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Fano Varieties

A projective manifold, or a variety X over C comes equipped with
a notion of curvature. We use this to place X into one of three
classes:

General type Calabi – Yau Fano

Negative Curvature Flat Positive Curvature
Infinitely Many Unknown Finitely Many

It is natural to ask for a classification of smooth Fano varieties in
dimension n.



Fano Varieties

Smooth varieties (manifolds) are classified up to dimension 3.

Dimension Number of Smooth
Fano Varieties

Examples

1 1 P1

2 10 P2, P1 × P1 and
blow-up of P2 in ≤ 8 points

3 105 P3, etc.

The 2-dimensional classification is due to del Pezzo in 1880s and
the 3-dimensional classification due to Mori–Mukai in 1980s. We
do not know much in dimension greater or equal than 4.



Fano Polytopes

Let N be a lattice. A polytope P in NR = N ⊗ R is a set of the
form

P =
{∑

u∈S
λuu : λu > 0 and

∑
u∈S

λu = 1
}
,

where S ⊂ NR is a finite set of points. A Fano polytope is a
full-dimensional convex polytope such that

I the vertices V(P) ∈ N are all primitive.

I the origin lies in the strict interior of P.

When N is a rank-two lattice P is known as a Fano polygon. We
consider polytopes up to GL(N)-equivalence.

∼= via the change of basis

(
1 −1
0 1

)
on N.



Fano Polytopes

The span of each face E of a Fano polygon P, by which we mean
R≥0E , defines a cone. We obtain a fan in NR corresponding to P.

←→

This determines a toric del Pezzo surface XP .

←→ P2

Many properties of XP have combinatorial analogues in the Fano
polygon P; examples include the singularities and the anticanonical
degree (−KXP

)2.



Mirror Symmetry

Smooth Fano Variety

Laurent Polynomial
f = x + y + z + 1

xyz

Toric Fano Variety Fano Polytope

Mirror Symmetry

deformation

Newt(f )

Toric Geometry



Mirror Symmetry

Given a Fano manifold X , mirror symmetry tells us (conjecturally)
how to associate a Laurent polynomial f which is said to be mirror
dual to X .

I Choice of mirror dual is not necessarily unique.

I Can transform f via a mutation (a special birational
transformation φ : (C×)n → (C×)n) to obtain another
Laurent polynomial g

I g also mirror dual to X .

I This notion of a mutation is captured when we move to the
Fano polytopes Newt(f ) and Newt(g).



Mutation of Polygons

Let P ⊂ NR be a polygon, and E be an edge of P. Consider the
primitive inward pointing normal ωE ∈ M = Hom(N,Z) of this
edge. This vector can be thought of as a grading function on the
polygon P. For h ∈ Z, define

ωh(P) = conv{v ∈ N ∩ P : ωE (v) = h}.

E

-1

012



Mutation of Polygons
Choose vE to be a primitive vector of the lattice N such that
ωE (vE ) = 0. Set F = conv{0, vE}. For all h < 0, suppose that
there exists Gh ⊂ NR such that

{v ∈ V(P) : ωE (v) = h} ⊆ Gh + |h|F ⊆ ωh(P).

Then we define the mutation of P given by ωE , F and Gh to be

mut(ωE ,F )(P) = conv
(⋃
h<0

Gh ∪
⋃
h≥0

(ωh(P) + hF )
)
⊂ NR

E

-1

012

Choosing vE=(1,−1)
and G−1={(0,1)}−−−−−−−−−−−−→

-1

0

1

2



Mutation of Polygons

Lemma
Let E be an edge of a Fano polygon P with primitive inner normal
vector ωE ∈ M. Then P admits a mutation with respect to ω if
and only if |E ∩ N| − 1 ≥ |ω(E )|.
We can use mutations to define an equivalence relation on the set
of Fano polygons.



Cyclic Quotient Singularities
A quotient singularity 1

R (a, b) is given by the action of µR on C2 by
(x , y) 7→ (εax , εby) where ε is an Rth root of unity, and considering
Z = Spec(C[x , y ]µR ). The germ of the origin is the singularity.

For example consider a 1
2(1, 1) singularity. Let G = Z/2Z and

ε = −1. We consider the action of G on C2 described by

−1 · (x , y) = (−x ,−y).

We have

Z = Spec
(
C[x , y ]G

)
= Spec

(
C[x2, xy , y2]

)
= Spec

(
C[u, v ,w ]/(uw − v 2)

)
= V(uw − v2) ⊂ C3.



