Predicting the

Integer Decomposition Property via Machine Learning

Brian Davis
2 Aug 2018
University of Kentucky

Hilbert Basics

Cone over a lattice simplex

$$
\boldsymbol{v}=\left\{v_{1}, \ldots, v_{d+1}\right\} \subset \mathbb{Z}^{d} \quad \operatorname{cone}(\boldsymbol{v})=\mathbb{R}_{\geq 0}\left\langle\left(1, v_{1}\right), \ldots,\left(1, v_{d+1}\right)\right\rangle \subset \mathbb{R}^{d+1}
$$

Hilbert basis $=$ additively minimal lattice points

The Integer Decomposition Property (IDP)

We say that the simplex with vertices $\left\{v_{1}, \ldots, v_{d+1}\right\}$ has the Integer Decomposition Property (IDP) if for all elements z of the Hilbert basis $\mathrm{HB}(\boldsymbol{v})$,

$$
\text { height }(z):=z_{0}
$$

is equal to 1 .

WANTED: Large, diverse set of examples of IDP simplices

PROPOSED SOLUTION:

Construct very large test set and use Normaliz to reject non-IDP examples

WANTED: Large, diverse set of examples of IDP simplices

PROPOSED SOLUTION:

Construct very large test set and use Normaliz to reject non-IDP examples

PROBLEM:
Computing Hilbert basis over very large test sets is expensive (computationally)

WANTED: Large, diverse set of examples of IDP simplices

PROPOSED SOLUTION:

Construct very large test set and use Normaliz to reject non-IDP examples

PROBLEM:
Computing Hilbert basis over very large test sets is expensive (computationally)

PROPOSED SOLUTION:
Consider $\mathbb{I D P}$ to be a $0 / 1$ function and approximate it with an easily evaluated function $\widehat{\mathbb{I D P P}}$.

Apply $\widehat{\mathbb{I D P P}}$ to very large test set to get likely IDP candidates, then validate candidates with Normaliz.

An intermediate step

The fundamental parallelepiped

The fundamental parallelepiped Π is the set

$$
\left\{\sum_{i=1}^{d+1} \gamma_{i}\left(1, v_{i}\right): 0 \leq \gamma_{i}<1\right\}
$$

FACT:
$\operatorname{HB}(\boldsymbol{v})$ is the union of $\left\{\left(1, v_{1}\right), \ldots,\left(1, v_{d+1}\right)\right\}$ and the additively minimal elements of

$$
\Pi \cap \mathbb{Z}^{d+1}
$$

Partition the fundamental parallelepiped

$$
\begin{gathered}
\text { Map } z \in \Pi \text { to }\{0, \ldots, n-1\}^{d+1} \\
\text { by } \\
z \mapsto\left(\left\lfloor n \gamma_{1}\right\rfloor, \ldots,\left\lfloor n \gamma_{d+1}\right\rfloor\right)
\end{gathered}
$$

Partition the fundamental parallelepiped

Map $z \in \Pi$ to $\{0, \ldots, n-1\}^{d+1}$
by

$$
z \mapsto\left(\left\lfloor n \gamma_{1}\right\rfloor, \ldots,\left\lfloor n \gamma_{d+1}\right\rfloor\right)
$$

$\mathrm{EX}: \quad n=d=2$

$$
\begin{aligned}
z & =\frac{3}{4}\left(1, v_{1}\right)+\frac{2}{4}\left(1, v_{2}\right)+\frac{3}{4}\left(1, v_{3}\right) \\
z & \mapsto\left(\left\lfloor 2 \cdot \frac{3}{4}\right\rfloor,\left\lfloor 2 \cdot \frac{2}{4}\right\rfloor,\left\lfloor 2 \cdot \frac{3}{4}\right\rfloor\right) \\
& =(1,1,1) \in\{0,1\}^{3}
\end{aligned}
$$

Partition the fundamental parallelepiped

Map $z \in \Pi$ to $\{0, \ldots, n-1\}^{d+1}$
by

$$
z \mapsto\left(\left\lfloor n \gamma_{1}\right\rfloor, \ldots,\left\lfloor n \gamma_{d+1}\right\rfloor\right)
$$

