Cubical Dehn-Sommerville equations

max hlavacek

UC Berkeley

August 2, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What are the classical Dehn-Sommerville Equations?

Definition

A polytope is *simplicial* if all of its faces are simplices.

Theorem (Dehn, Sommerville, 1905-1927)

Let P be a simplicial d-dimensional polytope with face-vector (f_{-1}, \ldots, f_d) . Then for $0 \le j \le d$:

$$f_{j-1} = \sum_{k=j}^{d} (-1)^{d-k} \binom{k}{j} f_{k-1}$$

How else can we formulate this?

Recall from Katharina's problem sheet that we can define an h - vector for simplicial polytopes:

$$\sum_{i=0}^{d} f_{i-1} z^{i} (1-z)^{d-i} = \sum_{i=0}^{d} h_{k} z^{i}.$$

The Dehn-Sommerville equations can be stated as a symmetry in the *h*-vector:

$$h_i = h_{d-i}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dehn-Sommerville Equations for cubical polytopes

Definition

A polytope is *cubical* if all of its faces are combinatorially equivalent to cubes.

Theorem

Let P be a cubical d-dimensional polytope with face-vector (f_{-1}, \ldots, f_d) . Then for $0 \le j \le d$, we have:

$$f_{j-1} = \sum_{k=j}^{d} (-1)^{d-k} 2^{k-j} \binom{k-1}{j-1} f_{k-1}$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Questions!!!

- There are generalizations of Dehn-Sommerville equations for simplicial polytopes! Can these generalizations be extended as far in the cubical case?
- There are many proofs of Dehn-Sommerville. Do these proof techniques work well in the cubical case?
- Can we express the cubical Dehn-Sommerville as a symmetry relation of some cubical h-vector?

Definition

An (abstract) simplicial complex is a nonempty collection Γ of subsets of a finite set V such that:

• if $\sigma \in \Gamma$ and $\sigma' \subset \sigma$, then $\sigma' \in \Gamma$.

We call the σ faces of Γ .

Definition

An (abstract) simplicial complex is a nonempty collection Γ of subsets of a finite set V such that:

• if $\sigma \in \Gamma$ and $\sigma' \subset \sigma$, then $\sigma' \in \Gamma$.

We call the σ faces of Γ .

Note: Every (abstract) simplical complex Γ can be realized as the face poset of a complex of unimodular simplices!

Theorem Let Γ be a d-dimensional Eularian simplicial complex. Then for $0 \le i \le d + 1$,

$$h_i = h_{d-i+1}$$

which is equivalent to

$$f_{j-1} = \sum_{k=j}^{d+1} (-1)^{d+1-k} \binom{k}{j} f_{k-1}$$

for $0 \le j \le d + 1$.

Theorem

Let Γ be a d-dimensional Eularian simplicial complex. Then for $0 \le i \le d + 1$,

$$h_i = h_{d-i+1}$$

which is equivalent to

$$f_{j-1} = \sum_{k=j}^{d+1} (-1)^{d+1-k} \binom{k}{j} f_{k-1}$$

for $0 \le j \le d + 1$.

Proofs outlined in Beck-Sanyal's new book:

- uses the idea of self-reciprocol complexes.
- uses the idea of chain partition functions

Generalized form for cubical complexes?

Definition

A cubical complex Γ is a nonempty collection of subsets on a finite set V closed under intersection such that:

•
$$\{v\} \in V$$
 for all $v \in V$

For every face σ ∈ Γ the interval [∅, σ] is isomorphic to the lattice of faces of a cube.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generalized form for cubical complexes?

Definition

A cubical complex Γ is a nonempty collection of subsets on a finite set V closed under intersection such that:

•
$$\{v\} \in V$$
 for all $v \in V$

For every face σ ∈ Γ the interval [∅, σ] is isomorphic to the lattice of faces of a cube.

