
Predicting the

Integer Decomposition Property

via Machine Learning

Brian Davis

2 Aug 2018

University of Kentucky



Hilbert Basics



Cone over a lattice simplex

v = {v1, . . . , vd+1} ⊂ Zd cone(v) = R≥0

〈
(1, v1), . . . , (1, vd+1)

〉
⊂ Rd+1

(1, v3)

(1, v1)

(1, v2)
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Hilbert basis = additively minimal lattice points

x

y

z

(1, 1, 2) = (0, 0, 1) + (1, 1, 1)

Hilbert basis HB(v):

minimal additive generating set

for cone(v) ∩ Zd+1
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The Integer Decomposition Property (IDP)

We say that the simplex with vertices {v1, . . . , vd+1} has the

Integer Decomposition Property (IDP) if for all elements z of

the Hilbert basis HB(v),

height(z) := z0

is equal to 1.
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WANTED: Large, diverse set of examples of IDP simplices

PROPOSED SOLUTION:

Construct very large test set and use Normaliz to reject non-IDP

examples

PROBLEM:

Computing Hilbert basis over very large test sets is expensive

(computationally)

PROPOSED SOLUTION:

Consider IDP to be a 0/1 function and approximate it with an

easily evaluated function ÎDP.

Apply ÎDP to very large test set to get likely IDP candidates, then

validate candidates with Normaliz.
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An intermediate step



The fundamental parallelepiped

x

y

z

The fundamental parallelepiped Π is the set{
d+1∑
i=1

γi (1, vi ) : 0 ≤ γi < 1

}

FACT:

HB(v) is the union of {(1, v1), . . . , (1, vd+1)}
and the additively minimal elements of

Π ∩ Zd+1
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Partition the fundamental parallelepiped

Map z ∈ Π to {0, . . . , n − 1}d+1

by

z 7→
(
bn γ1c , . . . , bn γd+1c

)

EX: n = d = 2

z =
3

4
(1, v1) +

2

4
(1, v2) +

3

4
(1, v3)

z 7→
(⌊

2 · 3

4

⌋
,

⌊
2 · 2

4

⌋
,

⌊
2 · 3

4

⌋)
= (1, 1, 1) ∈ {0, 1}3

Record the box containing z

•

↓

•

↓

(0, 0, 0, 0, 0, 0, 0, 1)
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The function HB

Partition Π into (d + 1)d+1 boxes indexed by α ∈ {0, . . . , d}d+1

(v1, . . . , vd+1)
HB−−→ {0, 1}d+1d+1

HB(v)α =

1 if there exists a Hilbert basis element in box α

0 otherwise

7



The function HB

Partition Π into (d + 1)d+1 boxes indexed by α ∈ {0, . . . , d}d+1

(v1, . . . , vd+1)
HB−−→ {0, 1}d+1d+1

HB(v)α =

1 if there exists a Hilbert basis element in box α

0 otherwise

7



The function HB

Partition Π into (d + 1)d+1 boxes indexed by α ∈ {0, . . . , d}d+1

(v1, . . . , vd+1)
HB−−→ {0, 1}d+1d+1

HB(v)α =

1 if there exists a Hilbert basis element in box α

0 otherwise

7



Why bother?

FACT:

If z in Π ∩ Zd+1 lies in box with indices α = (i1, . . . , id+1), then

height(z) =

⌈
i1 + · · ·+ id+1

d + 1

⌉

CONSEQUENCE:

We can detect IDP by looking at support of HB(v).
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Defining ÎDP via ĤB

IDP is the the composite function:

v HB−−→ {0, 1}d+1d+1 supp−−→ {0, 1}

Let ĤB be any function from v→ (0, 1)d+1d+1

Pick 0 < η < 1

cutoff(x) =

1 if x ≥ η

0 if x < η

ÎDP is the the composite function:

v ĤB−−→ (0, 1)d+1d+1 cutoff−−−→ {0, 1}d+1d+1 supp−−→ {0, 1}

9



Defining ÎDP via ĤB
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A general method for creating

piece-wise linear approximations



The building blocks

matrix: W ∈ Rn×m (weights)

vector: b ∈ Rn (biases)

function: ρ(z) = max(0, z) coordinatewise

Rm W b ρ Rn

ω(x) = ρ(Wx + b)
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An initial approximation of f : Ru −→ Rv

Pick positive integers k and `1, . . . , `k ,

Set weights Wi and biases bi randomly for ωi : R`i −→ R`i+1

Ru ω1 ω2 · · · ωk Wk+1 bk+1 Rv

approximation f̂

Note: f̂ is piece-wise linear
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EXAMPLE: f (x) = log(x) on interval [1, 3]

R ω1 W2 b2 R

f̂

W1 = [0.75,−0.5]T b1 = [−0.75, 1] W2 = [1, 1] b2 = [−0.5]

f̂ (x) = [1, 1]ω1(x) + [−0.5]

= [1, 1]ρ

([
0.75

−0.5

]
[x] +

[
−0.75

1

])
+ [−0.5]

= 1 · ρ(0.75x − 0.75)

+ 1 · ρ(−0.5x + 1)− 0.5

=

{
0.25x − 0.25 1 ≤ x ≤ 2

0.75x − 1.25 2 < x ≤ 3

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

f and f̂ (dashed)
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Refining the approximation f̂

Define a loss function L(x) which measures the accuracy of f̂ .