$\mathrm{EX}: \quad n=d=2$

$$
\begin{aligned}
z & =\frac{3}{4}\left(1, v_{1}\right)+\frac{2}{4}\left(1, v_{2}\right)+\frac{3}{4}\left(1, v_{3}\right) \\
z & \mapsto\left(\left\lfloor 2 \cdot \frac{3}{4}\right\rfloor,\left\lfloor 2 \cdot \frac{2}{4}\right\rfloor,\left\lfloor 2 \cdot \frac{3}{4}\right\rfloor\right) \\
& =(1,1,1) \in\{0,1\}^{3}
\end{aligned}
$$

Record the box containing z

Partition the fundamental parallelepiped

Map $z \in \Pi$ to $\{0, \ldots, n-1\}^{d+1}$
by

$$
z \mapsto\left(\left\lfloor n \gamma_{1}\right\rfloor, \ldots,\left\lfloor n \gamma_{d+1}\right\rfloor\right)
$$

$\mathrm{EX}: \quad n=d=2$

$$
\begin{aligned}
z & =\frac{3}{4}\left(1, v_{1}\right)+\frac{2}{4}\left(1, v_{2}\right)+\frac{3}{4}\left(1, v_{3}\right) \\
z & \mapsto\left(\left\lfloor 2 \cdot \frac{3}{4}\right\rfloor,\left\lfloor 2 \cdot \frac{2}{4}\right\rfloor,\left\lfloor 2 \cdot \frac{3}{4}\right\rfloor\right) \\
& =(1,1,1) \in\{0,1\}^{3}
\end{aligned}
$$

Record the box containing z

\downarrow

Partition the fundamental parallelepiped

Map $z \in \Pi$ to $\{0, \ldots, n-1\}^{d+1}$
by

$$
z \mapsto\left(\left\lfloor n \gamma_{1}\right\rfloor, \ldots,\left\lfloor n \gamma_{d+1}\right\rfloor\right)
$$

$\mathrm{EX}: \quad n=d=2$

$$
\begin{aligned}
z & =\frac{3}{4}\left(1, v_{1}\right)+\frac{2}{4}\left(1, v_{2}\right)+\frac{3}{4}\left(1, v_{3}\right) \\
z & \mapsto\left(\left\lfloor 2 \cdot \frac{3}{4}\right\rfloor,\left\lfloor 2 \cdot \frac{2}{4}\right\rfloor,\left\lfloor 2 \cdot \frac{3}{4}\right\rfloor\right) \\
& =(1,1,1) \in\{0,1\}^{3}
\end{aligned}
$$

Record the box containing z

\downarrow

$(0,0,0,0,0,0,0,1)$

The function $\mathbb{H} \mathbb{B}$

Partition Π into $(d+1)^{d+1}$ boxes indexed by $\alpha \in\{0, \ldots, d\}^{d+1}$

The function $\mathbb{H} \mathbb{B}$

Partition Π into $(d+1)^{d+1}$ boxes indexed by $\alpha \in\{0, \ldots, d\}^{d+1}$

$$
\left(v_{1}, \ldots, v_{d+1}\right) \xrightarrow{\mathbb{H} \mathbb{B}}\{0,1\}^{d+1^{d+1}}
$$

The function $\mathbb{H I B}$

Partition Π into $(d+1)^{d+1}$ boxes indexed by $\alpha \in\{0, \ldots, d\}^{d+1}$

$$
\left(v_{1}, \ldots, v_{d+1}\right) \xrightarrow{\mathbb{H} \mathbb{B}}\{0,1\}^{d+1^{d+1}}
$$

$\mathbb{H} \mathbb{B}(\boldsymbol{v})_{\alpha}= \begin{cases}1 & \text { if there exists a Hilbert basis element in box } \alpha \\ 0 & \text { otherwise }\end{cases}$

Why bother?

FACT:
If z in $\Pi \cap \mathbb{Z}^{d+1}$ lies in box with indices $\alpha=\left(i_{1}, \ldots, i_{d+1}\right)$, then

$$
\text { height }(z)=\left\lceil\frac{i_{1}+\cdots+i_{d+1}}{d+1}\right\rceil
$$

Why bother?

FACT:
If z in $\Pi \cap \mathbb{Z}^{d+1}$ lies in box with indices $\alpha=\left(i_{1}, \ldots, i_{d+1}\right)$, then

$$
\operatorname{height}(z)=\left\lceil\frac{i_{1}+\cdots+i_{d+1}}{d+1}\right\rceil
$$

CONSEQUENCE:

We can detect IDP by looking at support of $\mathbb{H B}(\boldsymbol{v})$.

