Predicting the Integer Decomposition Property via Machine Learning

Brian Davis

2 Aug 2018

University of Kentucky

Hilbert Basics

$$\boldsymbol{\nu} = \{\nu_1, \ldots, \nu_{d+1}\} \subset \mathbb{Z}^d \qquad \text{ cone}(\boldsymbol{\nu}) = \mathbb{R}_{\geq 0} \big\langle (1, \nu_1), \ldots, (1, \nu_{d+1}) \big\rangle \subset \mathbb{R}^{d+1}$$

1

Hilbert basis = additively minimal lattice points

We say that the simplex with vertices $\{v_1, \ldots, v_{d+1}\}$ has the **Integer Decomposition Property (IDP)** if for all elements z of the Hilbert basis $HB(\mathbf{v})$,

 $\operatorname{height}(z) := z_0$

is equal to 1.

WANTED: Large, diverse set of examples of IDP simplices

PROPOSED SOLUTION:

Construct very large test set and use Normaliz to reject non-IDP examples

PROPOSED SOLUTION:

Construct very large test set and use Normaliz to reject non-IDP examples

PROBLEM:

Computing Hilbert basis over very large test sets is expensive (computationally)

PROPOSED SOLUTION:

Construct very large test set and use Normaliz to reject non-IDP examples

PROBLEM:

Computing Hilbert basis over very large test sets is expensive (computationally)

PROPOSED SOLUTION:

Consider \mathbb{IDP} to be a 0/1 function and approximate it with an easily evaluated function $\widehat{\mathbb{IDP}}.$

Apply $\widehat{\mathbb{IDP}}$ to very large test set to get <u>likely</u> IDP candidates, then validate candidates with Normaliz.

An intermediate step

The fundamental parallelepiped Π is the set

$$\left\{\sum_{i=1}^{d+1}\gamma_i(1,v_i) \ : \ 0\leq \gamma_i < 1
ight\}$$

FACT:

 $\operatorname{HB}(\mathbf{v})$ is the union of $\{(1, v_1), \dots, (1, v_{d+1})\}$ and the additively minimal elements of

 $\Pi\cap\mathbb{Z}^{d+1}$

Map
$$z \in \Pi$$
 to $\{0, \dots, n-1\}^{d+1}$
by
 $z \mapsto (\lfloor n \gamma_1 \rfloor, \dots, \lfloor n \gamma_{d+1} \rfloor)$

Map
$$z \in \Pi$$
 to $\{0, \dots, n-1\}^{d+1}$
by $z \mapsto (\lfloor n \ \gamma_1
floor, \dots, \lfloor n \ \gamma_{d+1}
floor)$

EX:
$$n = d = 2$$

$$z = \frac{3}{4}(1, v_1) + \frac{2}{4}(1, v_2) + \frac{3}{4}(1, v_3)$$

$$z \mapsto \left(\left\lfloor 2 \cdot \frac{3}{4} \right\rfloor, \left\lfloor 2 \cdot \frac{2}{4} \right\rfloor, \left\lfloor 2 \cdot \frac{3}{4} \right\rfloor \right)$$

$$= (1, 1, 1) \in \{0, 1\}^3$$

Map
$$z \in \Pi$$
 to $\{0, \dots, n-1\}^{d+1}$
by
 $z \mapsto (\lfloor n \gamma_1 \rfloor, \dots, \lfloor n \gamma_{d+1} \rfloor)$

Record the box containing z

EX: n = d = 2

$$\begin{aligned} z &= \frac{3}{4}(1, v_1) + \frac{2}{4}(1, v_2) + \frac{3}{4}(1, v_3) \\ z &\mapsto \left(\left\lfloor 2 \cdot \frac{3}{4} \right\rfloor, \left\lfloor 2 \cdot \frac{2}{4} \right\rfloor, \left\lfloor 2 \cdot \frac{3}{4} \right\rfloor \right) \\ &= (1, 1, 1) \in \{0, 1\}^3 \end{aligned}$$

