The complete classification of lattice empty 4 -simplices

Óscar Iglesias Valiño and Francisco Santos

University of Cantabria, Spain

July 31th, 2018

Workshop on Lattice Polytopes, Osaka, 2018

Empty lattice d-simplices

Definition

A lattice polytope $P \subset \mathbb{R}^{d}$ is a polytope with integer vertices. It is:

- hollow if it has no integer points in its interior.
- empty (lattice-free) if it has no integer points other than its vertices.

In particular, an empty d-simplex is the convex hull of $d+1$ affinely independent integer points and not containing other integer points.

Empty lattice d-simplices

Definition

A lattice polytope $P \subset \mathbb{R}^{d}$ is a polytope with integer vertices. It is:

- hollow if it has no integer points in its interior.
- empty (lattice-free) if it has no integer points other than its vertices. In particular, an empty d-simplex is the convex hull of $d+1$ affinely independent integer points and not containing other integer points.

Empty 2 and 3-simplices and hollow 2-polytope.

Volume, width

- The normalized volume $\operatorname{Vol}(P)$ of a lattice polytope P equals its Euclidean volume $\operatorname{vol}(P)$ times d !.

Volume, width

- The normalized volume $\operatorname{Vol}(P)$ of a lattice polytope P equals its Euclidean volume $\operatorname{vol}(P)$ times d !.
It is always and integer, and for a lattice simplex
$\Delta=\operatorname{conv}\left\{v_{1}, \ldots, v_{d+1}\right\} \mathbb{R}^{d}$ it coincides with its determinant: $\operatorname{Vol}(\Delta)=\operatorname{det}\left|\begin{array}{ccc}v_{1} & \ldots & v_{d+1} \\ 1 & \ldots & 1\end{array}\right|$

Volume, width

- The normalized volume $\operatorname{Vol}(P)$ of a lattice polytope P equals its Euclidean volume $\operatorname{vol}(P)$ times d !.
It is always and integer, and for a lattice simplex
$\Delta=\operatorname{conv}\left\{v_{1}, \ldots, v_{d+1}\right\} \mathbb{R}^{d}$ it coincides with its determinant:
$\operatorname{Vol}(\Delta)=\operatorname{det}\left|\begin{array}{ccc}v_{1} & \ldots & v_{d+1} \\ 1 & \ldots & 1\end{array}\right|$
- The width of $P \subset \mathbb{R}^{d}$ with respect to a linear functional $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ equals the difference $\max _{x \in P} f(x)-\min _{x \in P} f(x)$.

width $(P, f)=4$

Volume, width

- The normalized volume $\operatorname{Vol}(P)$ of a lattice polytope P equals its Euclidean volume $\operatorname{vol}(P)$ times $d!$.
It is always and integer, and for a lattice simplex
$\Delta=\operatorname{conv}\left\{v_{1}, \ldots, v_{d+1}\right\} \mathbb{R}^{d}$ it coincides with its determinant:
$\operatorname{Vol}(\Delta)=\operatorname{det}\left|\begin{array}{ccc}v_{1} & \ldots & v_{d+1} \\ 1 & \ldots & 1\end{array}\right|$
- The width of $P \subset \mathbb{R}^{d}$ with respect to a linear functional $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ equals the difference $\max _{x \in P} f(x)-\min _{x \in P} f(x)$. We call (lattice) width of P the minimum width of P with respect to integer functionals.

width $(P)=2$

What do we know about empty lattice d-simplices?
We write $P \cong_{\mathbb{Z}} Q$ meaning $Q=\phi(P)$ for some unimodular affine integer transformation, ϕ.

What do we know about empty lattice d-simplices?
We write $P \cong_{\mathbb{Z}} Q$ meaning $Q=\phi(P)$ for some unimodular affine integer transformation, ϕ. Modulo this equivalence relation:

- The only empty 1 -simplex is the unit segment.

What do we know about empty lattice d-simplices?
We write $P \cong_{\mathbb{Z}} Q$ meaning $Q=\phi(P)$ for some unimodular affine integer transformation, ϕ. Modulo this equivalence relation:

- The only empty 1 -simplex is the unit segment.
- The only empty 2 -simplex is the unimodular triangle (\simeq Pick's Theorem).