Defining $\widehat{\mathbb{I D P P}}$ via $\widehat{\mathbb{H I B}}$

$\mathbb{I D P P}$ is the the composite function:

$$
\boldsymbol{v} \xrightarrow{\mathbb{H} \mathbb{B}}\{0,1\}^{d+1^{d+1}} \xrightarrow{\text { supp }}\{0,1\}
$$

Defining $\widehat{\mathbb{I I D P P}}$ via $\widehat{\mathbb{H I P}}$

$\mathbb{I D P P}$ is the the composite function:

$$
\boldsymbol{v} \xrightarrow{\mathbb{H} \mathbb{B}}\{0,1\}^{d+1^{d+1}} \xrightarrow{\text { supp }}\{0,1\}
$$

Let $\widehat{\mathbb{H} \mathbb{B}}$ be any function from $\mathbf{v} \rightarrow(0,1)^{d+1^{d+1}}$

Defining $\widehat{\mathbb{I I D P P}}$ via $\widehat{\mathbb{H I P}}$

$\mathbb{I D P P}$ is the the composite function:

$$
\boldsymbol{v} \xrightarrow{\mathbb{H} \mathbb{B}}\{0,1\}^{d+1^{d+1}} \xrightarrow{\text { supp }}\{0,1\}
$$

Let $\widehat{\mathbb{H P B}}$ be any function from $\mathbf{v} \rightarrow(0,1)^{d+1^{d+1}}$
Pick $0<\eta<1$

$$
\operatorname{cutoff}(x)= \begin{cases}1 & \text { if } x \geq \eta \\ 0 & \text { if } x<\eta\end{cases}
$$

Defining $\widehat{\mathbb{I D P P}}$ via $\widehat{\mathbb{H} \mathbb{B}}$

$\mathbb{I D P P}$ is the the composite function:

$$
\boldsymbol{v} \xrightarrow{\mathbb{H} \mathbb{B}}\{0,1\}^{d+1^{d+1}} \xrightarrow{\text { supp }}\{0,1\}
$$

Let $\widehat{\mathbb{H P B}}$ be any function from $\mathbf{v} \rightarrow(0,1)^{d+1^{d+1}}$
Pick $0<\eta<1$

$$
\operatorname{cutoff}(x)= \begin{cases}1 & \text { if } x \geq \eta \\ 0 & \text { if } x<\eta\end{cases}
$$

$\widehat{\mathbb{I D P P}}$ is the the composite function:

$$
\boldsymbol{v} \xrightarrow{\widehat{\mathrm{HIB}}}(0,1)^{d+1^{d+1}} \xrightarrow{\text { cutoff }}\{0,1\}^{d+1^{d+1}} \xrightarrow{\text { supp }}\{0,1\}
$$

A general method for creating piece-wise linear approximations

The building blocks

matrix: $W \in \mathbb{R}^{n \times m}$ (weights)
vector: $b \in \mathbb{R}^{n}$ (biases)
function: $\rho(z)=\max (0, z)$ coordinatewise

An initial approximation of $f: \mathbb{R}^{u} \longrightarrow \mathbb{R}^{v}$

Pick positive integers k and $\ell_{1}, \ldots, \ell_{k}$,
Set weights W_{i} and biases b_{i} randomly for $\omega_{i}: \mathbb{R}^{\ell_{i}} \longrightarrow \mathbb{R}^{\ell_{i+1}}$

Note: \widehat{f} is piece-wise linear

EXAMPLE: $f(x)=\log (x)$ on interval [1,3]

$$
W_{1}=[0.75,-0.5]^{T} \quad b_{1}=[-0.75,1] \quad W_{2}=[1,1] \quad b_{2}=[-0.5]
$$

EXAMPLE: $f(x)=\log (x)$ on interval [1,3]

$$
W_{1}=[0.75,-0.5]^{T} \quad b_{1}=[-0.75,1] \quad W_{2}=[1,1] \quad b_{2}=[-0.5]
$$

$$
\widehat{f}(x)=[1,1] \omega_{1}(x)+[-0.5]
$$

EXAMPLE: $f(x)=\log (x)$ on interval [1,3]

$$
W_{1}=[0.75,-0.5]^{T} \quad b_{1}=[-0.75,1] \quad W_{2}=[1,1] \quad b_{2}=[-0.5]
$$