Map
$$z \in \Pi$$
 to $\{0, \dots, n-1\}^{d+1}$
by
 $z \mapsto (\lfloor n \gamma_1 \rfloor, \dots, \lfloor n \gamma_{d+1} \rfloor)$
EX: $n = d = 2$
 $z = \frac{3}{4}(1, v_1) + \frac{2}{4}(1, v_2) + \frac{3}{4}(1, v_3)$
 $z \mapsto (\lfloor 2 \cdot \frac{3}{4} \rfloor, \lfloor 2 \cdot \frac{2}{4} \rfloor, \lfloor 2 \cdot \frac{3}{4} \rfloor)$
 $= (1, 1, 1) \in \{0, 1\}^3$
Record the box containing z
 \downarrow
 $(0, 0, 0, 0, 0, 0, 0, 1)$

Partition Π into $(d+1)^{d+1}$ boxes indexed by $lpha \in \{0,\ldots,d\}^{d+1}$

Partition Π into $(d+1)^{d+1}$ boxes indexed by $lpha \in \{0,\ldots,d\}^{d+1}$

$$(v_1,\ldots,v_{d+1}) \xrightarrow{\mathbb{H}\mathbb{B}} \{0,1\}^{d+1^{d+1}}$$

Partition Π into $(d+1)^{d+1}$ boxes indexed by $lpha \in \{0,\ldots,d\}^{d+1}$

$$(v_1,\ldots,v_{d+1}) \xrightarrow{\mathbb{HB}} \{0,1\}^{d+1^{d+1}}$$

$$\mathbb{HB}(\mathbf{v})_{\alpha} = \begin{cases} 1 & \text{if there exists a Hilbert basis element in box } \alpha \\ 0 & \text{otherwise} \end{cases}$$

Why bother?

FACT:

If z in $\Pi \cap \mathbb{Z}^{d+1}$ lies in box with indices $\alpha = (i_1, \ldots, i_{d+1})$, then

$$\mathsf{height}(z) = \left\lceil \frac{i_1 + \dots + i_{d+1}}{d+1} \right\rceil$$

Why bother?

FACT:

If z in $\Pi \cap \mathbb{Z}^{d+1}$ lies in box with indices $\alpha = (i_1, \ldots, i_{d+1})$, then

$$\mathsf{height}(z) = \left\lceil rac{i_1 + \cdots + i_{d+1}}{d+1}
ight
ceil$$

CONSEQUENCE:

We can detect IDP by looking at support of $\mathbb{HB}(\mathbf{v})$.

$$\boldsymbol{v} \xrightarrow{\mathbb{HB}} \{0,1\}^{d+1^{d+1}} \xrightarrow{\text{supp}} \{0,1\}$$

$$\mathbf{v} \xrightarrow{\mathbb{HB}} \{0,1\}^{d+1^{d+1}} \xrightarrow{\mathsf{supp}} \{0,1\}$$

Let $\widehat{\mathbb{H}\mathbb{B}}$ be any function from ${\bf v} \to (0,1)^{d+1^{d+1}}$

$$\mathbf{v} \xrightarrow{\mathbb{HB}} \{0,1\}^{d+1^{d+1}} \xrightarrow{\mathsf{supp}} \{0,1\}$$

Let $\widehat{\mathbb{HB}}$ be any function from ${f v} o (0,1)^{d+1^{d+1}}$ Pick 0 < η < 1

$$\operatorname{cutoff}(x) = \begin{cases} 1 & \text{if } x \ge \eta \\ 0 & \text{if } x < \eta \end{cases}$$

$$\mathbf{v} \xrightarrow{\mathbb{HB}} \{0,1\}^{d+1^{d+1}} \xrightarrow{\mathsf{supp}} \{0,1\}$$

Let
$$\widehat{\mathbb{HB}}$$
 be any function from $\mathbf{v} o (0,1)^{d+1^{d+1}}$

Pick
$$0 < \eta < 1$$

 $\operatorname{cutoff}(x) = \begin{cases} 1 & \text{if } x \ge \eta \\ 0 & \text{if } x < \eta \end{cases}$

 $\widehat{\mathbb{IDP}}$ is the the composite function:

$$\boldsymbol{\nu} \xrightarrow{\text{IIB}} (0,1)^{d+1^{d+1}} \xrightarrow{\text{cutoff}} \{0,1\}^{d+1^{d+1}} \xrightarrow{\text{supp}} \{0,1\}$$

A general method for creating piece-wise linear approximations

The building blocks

matrix: $W \in \mathbb{R}^{n \times m}$ (weights) vector: $b \in \mathbb{R}^n$ (biases) function: $\rho(z) = \max(0, z)$ coordinatewise