What do we know about empty lattice d-simplices?
We write $P \cong_{\mathbb{Z}} Q$ meaning $Q=\phi(P)$ for some unimodular affine integer transformation, ϕ. Modulo this equivalence relation:

- The only empty 1 -simplex is the unit segment.
- The only empty 2 -simplex is the unimodular triangle (\simeq Pick's Theorem).
- There are infinitely many of width one (Ex: Reeve polyhedra). Empty lattice 3 -simplices are completely classified:

Theorem (White 1964)

Every empty tetrahedron of determinant q is equivalent to

$$
T(p, q):=\operatorname{conv}\{(0,0,0),(1,0,0),(0,0,1),(p, q, 1)\}
$$

for some $p \in \mathbb{Z}$ with $\operatorname{gcd}(p, q)=1$. Moreover, $T(p, q) \cong_{\mathbb{Z}} T\left(p^{\prime}, q\right)$ if and only if $p^{\prime}= \pm p^{ \pm 1}(\bmod q)$.

What do we know about empty lattice 3 -simplices

In particular, they all have width 1, i.e., they are between two parallel lattice hyperplanes.

In this picture, they have width 1 with respect to the functional $f(x, y, z)=z$.

What do we know about empty lattice 4 -simplices

In contrast, a full classification of empty lattice 4-simplices is not known. If we look at their width, we know that:

What do we know about empty lattice 4 -simplices

In contrast, a full classification of empty lattice 4 -simplices is not known. If we look at their width, we know that:
(1) There are infinitely many of width one.

What do we know about empty lattice 4 -simplices

In contrast, a full classification of empty lattice 4-simplices is not known. If we look at their width, we know that:
(1) There are infinitely many of width one.
(2) There are infinitely many of width 2 (Haase-Ziegler 2000).

What do we know about empty lattice 4 -simplices

In contrast, a full classification of empty lattice 4 -simplices is not known. If we look at their width, we know that:
(1) There are infinitely many of width one.
(2) There are infinitely many of width 2 (Haase-Ziegler 2000).
(3) The amount of empty 4 -simplices of width greater than 2 is finite:

What do we know about empty lattice 4 -simplices

In contrast, a full classification of empty lattice 4 -simplices is not known. If we look at their width, we know that:
(1) There are infinitely many of width one.
(2) There are infinitely many of width 2 (Haase-Ziegler 2000).
(0) The amount of empty 4 -simplices of width greater than 2 is finite:

Proposition (Blanco-Haase-Hofmann-Santos, 2016)

(1) For each d, there is a $w^{\infty}(d)$ such that for every $n \in \mathbb{N}$ all but finitely many d-polytopes with n lattice points have width $\leq w^{\infty}(d)$.
(0) $w^{\infty}(4)=2$.

What do we know about empty lattice 4 -simplices?

Theorem (Haase-Ziegler, 2000)

Among the 4-dimensional empty simplices with width greater than two and determinant $D \leq 1000$,
(1) All simplices of width 3 have determinant $D \leq 179$, with a (unique) smallest example, of determinant $D=41$, and a (unique) example of determinant $D=179$.
(2) There is a unique class of width 4 , with determinant $D=101$,
(3) There are no simplices of width $w \geq 5$,

What do we know about empty lattice 4 -simplices?
Theorem (Haase-Ziegler, 2000)
Among the 4-dimensional empty simplices with width greater than two and determinant $D \leq 1000$,
(1) All simplices of width 3 have determinant $D \leq 179$, with a (unique) smallest example, of determinant $D=41$, and a (unique) example of determinant $D=179$.
(2) There is a unique class of width 4 , with determinant $D=101$,
(3) There are no simplices of width $w \geq 5$,

Conjecture (Haase-Ziegler, 2000)

The above list is complete. That is, there are no empty 4 -simplices of width >2 and determinant >179.

Theorem (I.V.-Santos, 2018)

This conjecture is true.

Part I of the classification

- Part I: Empty 4-simplices of width greater than two The proof of the conjecture follows from the combination of a theoretical Theorem 1 and the Theorem 2 based on an enumeration:

Part I of the classification

- Part I: Empty 4-simplices of width greater than two The proof of the conjecture follows from the combination of a theoretical Theorem 1 and the Theorem 2 based on an enumeration:

Theorem 1 (I.V.-Santos, 2018)
There is no hollow 4 -simplex of width >2 with determinant greater than 5058.

Part I of the classification

- Part I: Empty 4-simplices of width greater than two The proof of the conjecture follows from the combination of a theoretical Theorem 1 and the Theorem 2 based on an enumeration:

Theorem 1 (I.V.-Santos, 2018)

There is no hollow 4 -simplex of width >2 with determinant greater than 5058.