$\widehat{f}(x)=[1,1] \omega_{1}(x)+[-0.5]$

$$
=[1,1] \rho\left(\left[\begin{array}{c}
0.75 \\
-0.5
\end{array}\right][x]+\left[\begin{array}{c}
-0.75 \\
1
\end{array}\right]\right)+[-0.5]
$$

EXAMPLE: $f(x)=\log (x)$ on interval [1,3]

$$
W_{1}=[0.75,-0.5]^{T} \quad b_{1}=[-0.75,1] \quad W_{2}=[1,1] \quad b_{2}=[-0.5]
$$

$$
\begin{aligned}
& \widehat{f}(x)= {[1,1] \omega_{1}(x)+[-0.5] } \\
&= {[1,1] \rho\left(\left[\begin{array}{c}
0.75 \\
-0.5
\end{array}\right][x]+\left[\begin{array}{c}
-0.75 \\
1
\end{array}\right]\right)+[-0.5] } \\
&= 1 \cdot \rho(0.75 x-0.75) \\
& \quad \quad+1 \cdot \rho(-0.5 x+1)-0.5
\end{aligned}
$$

EXAMPLE: $f(x)=\log (x)$ on interval [1,3]

$$
W_{1}=[0.75,-0.5]^{T} \quad b_{1}=[-0.75,1] \quad W_{2}=[1,1] \quad b_{2}=[-0.5]
$$

$$
\begin{aligned}
\widehat{f}(x)= & {[1,1] \omega_{1}(x)+[-0.5] } \\
= & {[1,1] \rho\left(\left[\begin{array}{c}
0.75 \\
-0.5
\end{array}\right][x]+\left[\begin{array}{c}
-0.75 \\
1
\end{array}\right]\right)+[-0.5] } \\
= & 1 \cdot \rho(0.75 x-0.75) \\
& +1 \cdot \rho(-0.5 x+1)-0.5 \\
= & \begin{cases}0.25 x-0.25 & 1 \leq x \leq 2 \\
0.75 x-1.25 & 2<x \leq 3\end{cases}
\end{aligned}
$$

EXAMPLE: $f(x)=\log (x)$ on interval [1,3]

$$
W_{1}=[0.75,-0.5]^{T} \quad b_{1}=[-0.75,1] \quad W_{2}=[1,1] \quad b_{2}=[-0.5]
$$

$$
\widehat{f}(x)=[1,1] \omega_{1}(x)+[-0.5]
$$

$$
=[1,1] \rho\left(\left[\begin{array}{c}
0.75 \\
-0.5
\end{array}\right][x]+\left[\begin{array}{c}
-0.75 \\
1
\end{array}\right]\right)+[-0.5]
$$

$$
=1 \cdot \rho(0.75 x-0.75)
$$

$$
+1 \cdot \rho(-0.5 x+1)-0.5
$$

$$
= \begin{cases}0.25 x-0.25 & 1 \leq x \leq 2 \\ 0.75 x-1.25 & 2<x \leq 3\end{cases}
$$

f and \widehat{f} (dashed)

Refining the approximation \widehat{f}

Define a loss function $L(x)$ which measures the accuracy of \widehat{f}.

Refining the approximation \widehat{f}

Define a loss function $L(x)$ which measures the accuracy of \widehat{f}.
Consider L as a function of the parameters

$$
p=\left(W_{1}, b_{1}, \ldots, W_{k+1}, b_{k+1}\right)
$$

and compute the gradient ∇L.

