Cubical Dehn-Sommerville equations

max hlavacek
UC Berkeley

August 2, 2018

What are the classical Dehn-Sommerville Equations?

Definition

A polytope is simplicial if all of its faces are simplices.

Theorem (Dehn, Sommerville, 1905-1927)
Let P be a simplicial d-dimensional polytope with face-vector $\left(f_{-1}, \ldots, f_{d}\right)$. Then
 for $0 \leq j \leq d$:

$$
f_{j-1}=\sum_{k=j}^{d}(-1)^{d-k}\binom{k}{j} f_{k-1}
$$

How else can we formulate this?

- Recall from Katharina's problem sheet that we can define an h - vector for simplicial polytopes:

$$
\sum_{i=0}^{d} f_{i-1} z^{i}(1-z)^{d-i}=\sum_{i=0}^{d} h_{k} z^{i}
$$

- The Dehn-Sommerville equations can be stated as a symmetry in the h-vector:

$$
h_{i}=h_{d-i}
$$

Dehn-Sommerville Equations for cubical polytopes

Definition

A polytope is cubical if all of its faces are combinatorially equivalent to cubes.

Theorem
Let P be a cubical d-dimensional polytope with face-vector
$\left(f_{-1}, \ldots, f_{d}\right)$. Then for
$0 \leq j \leq d$, we have:
$f_{j-1}=\sum_{k=j}^{d}(-1)^{d-k} 2^{k-j}\binom{k-1}{j-1} f_{k-1}$

Questions!!!

- There are generalizations of Dehn-Sommerville equations for simplicial polytopes! Can these generalizations be extended as far in the cubical case?
- There are many proofs of Dehn-Sommerville. Do these proof techniques work well in the cubical case?
- Can we express the cubical Dehn-Sommerville as a symmetry relation of some cubical h-vector?

How far can one generalize Dehn-Sommerville?

Definition
An (abstract) simplicial complex is a nonempty collection 「 of subsets of a finite set V such that:

- if $\sigma \in \Gamma$ and $\sigma^{\prime} \subset \sigma$, then $\sigma^{\prime} \in \Gamma$.

We call the σ faces of Γ.

$$
\begin{aligned}
& \text { Maximal Faces } \\
& \{1,2,3,4\} \\
& \{4,5,6,7\} \\
& \{5,8\} \\
& \{4,7,9\} \\
& \{9,10\} \\
& \{10,11\} \\
& \{9,11\}
\end{aligned}
$$

How far can one generalize Dehn-Sommerville?

Definition

An (abstract) simplicial complex is a nonempty collection 「 of subsets of a finite set V such that:

- if $\sigma \in \Gamma$ and $\sigma^{\prime} \subset \sigma$, then $\sigma^{\prime} \in \Gamma$.

We call the σ faces of Γ.

$$
\begin{aligned}
& \text { Maximal Faces } \\
& \{1,2,3,4\} \\
& \{4,5,6,7\} \\
& \{5,8\} \\
& \{4,7,9\} \\
& \{9,10\} \\
& \{10,11\} \\
& \{9,11\}
\end{aligned}
$$

Note: Every (abstract) simplical complex Г can be realized as the face poset of a complex of unimodular simplices!

How far can one generalize Dehn-Sommerville?

Theorem
Let Γ be a d-dimensional Eularian simplicial complex. Then for $0 \leq i \leq d+1$,

$$
h_{i}=h_{d-i+1}
$$

which is equivalent to

$$
f_{j-1}=\sum_{k=j}^{d+1}(-1)^{d+1-k}\binom{k}{j} f_{k-1}
$$

for $0 \leq j \leq d+1$.

How far can one generalize Dehn-Sommerville?

Theorem
Let Γ be a d-dimensional Eularian simplicial complex. Then for $0 \leq i \leq d+1$,

$$
h_{i}=h_{d-i+1}
$$

which is equivalent to

$$
f_{j-1}=\sum_{k=j}^{d+1}(-1)^{d+1-k}\binom{k}{j} f_{k-1}
$$

for $0 \leq j \leq d+1$.
Proofs outlined in Beck-Sanyal's new book:

- uses the idea of self-reciprocol complexes.
- uses the idea of chain partition functions

Generalized form for cubical complexes?

Definition

A cubical complex Γ is a nonempty collection of subsets on a finite set V closed under intersection such that:

- $\{v\} \in V$ for all $v \in V$
- For every face $\sigma \in \Gamma$ the interval $[\emptyset, \sigma]$ is isomorphic to the lattice of faces of a cube.

Generalized form for cubical complexes?

