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Volume of centrally symmetric convex bodies

Theorem (Minkowski, 1889)

Let Λ be a lattice in Rn, and K ⊂ Rn a convex body which is
centrally symmetric w.r.t. the origin and contains no other lattice
points, then

vol(K ) ≤ 2n det(Λ)

where vol(K ) is the Euclidean volume.

Λ = Z2
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Non-symmetric bodies

Question: What if we forget the centrally symmetric requirement?

Pancakes can have arbitrarily large volume!
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Lattice width

For a vector u ∈ Λ∗, the width of a convex body K w.r.t u is

ω(K , u) = max
v1,v2∈K

(< v1, u > − < v2, u >),

which is |{lattice hyperplanes with normal u which meet K}| − 1 if
K is a lattice polytope.
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Width of lattice-point-free bodies

Theorem (Flatness theorem, Kinchine 1948)

If K ⊂ Rn is a convex body containing no lattice points, then its
width is bounded by a constant f (n).

Exploited by Lenstra (1983) for a polynomial time algorithm which
solves integer linear programs in fixed dimension.

This raised the problem of finding the optimal constant f (n).

Kannan-Lovasz, 1988: f (n) ∈ O(n2).
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Covering minima

Definition (Kannan-Lovasz, 1988)

The i-th covering minimum of a convex body K ⊆ Rn w.r.t. Λ is

µi (K ,Λ) = min{µ ≥ 0 : µK + Λ ∩ L 6= ∅ for all (n − i)-dim’l

affine subspaces L}

Example:
n = 2,
Λ = Z2,
i = 1
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The standard simplex

Let S0
n = conv(0, e1, . . . , en)

be the standard n-dimensional

simplex.

µi =?

n = 2, i = 1
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First observations on covering minima

For a convex body K ⊆ Rn and a lattice Λ,

0 = µ0(K ,Λ) ≤ µ1(K ,Λ) ≤ · · · ≤ µn(K ,Λ),

µ1(K ,Λ) = ω(K ,Λ)−1: for a given lattice direction u,

µn(K ,Λ) is the well-known covering radius of K ,

Kannan and Lovasz thus connected the covering radius and
the width of a convex body into a unified vision;

Used the interplay of the covering minima to prove a result
about width (flatness theorem);

They did much more! These covering minima are (in some
sense) analogues of the successive minima of Minkowski,
and their goal was to prove bounds for the volume with
similar flavor to Minkowski’s theorems.
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Our conjectures and their equivalences

What happens for the simplex S1
n = conv{e1, . . . , en,−1}?

Conjecture (Schymura-Gonzales)

The i-th covering minimum of S1
n satisfies

µi (S
1
n ,Zn) =

i

2
.

Known for i = 1, n. For the remaining i , one inequality is easy,
since:
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The i-th covering minimum of S1
n satisfies

µi (S
1
n ,Zn) =

i
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Known for i = 1, n. For the remaining i , one inequality is easy,
since:

µn−1(S1
n ,Zn) ≥ µn−1(π(S1
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Our conjectures and their equivalences

We could show that the previous conjecture is equivalent to the
following conjecture concerning the covering radius:

Conjecture

For any P lattice polytope with at least 1 interior lattice point, we
have

µn(P,Zn) ≤ µn(S1
n ,Zn).
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k = 1 of the following conjecture concerning the covering radius:

Conjecture

For any P lattice polytope with at least k interior lattice points,
k ∈ Z≥0, we have
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n = conv{e1, . . . , en,−k1}.



Our conjectures and their equivalences

We could show that the previous conjecture is equivalent to case
k = 1 of the following conjecture concerning the covering radius:

Conjecture

For any P lattice polytope with at least k interior lattice points,
k ∈ Z≥0, we have

µn(P,Zn) ≤ µn(Sk
n ,Zn),

where Sk
n = conv{e1, . . . , en,−k1}. So what is µn(Sk

n ,Zn)?



Conjectured maximum

Given λ = (λ0, . . . , λn) ∈ Zn+1
>0 ,

we define the simplex

Sλ = conv(−λ01, λ1e1, . . . , λnen).

Theorem (C-Santos-Schymura ’18+)

µn(Sλ0,...,λn) =

∑
i ,j∈[n],i<j

( ∏
k 6=i ,k 6=j

λk

)
∑
i∈[n]

∏
k 6=i

λk



Covering radius vs volume and surface area

This leads us to a (final!) conjecture relating the covering radius
to a quotient of ”lattice surface area” and lattice volume:

Conjecture

Let P = conv(v0, . . . , vn) be a lattice simplex, and p ∈ int(P).
Denote by πi the projection along −→pvi . Then:

µn(S ,Zn) ≤
∑n

i=0 Vol(πi (S), πi (Zn))

2 Vol(S ,Zn)
.



Covering radius vs volume and surface area

For us this is exciting because it would be a discrete analogue of
the following theorem of Wills:

Theorem (Wills, 1968)

For every proper convex body K ⊆ Rn

µn(K ,Zn) ≤ surf(K )

2 vol(K )
,

where vol(K ) and surf(K ) are the Euclidean volume and surface
area of K.