Refining the approximation \widehat{f}

Define a loss function $L(x)$ which measures the accuracy of \widehat{f}.
Consider L as a function of the parameters

$$
p=\left(W_{1}, b_{1}, \ldots, W_{k+1}, b_{k+1}\right)
$$

and compute the gradient ∇L.
Update the parameters $p \mapsto p^{\prime}$ by

$$
p^{\prime}=p-\epsilon \nabla L
$$

Refining the approximation \widehat{f}

Define a loss function $L(x)$ which measures the accuracy of \widehat{f}.
Consider L as a function of the parameters

$$
p=\left(W_{1}, b_{1}, \ldots, W_{k+1}, b_{k+1}\right)
$$

and compute the gradient ∇L.
Update the parameters $p \mapsto p^{\prime}$ by

$$
p^{\prime}=p-\epsilon \nabla L
$$

For sufficiently small ϵ, we expect that $L_{p^{\prime}}(x)<L_{p}(x)$
Our new approximation is \widehat{f} with the updated parameters p^{\prime}

$f(x)=\log (x)$ continued

Let $x=1.5$ and use Euclidean distance loss function

$$
\begin{gathered}
L(x)=\|\log (x)-\widehat{f}(x)\| \\
\nabla L=\left\langle\frac{\partial L}{\partial W_{1}}, \frac{\partial L}{\partial b_{1}}, \frac{\partial L}{\partial W_{2}}, \frac{\partial L}{\partial b_{2}}\right\rangle_{x=1.5} \\
=\langle-1.5,-1.5,-1,-1,-0.375,-0.25,-1\rangle .
\end{gathered}
$$

$f(x)=\log (x)$ continued

Let $x=1.5$ and use Euclidean distance loss function

$$
\begin{gathered}
L(x)=\|\log (x)-\widehat{f}(x)\| \\
\nabla L=\left\langle\frac{\partial L}{\partial W_{1}}, \frac{\partial L}{\partial b_{1}}, \frac{\partial L}{\partial W_{2}}, \frac{\partial L}{\partial b_{2}}\right\rangle_{x=1.5} \\
=\langle-1.5,-1.5,-1,-1,-0.375,-0.25,-1\rangle .
\end{gathered}
$$

For $\epsilon=0.02$, the update $p^{\prime}=p-\epsilon \nabla L$ is given by

$$
\begin{gathered}
W_{1}=[0.78,-0.47]^{T} \quad b_{1}=[-0.73,1.02] \\
W_{2}=[1.0075,1.0075] \quad b_{2}=[-0.48]
\end{gathered}
$$

$f(x)=\log (x)$ continued

Let $x=1.5$ and use Euclidean distance loss function

$$
\begin{gathered}
L(x)=\|\log (x)-\widehat{f}(x)\| \\
\nabla L=\left\langle\frac{\partial L}{\partial W_{1}}, \frac{\partial L}{\partial b_{1}}, \frac{\partial L}{\partial W_{2}}, \frac{\partial L}{\partial b_{2}}\right\rangle_{x=1.5} \\
=\langle-1.5,-1.5,-1,-1,-0.375,-0.25,-1\rangle .
\end{gathered}
$$

For $\epsilon=0.02$, the update $p^{\prime}=p-\epsilon \nabla L$ is given by

$$
\begin{gathered}
W_{1}=[0.78,-0.47]^{T} \quad b_{1}=[-0.73,1.02] \\
W_{2}=[1.0075,1.0075] \quad b_{2}=[-0.48]
\end{gathered}
$$

The updated approximation is

$$
\widehat{f}(x)= \begin{cases}0.312 x-0.187 & 1 \leq x \leq 2.17 \\ 0.786 x-1.215 & 2.17<x \leq 3\end{cases}
$$

$f(x)=\log (x)$ continued

Implementation

Training data

$\mathbb{H} \mathbb{B}$ is expensive to compute, so we pre-compute a collection of values which we reuse multiple times to update parameters of $\widehat{\mathbb{H I P}}$

Training data

$\mathbb{H} \mathbb{B}$ is expensive to compute, so we pre-compute a collection of values which we reuse multiple times to update parameters of $\widehat{\mathbb{H I P}}$

We restrict to the case that $d=4$ and \boldsymbol{v} is of the form:

- $v_{i}=e_{i}$ for $1 \leq i \leq d$, and
- $v_{d+1}=\left(-\lambda_{1},-\lambda_{2},-\lambda_{3},-\lambda_{4}\right)$ with $1 \leq \lambda_{i} \leq 25$

Training data

$\mathbb{H} \mathbb{B}$ is expensive to compute, so we pre-compute a collection of values which we reuse multiple times to update parameters of $\widehat{\mathbb{H I R}}$

We restrict to the case that $d=4$ and \boldsymbol{v} is of the form:

- $v_{i}=e_{i}$ for $1 \leq i \leq d$, and
- $v_{d+1}=\left(-\lambda_{1},-\lambda_{2},-\lambda_{3},-\lambda_{4}\right)$ with $1 \leq \lambda_{i} \leq 25$

Using Normaliz, we compute $\mathbb{H} \mathbb{B}(\boldsymbol{v})$ for 50,000 such examples drawn uniformly at random.