Definition

A cubical complex Γ is a nonempty collection of subsets on a finite set V closed under intersection such that:

- $\{v\} \in V$ for all $v \in V$
- For every face $\sigma \in \Gamma$ the interval $[\emptyset, \sigma]$ is isomorphic to the lattice of faces of a cube.

Theorem (Adin, 1995)
Let Γ be a d-dimensional Eularian cubical complex. Then for $1 \leq j \leq d+1$,

$$
f_{j-1}=\sum_{k=j}^{d+1}(-1)^{d-k+1} 2^{k-j}\binom{k-1}{j-1} f_{k-1}
$$

Generalized form for cubical complexes?

Definition

A cubical complex Γ is a nonempty collection of subsets on a finite set V closed under intersection such that:

- $\{v\} \in V$ for all $v \in V$
- For every face $\sigma \in \Gamma$ the interval $[\emptyset, \sigma]$ is isomorphic to the lattice of faces of a cube.

Theorem (Adin, 1995)
Let Γ be a d-dimensional Eularian cubical complex. Then for $1 \leq j \leq d+1$,

$$
f_{j-1}=\sum_{k=j}^{d+1}(-1)^{d-k+1} 2^{k-j}\binom{k-1}{j-1} f_{k-1}
$$

Proof: uses flags, defines a long and a short cubical h-vector!!!

What is a self-reciprocal complex?

Let \mathcal{K} be a complex of lattice polytopes in \mathbb{R}^{d}. We can extend the definition of the ehrhart polynomial:

$$
e h r_{\mathcal{K}}=\left|n \mathcal{K} \cap \mathbb{Z}^{d}\right|
$$

This always agrees with a polynomial of degree $\operatorname{dim}(\mathcal{K})$.
Definition
\mathcal{K} is self-reciprocal if for all $n>0$:

$$
(-1)^{\operatorname{dim}(\mathcal{K})} \operatorname{ehr}_{\mathcal{K}}(-n)=\operatorname{ehr}_{\mathcal{K}}(n)
$$

In terms of h^{*}-vector

Recall from Katharina's lectures:
Definition

$$
\operatorname{Ehr}_{\mathcal{K}}(z):=1+\sum_{n \geq 1} e h r_{\mathcal{K}}(n) z^{n}=\frac{h_{0}^{*}+h_{1}^{*} z+\cdots+h_{d+1}^{*} z^{d+1}}{(1-z)^{d+1}}
$$

We call $\left(h_{0}^{*}, \ldots h_{d+1}^{*}\right)$ the h^{*}-vector of \mathcal{K}.

In terms of h^{*}-vector

Recall from Katharina's lectures:
Definition

$$
\operatorname{Ehr}_{\mathcal{K}}(z):=1+\sum_{n \geq 1} e h r_{\mathcal{K}}(n) z^{n}=\frac{h_{0}^{*}+h_{1}^{*} z+\cdots+h_{d+1}^{*} z^{d+1}}{(1-z)^{d+1}}
$$

We call $\left(h_{0}^{*}, \ldots h_{d+1}^{*}\right)$ the h^{*}-vector of \mathcal{K}.
In some cases, you can determine whether a complex is self-reciprocal from the h^{*}-vector!

In terms of h^{*}-vector

Recall from Katharina's lectures:
Definition

$$
\operatorname{Ehr}_{\mathcal{K}}(z):=1+\sum_{n \geq 1} \operatorname{ehr}_{\mathcal{K}}(n) z^{n}=\frac{h_{0}^{*}+h_{1}^{*} z+\cdots+h_{d+1}^{*} z^{d+1}}{(1-z)^{d+1}}
$$

We call $\left(h_{0}^{*}, \ldots h_{d+1}^{*}\right)$ the h^{*}-vector of \mathcal{K}.
In some cases, you can determine whether a complex is self-reciprocal from the h^{*}-vector!

Theorem
Let $\chi(\mathcal{K})=1-(-1)^{d+1}$. Then \mathcal{K} is self-reciprocal if and only if:

$$
h_{d+1-i}^{*}(\mathcal{K})=h_{i}^{*}(\mathcal{K})
$$

What are examples of self-reciprocal complexes?

Proposition

The boundary complex (all proper faces) of any lattice polytope is self-reciprocal.
Proof uses Ehrhart-Mcdonald reciprocity.

What are examples of self-reciprocal complexes?

Proposition

The boundary complex (all proper faces) of any lattice polytope is self-reciprocal.
Proof uses Ehrhart-Mcdonald reciprocity.
Definition
A graded poset Π with $\hat{0}, \hat{1}$ is Eularian if:

$$
\mu_{\Pi}(x, y)=(-1)^{\ell(x, y)}
$$

What are examples of self-reciprocal complexes?