Consider L as a function of the parameters

p = (W1, b1, . . . ,Wk+1, bk+1)

and compute the gradient ∇L.

Update the parameters p 7→ p′ by

p′ = p − ε∇L

For sufficiently small ε, we expect that Lp′(x) < Lp(x)

Our new approximation is f̂ with the updated parameters p′
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f (x) = log(x) continued

Let x = 1.5 and use Euclidean distance loss function

L(x) =
∥∥∥log(x)− f̂ (x)

∥∥∥
∇L =

〈
∂L

∂W1
,
∂L

∂b1
,
∂L

∂W2
,
∂L

∂b2

〉
x=1.5

= 〈−1.5 , −1.5 , −1 , −1 , −0.375 , −0.25 , −1〉 .

For ε = 0.02, the update p′ = p − ε∇L is given by

W1 = [0.78 , −0.47]T b1 = [−0.73 , 1.02]

W2 = [1.0075 , 1.0075] b2 = [−0.48]

The updated approximation is

f̂ (x) =

0.312x − 0.187 1 ≤ x ≤ 2.17

0.786x − 1.215 2.17 < x ≤ 3

14



f (x) = log(x) continued

Let x = 1.5 and use Euclidean distance loss function

L(x) =
∥∥∥log(x)− f̂ (x)

∥∥∥
∇L =

〈
∂L

∂W1
,
∂L

∂b1
,
∂L

∂W2
,
∂L

∂b2

〉
x=1.5

= 〈−1.5 , −1.5 , −1 , −1 , −0.375 , −0.25 , −1〉 .

For ε = 0.02, the update p′ = p − ε∇L is given by

W1 = [0.78 , −0.47]T b1 = [−0.73 , 1.02]

W2 = [1.0075 , 1.0075] b2 = [−0.48]

The updated approximation is

f̂ (x) =

0.312x − 0.187 1 ≤ x ≤ 2.17

0.786x − 1.215 2.17 < x ≤ 3

14



f (x) = log(x) continued

Let x = 1.5 and use Euclidean distance loss function

L(x) =
∥∥∥log(x)− f̂ (x)

∥∥∥
∇L =

〈
∂L

∂W1
,
∂L

∂b1
,
∂L

∂W2
,
∂L

∂b2

〉
x=1.5

= 〈−1.5 , −1.5 , −1 , −1 , −0.375 , −0.25 , −1〉 .

For ε = 0.02, the update p′ = p − ε∇L is given by

W1 = [0.78 , −0.47]T b1 = [−0.73 , 1.02]

W2 = [1.0075 , 1.0075] b2 = [−0.48]

The updated approximation is

f̂ (x) =

0.312x − 0.187 1 ≤ x ≤ 2.17

0.786x − 1.215 2.17 < x ≤ 3

14



f (x) = log(x) continued

1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

f̂ (x ; p) (dotted) and

f̂ (x ; p′) (dashed)

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

Loss for f̂ (x ; p) and

f̂ (x ; p′) (dashed)
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Implementation



Training data

HB is expensive to compute, so we pre-compute a collection of

values which we reuse multiple times to update parameters of ĤB

We restrict to the case that d = 4 and v is of the form:

• vi = ei for 1 ≤ i ≤ d , and

• vd+1 = (−λ1,−λ2,−λ3,−λ4) with 1 ≤ λi ≤ 25

Using Normaliz, we compute HB(v) for 50,000 such examples

drawn uniformly at random.
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We restrict to the case that d = 4 and v is of the form:

• vi = ei for 1 ≤ i ≤ d , and

• vd+1 = (−λ1,−λ2,−λ3,−λ4) with 1 ≤ λi ≤ 25

Using Normaliz, we compute HB(v) for 50,000 such examples

drawn uniformly at random.

16



Training data

HB is expensive to compute, so we pre-compute a collection of

values which we reuse multiple times to update parameters of ĤB
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Hyperparameters

R4 100 400 800 3000 W5 b5 R3,125

Trainable parameters: ≈ 12million

Learning rate: ε = 10−4

Number of updates: 200,000 batches of size 25

17



Loss function

Binary Cross Entropy: For f a 0/1 function, f̂ real valued,

BCE(x) = (f − 1) · log
(

1− σ ◦ f̂
)
− f · log

(
σ ◦ f̂

)
where σ is the sigmoid function σ(z) = (1 + e−z)−1.

