Covering minima of lattice polytopes

Giulia Codenotti Freie Universität Berlin

Osaka, 31th of July, 2018

joint work with Francisco Santos and Matthias Schymura

Volume of centrally symmetric convex bodies

Theorem (Minkowski, 1889)

Let Λ be a lattice in \mathbb{R}^n , and $K \subset \mathbb{R}^n$ a convex body which is centrally symmetric w.r.t. the origin and contains no other lattice points, then

 $vol(K) \leq 2^n \det(\Lambda)$

where vol(K) is the Euclidean volume.

Volume of centrally symmetric convex bodies

Theorem (Minkowski, 1889)

Let Λ be a lattice in \mathbb{R}^n , and $K \subset \mathbb{R}^n$ a convex body which is centrally symmetric w.r.t. the origin and contains no other lattice points, then

 $vol(K) \leq 2^n \det(\Lambda)$

where vol(K) is the Euclidean volume.

Non-symmetric bodies

Question: What if we forget the centrally symmetric requirement?

Non-symmetric bodies

Question: What if we forget the centrally symmetric requirement? Pancakes can have arbitrarily large volume!

Lattice width

For a vector $u \in \Lambda^*$, the **width** of a convex body K w.r.t u is

$$\omega(K, u) = \max_{v_1, v_2 \in K} (\langle v_1, u \rangle - \langle v_2, u \rangle),$$

which is $|\{ \text{lattice hyperplanes with normal } u \text{ which meet } K \}| - 1$ if K is a lattice polytope.

Lattice width

For a vector $u \in \Lambda^*$, the **width** of a convex body K w.r.t u is

$$\omega(K, u) = \max_{v_1, v_2 \in K} (\langle v_1, u \rangle - \langle v_2, u \rangle),$$

which is $|\{ \text{lattice hyperplanes with normal } u \text{ which meet } K \}| - 1$ if K is a lattice polytope.

The **lattice width** of a convex body K w.r.t. the lattice Λ is

 $\omega(K,\Lambda)=\min_{u\in\Lambda^*}\omega(K,u).$

The **lattice width** of a convex body K w.r.t. the lattice Λ is

$$\omega(K,\Lambda)=\min_{u\in\Lambda^*}\omega(K,u).$$

If $K \subset \mathbb{R}^n$ is a convex body containing no lattice points, then its width is bounded by a constant f(n).

If $K \subset \mathbb{R}^n$ is a convex body containing no lattice points, then its width is bounded by a constant f(n).

Exploited by Lenstra (1983) for a polynomial time algorithm which solves integer linear programs in fixed dimension.

If $K \subset \mathbb{R}^n$ is a convex body containing no lattice points, then its width is bounded by a constant f(n).

Exploited by Lenstra (1983) for a polynomial time algorithm which solves integer linear programs in fixed dimension.

This raised the problem of finding the optimal constant f(n).

If $K \subset \mathbb{R}^n$ is a convex body containing no lattice points, then its width is bounded by a constant f(n).

Exploited by Lenstra (1983) for a polynomial time algorithm which solves integer linear programs in fixed dimension.

This raised the problem of finding the optimal constant f(n).

Kannan-Lovasz, 1988: $f(n) \in \mathcal{O}(n^2)$.

Definition (Kannan-Lovasz, 1988)

$$\mu_i(K, \Lambda) = \min\{\mu \ge 0 : \mu K + \Lambda \cap L \neq \emptyset \text{ for all } (n - i)\text{-dim'l} \\ \text{affine subspaces } L\}$$

Definition (Kannan-Lovasz, 1988)

$$\mu_i(K, \Lambda) = \min\{\mu \ge 0 : \mu K + \Lambda \cap L \neq \emptyset \text{ for all } (n - i)\text{-dim'l} \\ \text{affine subspaces } L\}$$

Definition (Kannan-Lovasz, 1988)

$$\mu_i(K, \Lambda) = \min\{\mu \ge 0 : \mu K + \Lambda \cap L \neq \emptyset \text{ for all } (n - i) \text{-dim'l}$$
affine subspaces $L\}$

Definition (Kannan-Lovasz, 1988)

$$\mu_i(K, \Lambda) = \min\{\mu \ge 0 : \mu K + \Lambda \cap L \neq \emptyset \text{ for all } (n - i) \text{-dim'l}$$
affine subspaces $L\}$

Definition (Kannan-Lovasz, 1988)

$$\mu_i(K, \Lambda) = \min\{\mu \ge 0 : \mu K + \Lambda \cap L \neq \emptyset \text{ for all } (n - i)\text{-dim'l} \\ \text{affine subspaces } L\}$$