Proposition

The boundary complex (all proper faces) of any lattice polytope is self-reciprocal.
Proof uses Ehrhart-Mcdonald reciprocity.
Definition
A graded poset Π with $\hat{0}, \hat{1}$ is Eularian if:

$$
\mu_{\Pi}(x, y)=(-1)^{\ell(x, y)}
$$

Proposition

Eularian complexes of lattice polytopes are self reciprocal.
Again, use Ehrhart-Mcdonald reciprocity.

What are examples of self-reciprocal complexes?

Proposition

The boundary complex (all proper faces) of any lattice polytope is self-reciprocal.
Proof uses Ehrhart-Mcdonald reciprocity.
Definition
A graded poset Π with $\hat{0}, \hat{1}$ is Eularian if:

$$
\mu_{\Pi}(x, y)=(-1)^{\ell(x, y)}
$$

Proposition

Eularian complexes of lattice polytopes are self reciprocal.
Again, use Ehrhart-Mcdonald reciprocity.
In all these cases, $\chi(\mathcal{K})=1-(-1)^{d+1}$ so the h^{*} vector is symmetric!

- Start with an Eularian simplicial complex Γ.

How do we use this to prove generalized Dehn-Somerville?

- Start with an Eularian simplicial complex Г.
- There is a complex of unimodular simplices that has the same face lattice. Call this $\mathcal{R}[\Gamma]$.

How do we use this to prove generalized Dehn-Somerville?

- Start with an Eularian simplicial complex Г.
- There is a complex of unimodular simplices that has the same face lattice. Call this $\mathcal{R}[\Gamma]$.
- This is self-reciprocal!

How do we use this to prove generalized Dehn-Somerville?

- Start with an Eularian simplicial complex Г.
- There is a complex of unimodular simplices that has the same face lattice. Call this $\mathcal{R}[\Gamma]$.
- This is self-reciprocal!
- Since all faces of $\mathcal{R}[\Gamma]$ are unimodular, the h^{*}-vector and h vector are the same.

How do we use this to prove generalized Dehn-Somerville?

- Start with an Eularian simplicial complex Г.
- There is a complex of unimodular simplices that has the same face lattice. Call this $\mathcal{R}[\Gamma]$.
- This is self-reciprocal!
- Since all faces of $\mathcal{R}[\Gamma]$ are unimodular, the h^{*}-vector and h vector are the same.
- Since the h^{*}-vector is symmetric, so is the h vector!

How do we use this to prove generalized Dehn-Somerville?

- Start with an Eularian simplicial complex Γ.
- There is a complex of unimodular simplices that has the same face lattice. Call this $\mathcal{R}[\Gamma]$.
- This is self-reciprocal!
- Since all faces of $\mathcal{R}[\Gamma]$ are unimodular, the h^{*}-vector and h vector are the same.
- Since the h^{*}-vector is symmetric, so is the h vector!
- Generalized Dehn-Sommerville!

Can we use this method for the cubical case?

Can we use this method for the cubical case?

I don't think so...

Can we use this method for the cubical case?

I don't think so...

What are chain partitions of a poset?

Let Π be a finite poset with $\hat{0}, \hat{1}$. Let $\phi: \Pi \rightarrow \mathbb{Z}_{+}$be an order-preserving map.

Definition

A (Π, ϕ)-chain partition of n is of the form:

$$
n=\phi\left(c_{1}\right)+\cdots+\phi\left(c_{m}\right)
$$

for some multichain $\hat{0} \prec c_{1} \preceq \cdots \preceq c_{m} \prec \hat{1}$

What are chain partitions of a poset?

Let Π be a finite poset with $\hat{0}, \hat{1}$. Let $\phi: \Pi \rightarrow \mathbb{Z}_{+}$be an order-preserving map.

Definition

A (Π, ϕ)-chain partition of n is of the form:

$$
n=\phi\left(c_{1}\right)+\cdots+\phi\left(c_{m}\right)
$$

for some multichain $\hat{0} \prec c_{1} \preceq \cdots \preceq c_{m} \prec \hat{1}$ We let $c p_{\Pi, \phi}(n)$ be the number of ($\Pi, \phi)$ - chain partitions of n.

What are chain partitions of a poset?

Let Π be a finite poset with $\hat{0}, \hat{1}$. Let $\phi: \Pi \rightarrow \mathbb{Z}_{+}$be an order-preserving map.

Definition

A (Π, ϕ)-chain partition of n is of the form:

$$
n=\phi\left(c_{1}\right)+\cdots+\phi\left(c_{m}\right)
$$

for some multichain $\hat{0} \prec c_{1} \preceq \cdots \preceq c_{m} \prec \hat{1}$ We let $c p_{\Pi, \phi}(n)$ be the number of ($\Pi, \phi)$ - chain partitions of n.