Theorem 2 (I.V.-Santos, 2018)
Up to determinant ≤ 7600, all empty 4 -simplices of width larger than two have determinant in $[41,179]$ and are as described explicitly by Haase and Ziegler.

Proof of Theorem 1

Proof of Theorem 1 relies a lot in:

- Convex geometry tools (succesive minima, covering minima, ...)

Proof of Theorem 1

Proof of Theorem 1 relies a lot in:

- Convex geometry tools (succesive minima, covering minima, ...) For covering minima be here at Giulia's talk 16:30

Proof of Theorem 1

Proof of Theorem 1 relies a lot in:

- Convex geometry tools (succesive minima, covering minima, ...)

For covering minima be here at Giulia's talk 16:30

- Classification of Maximal Hollow 3-polytopes (Averkov et al.(AWW), 2011 and Averkov et al.(AKW), 2017)

Proof of Theorem 1

Proof of Theorem 1 relies a lot in:

- Convex geometry tools (succesive minima, covering minima, ...)

For covering minima be here at Giulia's talk 16:30

- Classification of Maximal Hollow 3-polytopes (Averkov et al.(AWW), 2011 and Averkov et al.(AKW), 2017)
- Get different upper bounds for the cases of P projecting to a hollow 3 -polytope or not projecting to a hollow 3-polytope

Proof of Theorem 1

Proof of Theorem 1 relies a lot in:

- Convex geometry tools (succesive minima, covering minima,...)

For covering minima be here at Giulia's talk 16:30

- Classification of Maximal Hollow 3-polytopes (Averkov et al.(AWW), 2011 and Averkov et al.(AKW), 2017)
- Get different upper bounds for the cases of P projecting to a hollow 3 -polytope or not projecting to a hollow 3-polytope

Indeed, no new simplex of width greater than two appear in the computations, so the conjecture of Haase and Ziegler is true.

Hollow 3 bodies

We get a nice upper bound for the volume of hollow 3-bodies:

Theorem (I.V.-Santos, 2018)

Let $w>2.155$. Then, the following statements hold for any lattice-free convex body K in dimension three of width at least w :
(1) $\operatorname{Vol}(K) \leq \frac{3 w^{3}}{4(w-(1+2 / \sqrt{3}))} \quad$ if $w \leq 2.427$,
(2) $\operatorname{Vol}(K) \leq \frac{8 w^{3}}{(w-1)^{3}}$
if $\quad w \geq 2.427$.

In particular if you restrict to lattice polytopes you get part (a) of Proposition 2 of AKW for a hollow 3 polytope Q :

$$
\operatorname{vol}(Q) \leq 27
$$

Part II: Infinite families

Next step is classify all possible families of simplices of width one and two, and enumerate sporadic simplices that appear.

Part II: Infinite families

Next step is classify all possible families of simplices of width one and two, and enumerate sporadic simplices that appear.

In 1988, Mori-Morrison-Morrison gave some explicit families of terminal quotient singularities which correspond to empty 4 -simplices.

Part II: Infinite families

Next step is classify all possible families of simplices of width one and two, and enumerate sporadic simplices that appear.

In 1988, Mori-Morrison-Morrison gave some explicit families of terminal quotient singularities which correspond to empty 4 -simplices.

(Almost) Theorem 3 (Barile, Bernardi, Borisov and Kantor, 2011)

All empty 4 -simplices that project to hollow 3 -polytopes belong to the $1+1+29$ families of Mori-Morrison-Morrison (1988), all of which have width one or two.

Part II: Infinite families

Next step is classify all possible families of simplices of width one and two, and enumerate sporadic simplices that appear.

In 1988, Mori-Morrison-Morrison gave some explicit families of terminal quotient singularities which correspond to empty 4 -simplices.

(Almost) Theorem 3 (Barile, Bernardi, Borisov and Kantor, 2011)

All empty 4 -simplices that project to hollow 3 -polytopes belong to the $1+1+29$ families of Mori-Morrison-Morrison (1988), all of which have width one or two.

But unfortunately,
Theorem 3 is only true for 4 -simplices of prime volume. With non-prime volume another $0+1+23$ families arise (I.V.-Santos, 2017+).

Classifying as projections

Theorem (Nill-Ziegler 2011)

For each d, all except finitely many hollow d-polytopes (in particular, empty d-simplices) project to a hollow polytope of dimension $<d$.

Classifying as projections

Theorem (Nill-Ziegler 2011)

For each d, all except finitely many hollow d-polytopes (in particular, empty d-simplices) project to a hollow polytope of dimension $<d$.