Definition (Kannan-Lovasz, 1988)

The *i*-th covering minimum of a convex body $K \subseteq \mathbb{R}^n$ w.r.t. Λ is

 $\mu_i(K, \Lambda) = \min\{\mu \ge 0 : \mu K + \Lambda \cap L \neq \emptyset \text{ for all } (n - i) \text{-dim'l}$ affine subspaces $L\}$

Definition (Kannan-Lovasz, 1988)

The *i*-th covering minimum of a convex body $K \subseteq \mathbb{R}^n$ w.r.t. Λ is

 $\mu_i(K, \Lambda) = \min\{\mu \ge 0 : \mu K + \Lambda \cap L \neq \emptyset \text{ for all } (n - i) \text{-dim'l}$ affine subspaces $L\}$

n = 2, i = 1

Let
$$S_n^0 = \operatorname{conv}(0, e_1, \dots, e_n)$$

be the standard *n*-dimensional
simplex.

$$\mu_i = ?$$

$$n = 2, i = 1$$

Let $S_n^0 = \operatorname{conv}(0, e_1, \dots, e_n)$ be the standard *n*-dimensional simplex.

$$\mu_i = ?$$

Let
$$S_n^0 = \operatorname{conv}(0, e_1, \dots, e_n)$$

be the standard *n*-dimensional
simplex.

$$\mu_i = ?$$

Let $S_n^0 = \operatorname{conv}(0, e_1, \dots, e_n)$ be the standard *n*-dimensional simplex.

 $\mu_i = \mathbf{i}$

For a convex body $K \subseteq \mathbb{R}^n$ and a lattice Λ ,

For a convex body $K \subseteq \mathbb{R}^n$ and a lattice Λ ,

•
$$0 = \mu_0(K, \Lambda) \le \mu_1(K, \Lambda) \le \cdots \le \mu_n(K, \Lambda),$$

• $\mu_1(K, \Lambda) = \omega(K, \Lambda)^{-1}$: for a given lattice direction u,

For a convex body $K \subseteq \mathbb{R}^n$ and a lattice Λ ,

•
$$0 = \mu_0(K, \Lambda) \le \mu_1(K, \Lambda) \le \cdots \le \mu_n(K, \Lambda),$$

• $\mu_1(K, \Lambda) = \omega(K, \Lambda)^{-1}$: for a given lattice direction u,

For a convex body $K \subseteq \mathbb{R}^n$ and a lattice Λ ,

- $0 = \mu_0(K, \Lambda) \le \mu_1(K, \Lambda) \le \cdots \le \mu_n(K, \Lambda),$
- $\mu_1(K, \Lambda) = \omega(K, \Lambda)^{-1}$: for a given lattice direction u,

For a convex body $K \subseteq \mathbb{R}^n$ and a lattice Λ ,

For a convex body $K \subseteq \mathbb{R}^n$ and a lattice Λ ,

• $0 = \mu_0(K, \Lambda) \le \mu_1(K, \Lambda) \le \cdots \le \mu_n(K, \Lambda)$,

•
$$\mu_1(K,\Lambda) = \omega(K,\Lambda)^{-1}$$
:

• $\mu_n(K, \Lambda)$ is the well-known **covering radius** of K,

For a convex body $K \subseteq \mathbb{R}^n$ and a lattice Λ ,

•
$$\mu_1(K,\Lambda) = \omega(K,\Lambda)^{-1}$$
:

- $\mu_n(K, \Lambda)$ is the well-known **covering radius** of K,
- Kannan and Lovasz thus connected the covering radius and the width of a convex body into a unified vision;

For a convex body $K \subseteq \mathbb{R}^n$ and a lattice Λ ,

•
$$\mu_1(K,\Lambda) = \omega(K,\Lambda)^{-1}$$
:

- $\mu_n(K, \Lambda)$ is the well-known **covering radius** of K,
- Kannan and Lovasz thus connected the covering radius and the width of a convex body into a unified vision;
- Used the interplay of the covering minima to prove a result about width (flatness theorem);

For a convex body $K \subseteq \mathbb{R}^n$ and a lattice Λ ,

•
$$\mu_1(K,\Lambda) = \omega(K,\Lambda)^{-1}$$
:

- $\mu_n(K, \Lambda)$ is the well-known **covering radius** of K,
- Kannan and Lovasz thus connected the covering radius and the width of a convex body into a unified vision;
- Used the interplay of the covering minima to prove a result about width (flatness theorem);
- They did much more! These covering minima are (in some sense) analogues of the **successive minima** of Minkowski, and their goal was to prove bounds for the volume with similar flavor to Minkowski's theorems.