Theorem
Let Π be Eulerian of rank $d+1$, and let ϕ be ranked. Then,

$$
(-1)^{d} c p_{\Pi, \phi}(-n)=c p_{\Pi, \phi}\left(n-\phi_{1}-\cdots-\phi_{d}\right)
$$

Chain partitions of simplicial complexes?

Let Γ be a simplicial complex on V.
Consider: multisubset represented as $\mathbf{a} \in \mathbb{Z}_{\geq 0}^{V}$, where a_{v} is the multiplicity of v.

$$
\operatorname{supp}(\mathbf{a}):=\left\{v \in V \mid a_{v}>0\right\}
$$

Chain partitions of simplicial complexes?

Let Γ be a simplicial complex on V.
Consider: multisubset represented as $\mathbf{a} \in \mathbb{Z}_{\geq 0}^{V}$, where a_{v} is the multiplicity of v.

$$
\operatorname{supp}(\mathbf{a}):=\left\{v \in V \mid a_{v}>0\right\}
$$

$\left\{\begin{array}{l}\text { multichains } \\ \text { supp }(\mathbf{a})=\sigma_{m} \supseteq \ldots \supseteq \sigma_{1} \supset 0\end{array}\right\}$

From chain partitions to Dehn-Sommerville

Theorem (Beck, Sanyal)
Let 「 be a simplicial complex of dimension $d-1$ with $\phi(\sigma)=|\sigma|$. Then:

$$
c p_{\Gamma, \phi}=\sum_{k=0}^{d} f_{k-1}\binom{n}{k}
$$

From chain partitions to Dehn-Sommerville

Theorem (Beck, Sanyal)
Let Γ be a simplicial complex of dimension $d-1$ with $\phi(\sigma)=|\sigma|$. Then:

$$
c p_{\Gamma, \phi}=\sum_{k=0}^{d} f_{k-1}\binom{n}{k}
$$

- This is a polynomial! So the series $C P_{\Gamma, \phi}$ can be written as:

$$
C P_{\Gamma, \phi}(z)=\frac{h_{0}+\cdots+h_{d-1} z^{d-1}}{(1-z)^{d}}
$$

From chain partitions to Dehn-Sommerville

Theorem (Beck, Sanyal)
Let Γ be a simplicial complex of dimension $d-1$ with $\phi(\sigma)=|\sigma|$. Then:

$$
c p_{\Gamma, \phi}=\sum_{k=0}^{d} f_{k-1}\binom{n}{k}
$$

- This is a polynomial! So the series $C P_{\Gamma, \phi}$ can be written as:

$$
C P_{\Gamma, \phi}(z)=\frac{h_{0}+\cdots+h_{d-1} z^{d-1}}{(1-z)^{d}}
$$

- You can show that the h_{i} are indeed the h - vector of Γ.

From chain partitions to Dehn-Sommerville

Theorem (Beck, Sanyal)
Let Γ be a simplicial complex of dimension $d-1$ with $\phi(\sigma)=|\sigma|$. Then:

$$
c p_{\Gamma, \phi}=\sum_{k=0}^{d} f_{k-1}\binom{n}{k}
$$

- This is a polynomial! So the series $C P_{\Gamma, \phi}$ can be written as:

$$
C P_{\Gamma, \phi}(z)=\frac{h_{0}+\cdots+h_{d-1} z^{d-1}}{(1-z)^{d}}
$$

- You can show that the h_{i} are indeed the h - vector of Γ.
- The proposition a few slides ago implies:

$$
h_{i}=h_{d-1-i}
$$

From chain partitions to Dehn-Sommerville

Theorem (Beck, Sanyal)

Let Γ be a simplicial complex of dimension $d-1$ with $\phi(\sigma)=|\sigma|$. Then:

$$
c p_{\Gamma, \phi}=\sum_{k=0}^{d} f_{k-1}\binom{n}{k}
$$

- This is a polynomial! So the series $C P_{\Gamma, \phi}$ can be written as:

$$
C P_{\Gamma, \phi}(z)=\frac{h_{0}+\cdots+h_{d-1} z^{d-1}}{(1-z)^{d}}
$$

- You can show that the h_{i} are indeed the h - vector of Γ.
- The proposition a few slides ago implies:

$$
h_{i}=h_{d-1-i}
$$

- Dehn Sommerville!!

Can you do this for the cubical case?

Can you do this for the cubical case?

I hope so!

Thank you all!!! :) :)

