is given by:

)= {? if kg =0
res(o) =
%(1, koc — 1) , otherwise.

The singularity content of o is given by the pair:

SC(c) = (n,res(c)).



Singularity Content

Consider a cone C corresponding to an edge E of a polygon:

By the Euclidean algorithm:
[ =hn—+r.

We divide C into separate sub-cones Gy, --- , C, where Cy,---, C,
(known as T-cones) have lattice length h, and Cy has lattice length
r and is known as an R-cone.



Singularity Content

Each cone corresponds to a cyclic quotient singularity of the
corresponding toric variety. This allows us to define the singularity
content of an edge E.

Let P C Ng be a polygon.

>

>

Label the edges of P in clockwise order Eq, - - - Ej.

Each edge E; corresponds to a cyclic quotient singularity o;
corresponding to this cone.

Let SC(Ej) = (nj,res(o7)).
We define the singularity content of P to be:

k

SC(P) = (2_mi:B).

where B = {res(o1),--- ,res(ok)}.



Singularity Content

Consider the following polygon P.

» Ep and E; both give T-cones.

» E; gives an R-cone representing a £(1,1) singularity.

1
5
So P has singularity content (2, {£(1,1)})

Singularity content is an invariant under mutation!




Classification of Fano Polygons

Conjecture A: There exists a bijective correspondence between
the set of mutation-equivalence classes of Fano polygons and the
set of qG-deformation equivalence classes of locally qG-rigid TG
del Pezzo surfaces with cyclic quotient singularities.

Recent results from Corti, Heuberger, Kasprzyk, Nill, Prince
certainly support this conjecture.



Classification of Fano Polygons

> There are precisely 10 mutation-equivalence classes of Fano
polygons with singularity content (n,?). They are in bijective
correspondence with the 10 families of smooth del Pezzo
surfaces.

» There are precisely 26 qG-deformation families of del Pezzo
surfaces with m > 1 singular points of type %(1, 1) admitting
a toric degeneration. They are in bijective correspondence
with 26 mutation-equivalence classes of Fano polygons with
singularity content (n, {m x 1(1,1)}),m > 1.

‘ Pl x P!



Classification of Fano Polygons

Kutas and C. have designed an efficient algorithm to build on the
work of Kasprzyk, Nill and Prince.

Input: Singularity Content (n, B).
Output: Representative of every mutation-equivalence class of
Fano polygons with singularity content (n, B).

Assuming Conjecture A holds, this is equivalent to a classification
of locally qG-rigid del Pezzo surfaces admitting a toric
degeneration.



Classification of Fano Polygons

As a corollary to this algorithm we have the following
classifications:

> There are precisely 14 mutation-equivalence classes of Fano
polygons with singularity content
(n {m x (1 1), my x (1, 1)}) with my >0, my > 0.

> There are precisely 12 mutation-equivalence classes of Fano

polygons with singularity content ( ,{m x (1 1)}) with
m > 0.



Classification of Fano Polytopes
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Figure 1: Minimal Representatives of Mutation-Equivalence Classes of
Fano Polygons with Singularity Content

(n,{ml x 3(1,1), mp x %(1,1)}) where m; > 0, m, > 0.