Our conjectures and their equivalences

What happens for the simplex $S_n^1 = \operatorname{conv}\{e_1, \ldots, e_n, -1\}$?

Conjecture (Schymura-Gonzales)

The *i*-th covering minimum of S_n^1 satisfies $\mu_i(S_n^1,\mathbb{Z}^n)=rac{i}{2}.$

Known for i = 1, n. For the remaining *i*, one inequality is easy, since:

Our conjectures and their equivalences

What happens for the simplex $S_n^1 = \operatorname{conv} \{e_1, \ldots, e_n, -1\}$?

Conjecture (Schymura-Gonzales)

The *i*-th covering minimum of S_n^1 satisfies $\mu_i(S_n^1, \mathbb{Z}^n) = \frac{i}{2}.$

Known for i = 1, n. For the remaining *i*, one inequality is easy, since:

$$\mu_{n-1}(S_n^1, \mathbb{Z}^n) \ge \mu_{n-1}(\pi(S_n^1), \pi(\mathbb{Z}^n)) = \mu_{n-1}(S_{n-1}^1, \mathbb{Z}^{n-1}) = \frac{n-1}{2}$$

We could show that the previous conjecture is equivalent to the following conjecture concerning the covering radius:

Conjecture

For any ${\it P}$ lattice polytope with at least 1 interior lattice point, we have

 $\mu_n(P,\mathbb{Z}^n) \leq \mu_n(S_n^1,\mathbb{Z}^n).$

We could show that the previous conjecture is equivalent to case k = 1 of the following conjecture concerning the covering radius:

Conjecture

For any *P* lattice polytope with at least *k* interior lattice points, $k \in \mathbb{Z}_{\geq 0}$, we have

$$\mu_n(P,\mathbb{Z}^n) \leq \mu_n(S_n^k,\mathbb{Z}^n),$$

where $S_n^k = \text{conv}\{e_1, ..., e_n, -k\mathbf{1}\}.$

We could show that the previous conjecture is equivalent to case k = 1 of the following conjecture concerning the covering radius:

Conjecture

For any *P* lattice polytope with at least *k* interior lattice points, $k \in \mathbb{Z}_{\geq 0}$, we have

$$\mu_n(P,\mathbb{Z}^n) \leq \mu_n(S_n^k,\mathbb{Z}^n),$$

where $S_n^k = \operatorname{conv}\{e_1, \ldots, e_n, -k\mathbf{1}\}$. So what is $\mu_n(S_n^k, \mathbb{Z}^n)$?

Conjectured maximum

Given $\lambda = (\lambda_0, \ldots, \lambda_n) \in \mathbb{Z}_{>0}^{n+1}$, we define the simplex $S_{\lambda} = \operatorname{conv}(-\lambda_0 \mathbf{1}, \lambda_1 e_1, \ldots, \lambda_n e_n).$ λ2=3 Theorem (C-Santos-Schymura '18+) <u>λ1</u>= $\mu_n(S_{\lambda_0,\dots,\lambda_n}) = \frac{\sum\limits_{i,j\in[n],i< j} \left(\prod\limits_{k\neq i,k\neq j} \lambda_k\right)}{\sum \prod \lambda_k}$ 0 i∈[n]k≠i

This leads us to a (final!) conjecture relating the covering radius to a quotient of "lattice surface area" and lattice volume:

Conjecture

Let $P = \operatorname{conv}(v_0, \ldots, v_n)$ be a lattice simplex, and $p \in int(P)$. Denote by π_i the projection along $\overrightarrow{pv_i}$. Then:

$$\mu_n(S,\mathbb{Z}^n) \leq \frac{\sum_{i=0}^n \operatorname{Vol}(\pi_i(S),\pi_i(\mathbb{Z}^n))}{2\operatorname{Vol}(S,\mathbb{Z}^n)}$$

For us this is exciting because it would be a discrete analogue of the following theorem of Wills:

Theorem (Wills, 1968)

For every proper convex body $K \subseteq \mathbb{R}^n$

$$\mu_n(K,\mathbb{Z}^n) \leq \frac{\operatorname{surf}(K)}{2\operatorname{vol}(K)},$$

where vol(K) and surf(K) are the Euclidean volume and surface area of K.