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What are the classical Dehn-Sommerville Equations?

Definition
A polytope is simplicial if all of
its faces are simplices.

Theorem (Dehn, Sommerville,
1905-1927)

Let P be a simplicial
d-dimensional polytope with
face-vector (f−1, . . . , fd). Then
for 0 ≤ j ≤ d :

fj−1 =
d∑

k=j

(−1)d−k
(
k

j

)
fk−1



How else can we formulate this?

I Recall from Katharina’s problem sheet that we can define an
h − vector for simplicial polytopes:

d∑
i=0

fi−1z
i (1− z)d−i =

d∑
i=0

hkz
i .

I The Dehn-Sommerville equations can be stated as a
symmetry in the h-vector:

hi = hd−i



Dehn-Sommerville Equations for cubical polytopes

Definition
A polytope is cubical if all of its
faces are combinatorially
equivalent to cubes.

Theorem
Let P be a cubical d-dimensional
polytope with face-vector
(f−1, . . . , fd). Then for
0 ≤ j ≤ d , we have:

fj−1 =
d∑

k=j

(−1)d−k2k−j
(
k − 1

j − 1

)
fk−1



Questions!!!

I There are generalizations of Dehn-Sommerville equations for
simplicial polytopes! Can these generalizations be extended as
far in the cubical case?

I There are many proofs of Dehn-Sommerville. Do these proof
techniques work well in the cubical case?

I Can we express the cubical Dehn-Sommerville as a symmetry
relation of some cubical h-vector?



How far can one generalize Dehn-Sommerville?

Definition
An (abstract) simplicial complex is a nonempty collection Γ of
subsets of a finite set V such that:

I if σ ∈ Γ and σ′ ⊂ σ, then σ′ ∈ Γ.

We call the σ faces of Γ.
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Maximal Faces

{1,2,3,4}
{4,5,6,7}
{5,8}
{4,7,9}
{9,10}
{10,11}
{9,11}

Note: Every (abstract) simplical complex Γ can be realized as the
face poset of a complex of unimodular simplices!
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How far can one generalize Dehn-Sommerville?

Theorem
Let Γ be a d-dimensional Eularian simplicial complex. Then for
0 ≤ i ≤ d + 1,

hi = hd−i+1

which is equivalent to

fj−1 =
d+1∑
k=j

(−1)d+1−k
(
k

j

)
fk−1

for 0 ≤ j ≤ d + 1.

Proofs outlined in Beck-Sanyal’s new book:

I uses the idea of self-reciprocol complexes.

I uses the idea of chain partition functions
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Generalized form for cubical complexes?

Definition
A cubical complex Γ is a nonempty collection of subsets on a finite
set V closed under intersection such that:

I {v} ∈ V for all v ∈ V

I For every face σ ∈ Γ the interval [∅, σ] is isomorphic to the
lattice of faces of a cube.

Theorem (Adin, 1995)

Let Γ be a d-dimensional Eularian cubical complex. Then for
1 ≤ j ≤ d + 1,

fj−1 =
d+1∑
k=j

(−1)d−k+12k−j
(
k − 1

j − 1

)
fk−1

Proof: uses flags, defines a long and a short cubical h-vector!!!
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What is a self-reciprocal complex?

Let K be a complex of lattice polytopes in Rd . We can extend the
definition of the ehrhart polynomial:

ehrK = |nK ∩ Zd |

This always agrees with a polynomial of degree dim(K).

Definition
K is self-reciprocal if for all n > 0:

(−1)dim(K)ehrK(−n) = ehrK(n)



In terms of h∗-vector

Recall from Katharina’s lectures:

Definition

EhrK(z) := 1 +
∑
n≥1

ehrK(n)zn =
h∗0 + h∗1z + · · ·+ h∗d+1z

d+1

(1− z)d+1

We call (h∗0, . . . h
∗
d+1) the h∗−vector of K.

In some cases, you can determine whether a complex is
self-reciprocal from the h∗-vector!

Theorem
Let χ(K) = 1− (−1)d+1. Then K is self-reciprocal if and only if:

h∗d+1−i (K) = h∗i (K)
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What are examples of self-reciprocal complexes?

Proposition

The boundary complex (all proper faces) of any lattice polytope is
self-reciprocal.

Proof uses Ehrhart-Mcdonald reciprocity.

Definition
A graded poset Π with 0̂, 1̂ is Eularian if:

µΠ(x , y) = (−1)`(x ,y)

Proposition

Eularian complexes of lattice polytopes are self reciprocal.

Again, use Ehrhart-Mcdonald reciprocity.
In all these cases, χ(K) = 1− (−1)d+1 so the h∗ vector is
symmetric!
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How do we use this to prove generalized Dehn-Somerville?

I Start with an Eularian simplicial complex Γ.

I There is a complex of unimodular simplices that has the same
face lattice. Call this R[Γ].

I This is self-reciprocal!

I Since all faces of R[Γ] are unimodular, the h∗-vector and h−
vector are the same.

I Since the h∗−vector is symmetric, so is the h vector!

I Generalized Dehn-Sommerville!
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Can we use this method for the cubical case?

I don’t think so...
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What are chain partitions of a poset?

Let Π be a finite poset with 0̂, 1̂. Let φ : Π→ Z+ be an
order-preserving map.

Definition
A (Π, φ)−chain partition of n is of the form:

n = φ(c1) + · · ·+ φ(cm)

for some multichain 0̂ ≺ c1 � · · · � cm ≺ 1̂

We let cpΠ,φ(n) be the
number of (Π, φ)- chain partitions of n.

Theorem
Let Π be Eulerian of rank d + 1, and let φ be ranked. Then,

(−1)dcpΠ,φ(−n) = cpΠ,φ(n − φ1 − · · · − φd)
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Chain partitions of simplicial complexes?

Let Γ be a simplicial complex on V .
Consider: multisubset represented as a ∈ ZV

≥0, where av is the
multiplicity of v .

supp(a) := {v ∈ V |av > 0}

(2,  3,  2)
A B C

A

B C A

B

C

B
⊇ ⊇

multisubsets a
with fixed support

multichains 
supp(a)=σm ⊇ ...⊇ σ1 ⊃ 0  {{ } }
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From chain partitions to Dehn-Sommerville

Theorem (Beck, Sanyal)

Let Γ be a simplicial complex of dimension d − 1 with φ(σ) = |σ|.
Then:

cpΓ,φ =
d∑

k=0

fk−1

(
n

k

)

I This is a polynomial! So the series CPΓ,φ can be written as:

CPΓ,φ(z) =
h0 + · · ·+ hd−1z

d−1

(1− z)d

I You can show that the hi are indeed the h− vector of Γ.
I The proposition a few slides ago implies:

hi = hd−1−i

I Dehn Sommerville!!
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Thank you all!!! :) :)


	Section One