Cyclic Quotient Singularities

A quotient singularity 1
R (a, b) is cyclic if:

gcd(R, a) = gcd(R, b) = 1.

Set:
k = gcd(a + b,R).

So:
a + b = kc and R = kr .

We can write the cyclic quotient singularity as

1

kr
(1, kc − 1).



Cyclic Quotient Singularities

We have two types of singularities here:
I A cyclic quotient singularity 1

kr (1, kc − 1) is a T-singularity if
r | k .

I A T-singularity admits a qG-smoothing.
(Kollar–Shepherd-Barron)

I A cyclic quotient singularity 1
kr (1, kc − 1) is an R-singularity if

k < r .
I An R-singularity is rigid under qG-deformation.

(Kollar–Shepherd-Barron)



Singularity Content

Consider an arbitrary cyclic quotient singularity σ = 1
kr (1, kc − 1).

By the Euclidean Algorithm there exists unique non-negative
integers n and k0 such that:

k = nr + k0.

If k0 > 0, then σ is qG-deformation equivalent to a 1
k0r

(1, k0c − 1)
cyclic quotient singularity. The residue of σ is given by:

res(σ) =

{
∅ , if k0 = 0
1
k0r

(1, k0c − 1) , otherwise.

The singularity content of σ is given by the pair:

SC(σ) =
(
n, res(σ)

)
.



Singularity Content

Consider a cone C corresponding to an edge E of a polygon:

h

l

By the Euclidean algorithm:

l = hn + r .

We divide C into separate sub-cones C0, · · · ,Cn where C1, · · · ,Cn

(known as T-cones) have lattice length h, and C0 has lattice length
r and is known as an R-cone.



Singularity Content

Each cone corresponds to a cyclic quotient singularity of the
corresponding toric variety. This allows us to define the singularity
content of an edge E .

Let P ⊂ NR be a polygon.

I Label the edges of P in clockwise order E1, · · ·Ek .

I Each edge Ei corresponds to a cyclic quotient singularity σi
corresponding to this cone.

I Let SC(Ei ) =
(
ni , res(σi )

)
.

I We define the singularity content of P to be:

SC(P) =
( k∑
i=1

ni ,B
)
,

where B = {res(σ1), · · · , res(σk)}.



Singularity Content

Consider the following polygon P.

E0

E1

E2

I E0 and E1 both give T-cones.

I E2 gives an R-cone representing a 1
5(1, 1) singularity.

So P has singularity content
(
2, {15(1, 1)}

)
Singularity content is an invariant under mutation!



Classification of Fano Polygons

Conjecture A: There exists a bijective correspondence between
the set of mutation-equivalence classes of Fano polygons and the
set of qG-deformation equivalence classes of locally qG-rigid TG
del Pezzo surfaces with cyclic quotient singularities.

Recent results from Corti, Heuberger, Kasprzyk, Nill, Prince
certainly support this conjecture.



Classification of Fano Polygons

I There are precisely 10 mutation-equivalence classes of Fano
polygons with singularity content (n, ∅). They are in bijective
correspondence with the 10 families of smooth del Pezzo
surfaces.

I There are precisely 26 qG-deformation families of del Pezzo
surfaces with m ≥ 1 singular points of type 1

3(1, 1) admitting
a toric degeneration. They are in bijective correspondence
with 26 mutation-equivalence classes of Fano polygons with
singularity content (n, {m × 1

3(1, 1)}),m ≥ 1.

←→ P1 × P1



Classification of Fano Polygons

Kutas and C. have designed an efficient algorithm to build on the
work of Kasprzyk, Nill and Prince.

Input: Singularity Content (n,B).
Output: Representative of every mutation-equivalence class of
Fano polygons with singularity content (n,B).

Assuming Conjecture A holds, this is equivalent to a classification
of locally qG-rigid del Pezzo surfaces admitting a toric
degeneration.



Classification of Fano Polygons

As a corollary to this algorithm we have the following
classifications:

I There are precisely 14 mutation-equivalence classes of Fano
polygons with singularity content(
n, {m1 × 1

3(1, 1),m2 × 1
6(1, 1)}

)
with m1 ≥ 0,m2 > 0.

I There are precisely 12 mutation-equivalence classes of Fano

polygons with singularity content
(
n, {m × 1

5(1, 1)}
)

with

m > 0.



Classification of Fano Polytopes
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Figure 1: Minimal Representatives of Mutation-Equivalence Classes of
Fano Polygons with Singularity Content(
n, {m1 × 1

3 (1, 1),m2 × 1
6 (1, 1)}

)
where m1 ≥ 0,m2 > 0.