18



Results



λ = (5, 11, 11, 20)

f̂ (v) = (−51.4,−26.9,−62.9,−29.6,−25.2,−30.2,−2.1, . . . )

ĤB(v) = (4.4e−23, 1.9e−12, 4.6e−28, 1.3e−13, 1.0e−11, 7.0e−14, 1.0e−01, . . . )

with η = 0.1, cutoff
(
ĤB(v)

)
= (0, 0, 0, 0, 0, 0, 1, . . . )

η = 0.1 PREDICTED 0 PREDICTED 1

ACTUAL 0 2,705 160

ACTUAL 1 1 11

specificity (top row) =
true negatives

true negatives + false positives
= 94%

sensitivity (bottom row) =
true positives

true positives + false negatives
= 92%
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ĤB(v) = (4.4e−23, 1.9e−12, 4.6e−28, 1.3e−13, 1.0e−11, 7.0e−14, 1.0e−01, . . . )

with η = 0.1, cutoff
(
ĤB(v)

)
= (0, 0, 0, 0, 0, 0, 1, . . . )

η = 0.1 PREDICTED 0 PREDICTED 1

ACTUAL 0 2,705 160

ACTUAL 1 1 11

specificity (top row) =
true negatives

true negatives + false positives
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sensitivity (bottom row) =
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true positives + false negatives
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5,000 random samples aggregated

η = 0.01 PREDICTED 0 PREDICTED 1

ACTUAL 0 11,448,675 2,845,413

ACTUAL 1 6,572 92,971

specificity = 80% sensitivity = 93%
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Effect on ĤB of varying η
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The resulting approximation ÎDP

In the sample of 5,000 simplices, there were 112 IDP examples

(≈ 2.4%)

Result of applying ÎDP to the sample:

@
@

@
@

τ

η
0.5 0.25 0.12 0.05

0 3/7 (42.9%) 3/4 (75.0%) 3/3 (100.0%) 3/3 (100.0%)

10 21/320 (6.6%) 11/38 (29.0%) 8/21 (38.1%) 6/12 (50.0%)

20 46/1026 (4.5%) 21/102 (20.6%) 11/45 (24.4%) 8/27 (29.6%)

30 65/1770 (3.7%) 35/196 (17.9%) 23/103 (22.3%) 16/64 (25.0%)
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The IDP examples predicted by ÎDP (η = 0.1, τ = 65)

1,1,1,1 1,1,3,9 1,1,21,24 1,2,14,10 1,2,14,10 24,2,1,16

1,3,16,3 1,3,24,1 1,4,2,16 1,4,20,20 1,8,1,1 24,4,2,4

1,10,10,8 1,10,24,24 1,12,4,12 1,15,3,1 1,18,1,6 24,24,23,12

1,21,1,4 1,24,1,9 1,24,14,2 1,24,17,1 1,24,18,1 24,24,6,24

1,24,18,4 1,24,24,20 2,2,2,7 2,3,12,18 2,8,8,4 23,24,24,12

2,10,1,16 2,20,10,5 3,1,1,9 3,6,12,1 3,12,2,24 23,18,3,24

3,14,21,3 3,19,3,1 3,23,15,3 4,1,1,4 4,8,2,16 23,2,2,6

4,20,1,14 4,20,10,20 4,23,4,12 4,24,1,16 6,1,2,12 22,22,20,1

6,2,6,3 6,2,18,9 6,6,6,3 6,14,6,15 6,17,9,18 22,16,22,1

7,3,21,7 7,7,1,7 7,7,16,16 8,1,8,2 8,2,12,24 22,16,4,1

8,16,4,2 9,1,1,9 9,6,18,2 9,9,4,4 9,18,4,4 22,2,2,22

9,18,18,6 9,22,1,11 10,1,5,22 10,5,10,9 10,24,4,1 21,21,16,4

11,22,5,5 12,1,2,6 12,1,24,19 12,2,3,12 12,2,18,3 20,22,1,22

12,3,2,6 12,3,11,6 12,6,1,1 12,6,1,3 12,12,4,12 20,20,4,20

12,16,1,16 12,24,2,24 12,24,6,1 13,2,2,20 14,6,14,7 20,20,4,1

14,7,2,24 14,7,12,1 15,1,13,15 15,15,1,1 16,1,6,6 20,20,1,20

16,4,2,16 16,7,16,16 16,8,4,2 16,16,12,3 16,24,1,22 20,14,24,1

17,1,7,1 17,17,8,4 17,17,17,1 18,1,1,15 18,2,6,6

18,2,22,1 18,10,1,15 19,19,1,16 20,2,1,12 20,8,19,8
23



The big search

We computed the value of ÎDP for all 390,625 ∆(1,q) simplices

with q-vector in [1, 25]4 using η = 0.007 and τ = 50.

The computation produced 3,773 predicted positives.

We then computed IDP for these examples and found that 856

were IDP.

This corresponds to a specificity of about 23%.
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Remarks

1. If we train our approximation ĤB to have high sensitivity,

then we can recover a set of lattice points containing the

Hilbert basis. If the specificity is high, then reducing this set

will require fewer steps than reducing the entire fundamental

parallelepiped.

2. If we record the number of FPP points in each bin instead of

the presence of Hilbert basis elements, then we have a model

for predicting unimodality of the h∗-vector.
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