Pick positive integers k and ℓ_1, \ldots, ℓ_k ,

Set weights W_i and biases b_i randomly for $\omega_i : \mathbb{R}^{\ell_i} \longrightarrow \mathbb{R}^{\ell_{i+1}}$

Note: \hat{f} is piece-wise linear

$$\mathbb{R} \xrightarrow{\{ \bigcup_{i=1}^{l}, \dots, W_2\}} \mathbb{R}$$

$$\widehat{f}$$

 $W_1 = [0.75, -0.5]^T$ $b_1 = [-0.75, 1]$ $W_2 = [1, 1]$ $b_2 = [-0.5]$

$$W_1 = [0.75, -0.5]^T$$
 $b_1 = [-0.75, 1]$ $W_2 = [1, 1]$ $b_2 = [-0.5]$

 $\widehat{f}(x) = [1, 1]\omega_1(x) + [-0.5]$

$$\mathbb{R} \xrightarrow{\{ \bigcup_{i=1}^{l}, \dots, W_2\}} \mathcal{W}_2 \xrightarrow{b_2} \mathbb{R}$$

$$\widehat{f}$$

$$W_1 = [0.75, -0.5]^T$$
 $b_1 = [-0.75, 1]$ $W_2 = [1, 1]$ $b_2 = [-0.5]$

$$\widehat{f}(x) = [1, 1]\omega_1(x) + [-0.5]$$
$$= [1, 1]\rho\left(\begin{bmatrix} 0.75\\ -0.5 \end{bmatrix} [x] + \begin{bmatrix} -0.75\\ 1 \end{bmatrix} \right) + [-0.5]$$

$$\mathbb{R} \xrightarrow{\{ \bigcup_{i=1}^{l}, \dots, W_2\}} \mathcal{W}_2 \xrightarrow{b_2} \mathbb{R}$$

$$\widehat{f}$$

$$W_1 = [0.75, -0.5]^T$$
 $b_1 = [-0.75, 1]$ $W_2 = [1, 1]$ $b_2 = [-0.5]$

$$\widehat{f}(x) = [1, 1]\omega_1(x) + [-0.5]$$

$$= [1, 1]\rho\left(\begin{bmatrix} 0.75\\ -0.5 \end{bmatrix} [x] + \begin{bmatrix} -0.75\\ 1 \end{bmatrix}\right) + [-0.5]$$

$$= 1 \cdot \rho(0.75x - 0.75)$$

$$+ 1 \cdot \rho(-0.5x + 1) - 0.5$$

$$\mathbb{R} \xrightarrow{\{ \bigcup_{i=1}^{l}, \dots, W_2\}} \mathcal{W}_2 \xrightarrow{b_2} \mathcal{R}$$

$$\widehat{f}$$

$$W_1 = [0.75, -0.5]^T$$
 $b_1 = [-0.75, 1]$ $W_2 = [1, 1]$ $b_2 = [-0.5]$

$$\widehat{f}(x) = [1, 1]\omega_1(x) + [-0.5]$$

$$= [1, 1]\rho\left(\begin{bmatrix} 0.75\\ -0.5 \end{bmatrix} [x] + \begin{bmatrix} -0.75\\ 1 \end{bmatrix}\right) + [-0.5]$$

$$= 1 \cdot \rho(0.75x - 0.75)$$

$$+ 1 \cdot \rho(-0.5x + 1) - 0.5$$

$$= \begin{cases} 0.25x - 0.25 & 1 \le x \le 2\\ 0.75x - 1.25 & 2 < x \le 3 \end{cases}$$

$$\mathbb{R} \xrightarrow{\{ \bigcup_{i=1}^{l}, \dots, \bigcup_{$$

$$W_1 = [0.75, -0.5]^T$$
 $b_1 = [-0.75, 1]$ $W_2 = [1, 1]$ $b_2 = [-0.5]$

Refining the approximation \widehat{f}

Define a loss function L(x) which measures the accuracy of \hat{f} .

Refining the approximation \hat{f}

Define a loss function L(x) which measures the accuracy of \hat{f} . Consider L as a function of the parameters

$$p = (W_1, b_1, \ldots, W_{k+1}, b_{k+1})$$

and compute the gradient ∇L .