Theorem (Adin, 1995)

Let Γ be a d-dimensional Eularian cubical complex. Then for $1 \le j \le d + 1$,

$$f_{j-1} = \sum_{k=j}^{d+1} (-1)^{d-k+1} 2^{k-j} \binom{k-1}{j-1} f_{k-1}$$

Generalized form for cubical complexes?

Definition

A cubical complex Γ is a nonempty collection of subsets on a finite set V closed under intersection such that:

•
$$\{v\} \in V$$
 for all $v \in V$

For every face σ ∈ Γ the interval [∅, σ] is isomorphic to the lattice of faces of a cube.

Theorem (Adin, 1995)

Let Γ be a d-dimensional Eularian cubical complex. Then for $1 \le j \le d + 1$,

$$f_{j-1} = \sum_{k=j}^{d+1} (-1)^{d-k+1} 2^{k-j} \binom{k-1}{j-1} f_{k-1}$$

Proof: uses flags, defines a long and a short cubical h-vector!!!

What is a self-reciprocal complex?

Let \mathcal{K} be a complex of lattice polytopes in \mathbb{R}^d . We can extend the definition of the ehrhart polynomial:

$$\mathit{ehr}_\mathcal{K} = |\mathit{n}\mathcal{K} \cap \mathbb{Z}^d|$$

This always agrees with a polynomial of degree $\dim(\mathcal{K})$.

Definition

 \mathcal{K} is *self-reciprocal* if for all n > 0:

$$(-1)^{dim(\mathcal{K})} \operatorname{ehr}_{\mathcal{K}}(-n) = \operatorname{ehr}_{\mathcal{K}}(n)$$

In terms of h^* -vector

Recall from Katharina's lectures: Definition

$$Ehr_{\mathcal{K}}(z) := 1 + \sum_{n \ge 1} ehr_{\mathcal{K}}(n) z^{n} = \frac{h_{0}^{*} + h_{1}^{*} z + \dots + h_{d+1}^{*} z^{d+1}}{(1-z)^{d+1}}$$

We call $(h_0^*, \ldots, h_{d+1}^*)$ the h^* -vector of \mathcal{K} .

In terms of h^* -vector

Recall from Katharina's lectures: Definition

$$Ehr_{\mathcal{K}}(z) := 1 + \sum_{n \ge 1} ehr_{\mathcal{K}}(n) z^{n} = \frac{h_{0}^{*} + h_{1}^{*} z + \dots + h_{d+1}^{*} z^{d+1}}{(1-z)^{d+1}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We call $(h_0^*, \ldots, h_{d+1}^*)$ the h^* -vector of \mathcal{K} .

In some cases, you can determine whether a complex is self-reciprocal from the h^* -vector!

In terms of h^* -vector

Recall from Katharina's lectures: Definition

$$Ehr_{\mathcal{K}}(z) := 1 + \sum_{n \ge 1} ehr_{\mathcal{K}}(n) z^{n} = \frac{h_{0}^{*} + h_{1}^{*} z + \dots + h_{d+1}^{*} z^{d+1}}{(1-z)^{d+1}}$$

We call $(h_0^*, \ldots, h_{d+1}^*)$ the h^* -vector of \mathcal{K} .

In some cases, you can determine whether a complex is self-reciprocal from the h^* -vector!

Theorem

Let $\chi(\mathcal{K}) = 1 - (-1)^{d+1}$. Then \mathcal{K} is self-reciprocal if and only if:

$$h^*_{d+1-i}(\mathcal{K}) = h^*_i(\mathcal{K})$$

Proposition

The boundary complex (all proper faces) of any lattice polytope is self-reciprocal.

Proof uses Ehrhart-Mcdonald reciprocity.

Proposition

The boundary complex (all proper faces) of any lattice polytope is self-reciprocal.

Proof uses Ehrhart-Mcdonald reciprocity.

Definition

A graded poset Π with $\hat{0},\hat{1}$ is *Eularian* if:

$$\mu_{\mathsf{\Pi}}(x,y) = (-1)^{\ell(x,y)}$$

Proposition

The boundary complex (all proper faces) of any lattice polytope is self-reciprocal.