Hyperparameters

Trainable parameters: ≈ 12 million
Learning rate: $\epsilon=10^{-4}$
Number of updates: 200,000 batches of size 25

Loss function

Binary Cross Entropy: For f a $0 / 1$ function, \widehat{f} real valued,

$$
\operatorname{BCE}(x)=(f-1) \cdot \log (1-\sigma \circ \widehat{f})-f \cdot \log (\sigma \circ \widehat{f})
$$

where σ is the sigmoid function $\sigma(z)=\left(1+e^{-z}\right)^{-1}$.

Results
$\lambda=(5,11,11,20)$

$\lambda=(5,11,11,20)$

$$
\widehat{f}(v)=(-51.4,-26.9,-62.9,-29.6,-25.2,-30.2,-2.1, \ldots)
$$

$\lambda=(5,11,11,20)$

$$
\widehat{f}(v)=(-51.4,-26.9,-62.9,-29.6,-25.2,-30.2,-2.1, \ldots)
$$

$\widehat{\mathbb{H I B}}(v)=(4.4 e-23,1.9 e-12,4.6 e-28,1.3 e-13,1.0 e-11,7.0 e-14,1.0 e-01, \ldots)$

$\lambda=(5,11,11,20)$

$$
\widehat{f}(v)=(-51.4,-26.9,-62.9,-29.6,-25.2,-30.2,-2.1, \ldots)
$$

$\widehat{\mathbb{H I B}}(v)=(4.4 e-23,1.9 e-12,4.6 e-28,1.3 e-13,1.0 e-11,7.0 e-14,1.0 e-01, \ldots)$
with $\eta=0.1, \quad$ cutoff $(\widehat{\mathbb{H B B}}(v))=(0,0,0,0,0,0,1, \ldots)$

$\lambda=(5,11,11,20)$

$$
\widehat{f}(v)=(-51.4,-26.9,-62.9,-29.6,-25.2,-30.2,-2.1, \ldots)
$$

$\widehat{\mathbb{H I B}}(v)=(4.4 e-23,1.9 e-12,4.6 e-28,1.3 e-13,1.0 e-11,7.0 e-14,1.0 e-01, \ldots)$
with $\eta=0.1, \quad$ cutoff $(\widehat{\mathbb{H P B}}(v))=(0,0,0,0,0,0,1, \ldots)$

$\eta=0.1$	PREDICTED 0	PREDICTED 1
ACTUAL 0	2,705	160
ACTUAL 1	1	11

$\lambda=(5,11,11,20)$

$$
\widehat{f}(v)=(-51.4,-26.9,-62.9,-29.6,-25.2,-30.2,-2.1, \ldots)
$$

$$
\begin{aligned}
\widehat{\mathbb{H B B}}(v)= & (4.4 e-23,1.9 e-12,4.6 e-28,1.3 e-13,1.0 e-11,7.0 e-14,1.0 e-01, \ldots) \\
& \text { with } \eta=0.1, \quad \text { cutoff }(\widehat{\mathbb{H B}}(v))=(0,0,0,0,0,0,1, \ldots)
\end{aligned}
$$

$\eta=0.1$	PREDICTED 0	PREDICTED 1
ACTUAL 0	2,705	160
ACTUAL 1	1	11

specificity (top row) $=\frac{\text { true negatives }}{\text { true negatives }+ \text { false positives }}=94 \%$ sensitivity (bottom row) $=\frac{\text { true positives }}{\text { true positives }+ \text { false negatives }}=92 \%$

5,000 random samples aggregated

$\eta=0.01$	PREDICTED 0	PREDICTED 1
ACTUAL 0	$11,448,675$	$2,845,413$
ACTUAL 1	6,572	92,971

specificity $=80 \% \quad$ sensitivity $=93 \%$

Effect on $\widehat{\mathbb{H} \mathbb{B}}$ of varying η

The resulting approximation $\widehat{\mathbb{I D} D \mathbb{P}}$

In the sample of 5,000 simplices, there were 112 IDP examples ($\approx 2.4 \%$)