Refining the approximation \hat{f}

Define a loss function L(x) which measures the accuracy of \hat{f} . Consider L as a function of the parameters

$$p = (W_1, b_1, \ldots, W_{k+1}, b_{k+1})$$

and compute the gradient ∇L .

Update the parameters $p\mapsto p'$ by

$$p' = p - \epsilon \nabla L$$

Refining the approximation \hat{f}

Define a loss function L(x) which measures the accuracy of \hat{f} . Consider L as a function of the parameters

$$p = (W_1, b_1, \ldots, W_{k+1}, b_{k+1})$$

and compute the gradient ∇L .

Update the parameters $p\mapsto p'$ by

$$p' = p - \epsilon \nabla L$$

For sufficiently small ϵ , we expect that $L_{p'}(x) < L_p(x)$ Our new approximation is \hat{f} with the updated parameters p'

Let x = 1.5 and use Euclidean distance loss function

$$L(x) = \left\| \log(x) - \widehat{f}(x) \right\|$$

$$\nabla L = \left\langle \frac{\partial L}{\partial W_1} , \frac{\partial L}{\partial b_1} , \frac{\partial L}{\partial W_2} , \frac{\partial L}{\partial b_2} \right\rangle_{x=1.5}$$

$$=\langle -1.5\,,\,-1.5\,,\,-1\,,\,-1\,,\,-0.375\,,\,-0.25\,,\,-1
angle$$
 .

Let x = 1.5 and use Euclidean distance loss function

$$L(x) = \left\| \log(x) - \widehat{f}(x) \right\|$$

$$\nabla L = \left\langle \frac{\partial L}{\partial W_1} \,, \, \frac{\partial L}{\partial b_1} \,, \, \frac{\partial L}{\partial W_2} \,, \, \frac{\partial L}{\partial b_2} \right\rangle_{x=1.5}$$

$$=\langle -1.5\,,\,-1.5\,,\,-1\,,\,-1\,,\,-0.375\,,\,-0.25\,,\,-1
angle$$
 .

For
$$\epsilon = 0.02$$
, the update $p' = p - \epsilon \nabla L$ is given by
 $W_1 = [0.78, -0.47]^T$ $b_1 = [-0.73, 1.02]$
 $W_2 = [1.0075, 1.0075]$ $b_2 = [-0.48]$

Let x = 1.5 and use Euclidean distance loss function

$$L(x) = \left\| \log(x) - \widehat{f}(x) \right\|$$

$$\nabla L = \left\langle \frac{\partial L}{\partial W_1} \,, \, \frac{\partial L}{\partial b_1} \,, \, \frac{\partial L}{\partial W_2} \,, \, \frac{\partial L}{\partial b_2} \right\rangle_{x=1.5}$$

$$=\langle -1.5\,,\,-1.5\,,\,-1\,,\,-1\,,\,-0.375\,,\,-0.25\,,\,-1
angle$$
 .

For
$$\epsilon = 0.02$$
, the update $p' = p - \epsilon \nabla L$ is given by
 $W_1 = [0.78, -0.47]^T$ $b_1 = [-0.73, 1.02]$
 $W_2 = [1.0075, 1.0075]$ $b_2 = [-0.48]$

The updated approximation is

$$\widehat{f}(x) = \begin{cases} 0.312x - 0.187 & 1 \le x \le 2.17 \\ 0.786x - 1.215 & 2.17 < x \le 3 \end{cases}$$

Implementation

 \mathbb{HB} is expensive to compute, so we pre-compute a collection of values which we reuse multiple times to update parameters of $\widehat{\mathbb{HB}}$

 \mathbb{HB} is expensive to compute, so we pre-compute a collection of values which we reuse multiple times to update parameters of $\widehat{\mathbb{HB}}$. We restrict to the case that d = 4 and \mathbf{v} is of the form:

- $v_i = e_i$ for $1 \le i \le d$, and
- $v_{d+1} = (-\lambda_1, -\lambda_2, -\lambda_3, -\lambda_4)$ with $1 \le \lambda_i \le 25$

 \mathbb{HB} is expensive to compute, so we pre-compute a collection of values which we reuse multiple times to update parameters of $\widehat{\mathbb{HB}}$. We restrict to the case that d = 4 and \mathbf{v} is of the form:

•
$$v_i = e_i$$
 for $1 \le i \le d$, and

•
$$v_{d+1} = (-\lambda_1, -\lambda_2, -\lambda_3, -\lambda_4)$$
 with $1 \le \lambda_i \le 25$

Using Normaliz, we compute $\mathbb{HB}(\mathbf{v})$ for 50,000 such examples drawn uniformly at random.

$$\mathbb{R}^{4} \xrightarrow{i} 100 \xrightarrow{i} 400 \xrightarrow{i} 800 \xrightarrow{i} 3000 \xrightarrow{i} W_{5} \xrightarrow{b_{5}} \mathbb{R}^{3,125}$$

Trainable parameters: \approx 12million

Learning rate: $\epsilon = 10^{-4}$

Number of updates: 200,000 batches of size 25

Binary Cross Entropy: For f a 0/1 function, \widehat{f} real valued,

$$\mathsf{BCE}(x) = (f-1) \cdot \log \left(1 - \sigma \circ \widehat{f}\right) - f \cdot \log \left(\sigma \circ \widehat{f}\right)$$

where σ is the sigmoid function $\sigma(z) = (1 + e^{-z})^{-1}$.

Results

$\lambda = (5, 11, 11, 20)$

 $\lambda = (5, 11, 11, 20)$

 $\widehat{f}(\mathbf{v}) = (-51.4, -26.9, -62.9, -29.6, -25.2, -30.2, -2.1, \dots)$

 $\lambda = (5, 11, 11, 20)$

$$\hat{f}(\mathbf{v}) = (-51.4, -26.9, -62.9, -29.6, -25.2, -30.2, -2.1, \dots)$$

 $\widehat{\mathbb{HB}}(\mathbf{v}) = (4.4e - 23, 1.9e - 12, 4.6e - 28, 1.3e - 13, 1.0e - 11, 7.0e - 14, 1.0e - 01, \dots)$

 $\lambda = (5, 11, 11, 20)$

$$\widehat{f}(\mathbf{v}) = (-51.4, -26.9, -62.9, -29.6, -25.2, -30.2, -2.1, \dots)$$

 $\widehat{HB}(\mathbf{v}) = (4.4e - 23, 1.9e - 12, 4.6e - 28, 1.3e - 13, 1.0e - 11, 7.0e - 14, 1.0e - 01, \dots)$

with
$$\eta=$$
 0.1, $\operatorname{cutoff}\left(\widehat{\mathbb{HB}}(oldsymbol{v})
ight)=(0,0,0,0,0,0,1,\dots)$

 $\lambda = (5, 11, 11, 20)$

$$\widehat{f}(\mathbf{v}) = (-51.4, -26.9, -62.9, -29.6, -25.2, -30.2, -2.1, \dots)$$

 $\widehat{\mathbb{HB}}(v) = (4.4e - 23, 1.9e - 12, 4.6e - 28, 1.3e - 13, 1.0e - 11, 7.0e - 14, 1.0e - 01, \dots)$

with
$$\eta=0.1, \quad ext{cutoff}\left(\widehat{\mathbb{HB}}(oldsymbol{
u})
ight)=(0,0,0,0,0,0,1,\dots)$$

$\eta = 0.1$	PREDICTED 0	PREDICTED 1
ACTUAL 0	2,705	160
ACTUAL 1	1	11

 $\lambda = (5, 11, 11, 20)$

$$\widehat{f}(\mathbf{v}) = (-51.4, -26.9, -62.9, -29.6, -25.2, -30.2, -2.1, \dots)$$

 $\widehat{\mathbb{HB}}(v) = (4.4e - 23, 1.9e - 12, 4.6e - 28, 1.3e - 13, 1.0e - 11, 7.0e - 14, 1.0e - 01, \dots)$

with
$$\eta=0.1, \quad ext{cutoff}\left(\widehat{\mathbb{HB}}(oldsymbol{
u})
ight)=(0,0,0,0,0,0,1,\dots)$$

$\eta = 0.1$	PREDICTED 0	PREDICTED 1
ACTUAL 0	2,705	160
ACTUAL 1	1	11

specificity (top row) =
$$\frac{\text{true negatives}}{\text{true negatives} + \text{false positives}} = 94\%$$

sensitivity (bottom row) = $\frac{\text{true positives}}{\text{true positives} + \text{false negatives}} = 92\%$