Proof uses Ehrhart-Mcdonald reciprocity.

Definition

A graded poset Π with $\hat{0}, \hat{1}$ is *Eularian* if:

$$\mu_{\mathsf{\Pi}}(x,y) = (-1)^{\ell(x,y)}$$

Proposition

Eularian complexes of lattice polytopes are self reciprocal. Again, use Ehrhart-Mcdonald reciprocity.

Proposition

The boundary complex (all proper faces) of any lattice polytope is self-reciprocal.

Proof uses Ehrhart-Mcdonald reciprocity.

Definition

A graded poset Π with $\hat{0}, \hat{1}$ is *Eularian* if:

$$\mu_{\mathsf{\Pi}}(x,y) = (-1)^{\ell(x,y)}$$

Proposition

Eularian complexes of lattice polytopes are self reciprocal.

Again, use Ehrhart-Mcdonald reciprocity. In all these cases, $\chi(\mathcal{K}) = 1 - (-1)^{d+1}$ so the h^* vector is symmetric!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Start with an Eularian simplicial complex Γ.

- Start with an Eularian simplicial complex Γ.
- There is a complex of unimodular simplices that has the same face lattice. Call this R[Γ].

- Start with an Eularian simplicial complex Γ.
- There is a complex of unimodular simplices that has the same face lattice. Call this R[Γ].

This is self-reciprocal!

- Start with an Eularian simplicial complex Γ.
- There is a complex of unimodular simplices that has the same face lattice. Call this R[Γ].
- This is self-reciprocal!
- ► Since all faces of R[Γ] are unimodular, the h*-vector and h-vector are the same.

- Start with an Eularian simplicial complex Γ.
- There is a complex of unimodular simplices that has the same face lattice. Call this R[Γ].
- This is self-reciprocal!
- ► Since all faces of R[Γ] are unimodular, the h*-vector and h-vector are the same.

▶ Since the *h**−vector is symmetric, so is the *h* vector!

- Start with an Eularian simplicial complex Γ.
- There is a complex of unimodular simplices that has the same face lattice. Call this R[Γ].
- This is self-reciprocal!
- ► Since all faces of R[Γ] are unimodular, the h*-vector and h-vector are the same.

- ▶ Since the *h**−vector is symmetric, so is the *h* vector!
- Generalized Dehn-Sommerville!

Can we use this method for the cubical case?

Can we use this method for the cubical case?

I don't think so...

Can we use this method for the cubical case?

I don't think so...

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

What are chain partitions of a poset?

Let Π be a finite poset with $\hat{0}, \hat{1}$. Let $\phi : \Pi \to \mathbb{Z}_+$ be an order-preserving map.

Definition

A (Π, ϕ) -chain partition of *n* is of the form:

$$n = \phi(c_1) + \cdots + \phi(c_m)$$

for some multichain $\hat{0} \prec c_1 \preceq \cdots \preceq c_m \prec \hat{1}$

What are chain partitions of a poset?

Let Π be a finite poset with $\hat{0}, \hat{1}$. Let $\phi : \Pi \to \mathbb{Z}_+$ be an order-preserving map.

Definition

A (Π, ϕ) -chain partition of n is of the form:

$$n = \phi(c_1) + \cdots + \phi(c_m)$$

for some multichain $\hat{0} \prec c_1 \preceq \cdots \preceq c_m \prec \hat{1}$ We let $cp_{\Pi,\phi}(n)$ be the number of (Π, ϕ) - chain partitions of n.

What are chain partitions of a poset?

Let Π be a finite poset with $\hat{0}, \hat{1}$. Let $\phi : \Pi \to \mathbb{Z}_+$ be an order-preserving map.