The resulting approximation $\widehat{\mathbb{I D} \mathbb{P}}$

In the sample of 5,000 simplices, there were 112 IDP examples ($\approx 2.4 \%$)

Result of applying $\widehat{\mathbb{I D P P}}$ to the sample:

η	0.5	0.25	0.12	0.05
τ^{η}				
0	$3 / 7(42.9 \%)$	$3 / 4(75.0 \%)$	$3 / 3(100.0 \%)$	$3 / 3(100.0 \%)$
10	$21 / 320(6.6 \%)$	$11 / 38(29.0 \%)$	$8 / 21(38.1 \%)$	$6 / 12(50.0 \%)$
20	$46 / 1026(4.5 \%)$	$21 / 102(20.6 \%)$	$11 / 45(24.4 \%)$	$8 / 27(29.6 \%)$
30	$65 / 1770(3.7 \%)$	$35 / 196(17.9 \%)$	$23 / 103(22.3 \%)$	$16 / 64(25.0 \%)$

The IDP examples predicted by $\widehat{\mathbb{I D P P}}(\eta=0.1, \tau=65)$

1,1,1,1	1,1,3,9	1,1,21,24	1,2,14,10	1,2,14,10	24,2,1,16
1,3,16,3	1,3,24,1	1,4,2,16	1,4,20,20	1,8,1,1	24,4,2,4
1,10,10,8	1,10,24,24	1,12,4,12	1,15,3,1	1,18,1,6	24,24,23,12
1,21,1,4	1,24,1,9	1,24,14,2	1,24,17,1	1,24,18,1	24,24,6,24
1,24,18,4	1,24,24,20	2,2,2,7	2,3,12,18	2,8,8,4	23,24,24,12
2,10,1,16	2,20,10,5	3,1,1,9	3,6,12,1	3,12,2,24	23,18,3,24
3,14,21,3	3,19,3,1	3,23,15,3	4,1,1,4	4,8,2,16	23,2,2,6
4,20,1,14	4,20,10,20	4,23,4,12	4,24,1,16	6,1,2,12	22,22,20,1
6,2,6,3	6,2,18,9	6,6,6,3	6,14,6,15	6,17,9,18	22,16,22,1
7,3,21,7	7,7,1,7	7,7,16,16	8,1,8,2	8,2,12,24	22,16,4,1
8,16,4,2	9,1,1,9	9,6,18,2	9,9,4,4	9,18,4,4	22,2,2,22
9,18,18,6	9,22,1,11	10,1,5,22	10,5,10,9	10,24,4,1	21,21,16,4
11,22,5,5	12,1,2,6	12,1,24,19	12,2,3,12	12,2,18,3	20,22,1,22
12,3,2,6	12,3,11,6	12,6,1,1	12,6,1,3	12,12,4,12	20,20,4,20
12,16,1,16	12,24,2,24	12,24,6,1	13,2,2,20	14,6,14,7	20,20,4,1
14,7,2,24	14,7,12,1	15,1,13,15	15,15,1,1	16,1,6,6	20,20,1,20
16,4,2,16	16,7,16,16	16,8,4,2	16,16,12,3	16,24,1,22	20,14,24,1
17,1,7,1	17,17,8,4	17,17,17,1	18,1,1,15	18,2,6,6	
18,2,22,1	18,10,1,15	19,19,1,16	20,2,1,12	20,8,19,8	

The big search

We computed the value of $\widehat{\mathbb{1 D P P}}$ for all $390,625 \Delta_{(1, q)}$ simplices with q-vector in $[1,25]^{4}$ using $\eta=0.007$ and $\tau=50$.

The computation produced 3,773 predicted positives.
We then computed $\mathbb{I D P P}$ for these examples and found that 856 were IDP.

This corresponds to a specificity of about 23%.

Remarks

1. If we train our approximation $\widehat{\mathbb{H H B}}$ to have high sensitivity, then we can recover a set of lattice points containing the Hilbert basis. If the specificity is high, then reducing this set will require fewer steps than reducing the entire fundamental parallelepiped.
2. If we record the number of FPP points in each bin instead of the presence of Hilbert basis elements, then we have a model for predicting unimodality of the h^{*}-vector.