$\eta = 0.01$	PREDICTED 0	PREDICTED 1	
ACTUAL 0	11,448,675	2,845,413	
ACTUAL 1	6,572	92,971	

specificity = 80% sensitivity = 93%

Effect on $\widehat{\mathbb{HB}}$ of varying η

In the sample of 5,000 simplices, there were 112 IDP examples ($\approx 2.4\%)$

In the sample of 5,000 simplices, there were 112 IDP examples ($\approx 2.4\%)$

Result of applying $\widehat{\mathbb{IDP}}$ to the sample:

$ \begin{array}{c} \eta \\ \tau \end{array} $	0.5	0.25	0.12	0.05
0	3/7 (42.9%)	3/4 (75.0%)	3/3 (100.0%)	3/3 (100.0%)
10	21/320 (6.6%)	11/38 (29.0%)	8/21 (38.1%)	6/12 (50.0%)
20	46/1026 (4.5%)	21/102 (20.6%)	11/45 (24.4%)	8/27 (29.6%)
30	65/1770 (3.7%)	35/196 (17.9%)	23/103 (22.3%)	16/64 (25.0%)

The IDP examples predicted by $\widehat{\mathbb{IDP}}$ ($\eta = 0.1$, $\tau = 65$)

1,1,1,1	1,1,3,9	1,1,21,24	1,2,14,10	1,2,14,10	24,2,1,16
1,3,16,3	1,3,24,1	1,4,2,16	1,4,20,20	1,8,1,1	24,4,2,4
1,10,10,8	1,10,24,24	1,12,4,12	1,15,3,1	1,18,1,6	24,24,23,12
1,21,1,4	1,24,1,9	1,24,14,2	1,24,17,1	1,24,18,1	24,24,6,24
1,24,18,4	1,24,24,20	2,2,2,7	2,3,12,18	2,8,8,4	23,24,24,12
2,10,1,16	2,20,10,5	3,1,1,9	3,6,12,1	3,12,2,24	23,18,3,24
3,14,21,3	3,19,3,1	3,23,15,3	4,1,1,4	4,8,2,16	23,2,2,6
4,20,1,14	4,20,10,20	4,23,4,12	4,24,1,16	6,1,2,12	22,22,20,1
6,2,6,3	6,2,18,9	6,6,6,3	6,14,6,15	6,17,9,18	22,16,22,1
7,3,21,7	7,7,1,7	7,7,16,16	8,1,8,2	8,2,12,24	22,16,4,1
8,16,4,2	9,1,1,9	9,6,18,2	9,9,4,4	9,18,4,4	22,2,2,22
9,18,18,6	9,22,1,11	10,1,5,22	10,5,10,9	10,24,4,1	21,21,16,4
11,22,5,5	12,1,2,6	12,1,24,19	12,2,3,12	12,2,18,3	20,22,1,22
12,3,2,6	12,3,11,6	12,6,1,1	12,6,1,3	12,12,4,12	20,20,4,20
12,16,1,16	12,24,2,24	12,24,6,1	13,2,2,20	14,6,14,7	20,20,4,1
14,7,2,24	14,7,12,1	15,1,13,15	15,15,1,1	16,1,6,6	20,20,1,20
16,4,2,16	16,7,16,16	16,8,4,2	16,16,12,3	16,24,1,22	20,14,24,1
17,1,7,1	17,17,8,4	17,17,17,1	18,1,1,15	18,2,6,6	
18,2,22,1	18,10,1,15	19,19,1,16	20,2,1,12	20,8,19,8	

We computed the value of $\widehat{\mathbb{IDP}}$ for all 390,625 $\Delta_{(1,q)}$ simplices with *q*-vector in $[1, 25]^4$ using $\eta = 0.007$ and $\tau = 50$.

The computation produced 3,773 predicted positives.

We then computed \mathbb{IDP} for these examples and found that 856 were IDP.

This corresponds to a specificity of about 23%.

- If we train our approximation HB to have high sensitivity, then we can recover a set of lattice points containing the Hilbert basis. If the specificity is high, then reducing this set will require fewer steps than reducing the entire fundamental parallelepiped.
- If we record the number of FPP points in each bin instead of the presence of Hilbert basis elements, then we have a model for predicting **unimodality** of the *h**-vector.