Definition

A (Π, ϕ) -chain partition of n is of the form:

$$n = \phi(c_1) + \cdots + \phi(c_m)$$

for some multichain $\hat{0} \prec c_1 \preceq \cdots \preceq c_m \prec \hat{1}$ We let $cp_{\Pi,\phi}(n)$ be the number of (Π, ϕ) - chain partitions of n.

Theorem

Let Π be Eulerian of rank d + 1, and let ϕ be ranked. Then,

$$(-1)^d c p_{\Pi,\phi}(-n) = c p_{\Pi,\phi}(n-\phi_1-\cdots-\phi_d)$$

Chain partitions of simplicial complexes?

Let Γ be a simplicial complex on V. Consider: multisubset represented as $\mathbf{a} \in \mathbb{Z}_{\geq 0}^{V}$, where a_{v} is the multiplicity of v.

$$\operatorname{supp}(\mathbf{a}) := \{ v \in V | a_v > 0 \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Chain partitions of simplicial complexes?

Let Γ be a simplicial complex on V. Consider: multisubset represented as $\mathbf{a} \in \mathbb{Z}_{\geq 0}^{V}$, where a_v is the multiplicity of v.

$$\operatorname{supp}(\mathbf{a}) := \{ v \in V | a_v > 0 \}$$

Theorem (Beck, Sanyal)

Let Γ be a simplicial complex of dimension d - 1 with $\phi(\sigma) = |\sigma|$. Then:

$$cp_{\Gamma,\phi} = \sum_{k=0}^{d} f_{k-1} \binom{n}{k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Beck, Sanyal)

Let Γ be a simplicial complex of dimension d - 1 with $\phi(\sigma) = |\sigma|$. Then:

$$cp_{\Gamma,\phi} = \sum_{k=0}^{d} f_{k-1} \binom{n}{k}$$

• This is a polynomial! So the series $CP_{\Gamma,\phi}$ can be written as:

$$CP_{\Gamma,\phi}(z) = rac{h_0 + \dots + h_{d-1} z^{d-1}}{(1-z)^d}$$

Theorem (Beck, Sanyal)

Let Γ be a simplicial complex of dimension d - 1 with $\phi(\sigma) = |\sigma|$. Then:

$$cp_{\Gamma,\phi} = \sum_{k=0}^{d} f_{k-1} \binom{n}{k}$$

► This is a polynomial! So the series $CP_{\Gamma,\phi}$ can be written as:

$$CP_{\Gamma,\phi}(z) = rac{h_0 + \dots + h_{d-1}z^{d-1}}{(1-z)^d}$$

• You can show that the h_i are indeed the h- vector of Γ .

Theorem (Beck, Sanyal)

Let Γ be a simplicial complex of dimension d - 1 with $\phi(\sigma) = |\sigma|$. Then:

$$cp_{\Gamma,\phi} = \sum_{k=0}^{d} f_{k-1} \binom{n}{k}$$

• This is a polynomial! So the series $CP_{\Gamma,\phi}$ can be written as:

$$CP_{\Gamma,\phi}(z) = rac{h_0 + \dots + h_{d-1}z^{d-1}}{(1-z)^d}$$

• You can show that the h_i are indeed the h- vector of Γ .

The proposition a few slides ago implies:

$$h_i = h_{d-1-i}$$

Theorem (Beck, Sanyal)

Let Γ be a simplicial complex of dimension d - 1 with $\phi(\sigma) = |\sigma|$. Then:

$$cp_{\Gamma,\phi} = \sum_{k=0}^{d} f_{k-1} \binom{n}{k}$$

• This is a polynomial! So the series $CP_{\Gamma,\phi}$ can be written as:

$$CP_{\Gamma,\phi}(z) = rac{h_0 + \dots + h_{d-1}z^{d-1}}{(1-z)^d}$$

• You can show that the h_i are indeed the h- vector of Γ .

The proposition a few slides ago implies:

$$h_i = h_{d-1-i}$$

Dehn Sommerville!!

Can you do this for the cubical case?

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → のへで

Can you do this for the cubical case?

I hope so!

Thank you all!!! :) :)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>