This theorem implies that we can classify empty 4 -simplices attending at which dimension they project to:

- In dimension 3 you can look at classification of hollow polytopes this way.
- Sporadic empty 4 -simplices are the finitely many simplices that do not project to a hollow polytope of dimension ≤ 3.
- Empty 4-simplices of width one project to hollow 1-polytopes

Classification of empty 4-simplices

With the new families of width two that were not described by Mori-Morrison-Morrison, we give a complete list of families of empty 4-simplices.

Classification of empty 4-simplices

With the new families of width two that were not described by Mori-Morrison-Morrison, we give a complete list of families of empty 4-simplices.

Main Theorem (I.V.-Santos, '18+)

All except finitely many empty 4-simplices belong to one of the following cases:

- The three-parameter family of empty 4 -simplices of width one.

Classification of empty 4-simplices

With the new families of width two that were not described by Mori-Morrison-Morrison, we give a complete list of families of empty 4-simplices.

Main Theorem (I.V.-Santos, '18+)

All except finitely many empty 4-simplices belong to one of the following cases:

- The three-parameter family of empty 4 -simplices of width one.
- Two 2-parameter families of empty 4 -simplices projecting to the second dilation of a unimodular triangle (one listed by Mori et al., the other not).

Classification of empty 4-simplices

With the new families of width two that were not described by Mori-Morrison-Morrison, we give a complete list of families of empty 4-simplices.

Main Theorem (I.V.-Santos, '18+)

All except finitely many empty 4-simplices belong to one of the following cases:

- The three-parameter family of empty 4 -simplices of width one.
- Two 2-parameter families of empty 4 -simplices projecting to the second dilation of a unimodular triangle (one listed by Mori et al., the other not).
- The 29 Mori 1-parameter families (they project to 29 hollow "primitive" 3 -polytopes).

Classification of empty 4-simplices

With the new families of width two that were not described by Mori-Morrison-Morrison, we give a complete list of families of empty 4-simplices.

Main Theorem (I.V.-Santos, '18+)

All except finitely many empty 4-simplices belong to one of the following cases:

- The three-parameter family of empty 4 -simplices of width one.
- Two 2-parameter families of empty 4 -simplices projecting to the second dilation of a unimodular triangle (one listed by Mori et al., the other not).
- The 29 Mori 1-parameter families (they project to 29 hollow "primitive" 3-polytopes).
- 23 additional 1-parameter families that project to 23 "non-primitive" hollow 3-polytopes.

Sporadic empty 4-simplices

Theorem 4 (I.V.-Santos, 2018+)
Let P be an empty 4 -simplex of width two and which do not project to a hollow 3 -polytope. Then $\operatorname{Vol}(P) \leq 7600$.

Sporadic empty 4-simplices

Theorem 4 (I.V.-Santos, 2018+)

Let P be an empty 4 -simplex of width two and which do not project to a hollow 3 -polytope. Then $\operatorname{Vol}(P) \leq 7600$.

This theorem implies that no sporadic simplices will appear with volume greater than 7600 .

Theorem (I.V.-Santos, ' $18+$)

There are exactly 2461 (classes of) empty 4-simplices that do not belong to any of the infinite families shown in the theorem before. These empty 4 -simplices correspond to those that do not project to a hollow polytope of dimensions $d \in\{1,2,3\}$. Their determinants range from 24 to 419 .

- Mori et al. present some number of sporadic simplices for prime volume that are wrong due to some calculation mistakes

What to look next?

Open questions and future work:

- Natural question:

What to look next?

Open questions and future work:

- Natural question: Dimension 5?

What to look next?

Open questions and future work:

- Natural question: Dimension 5?
- Computationally intense

What to look next?

Open questions and future work:

- Natural question: Dimension 5?
- Computationally intense
- The number of families and sporadic simplices may be huge

What to look next?

Open questions and future work:

- Natural question: Dimension 5?
- Computationally intense
- The number of families and sporadic simplices may be huge
- Nice properties in dimension 4, not true in dimension bigger (no cyclic group property, no unimodular facet guaranteed,...)

What to look next?

Open questions and future work:

- Natural question: Dimension 5?
- Computationally intense
- The number of families and sporadic simplices may be huge
- Nice properties in dimension 4, not true in dimension bigger (no cyclic group property, no unimodular facet guaranteed,...)
- Maybe more interesting look first at hollow 4-polytopes instead

What to look next?

Open questions and future work:

- Natural question: Dimension 5?
- Computationally intense
- The number of families and sporadic simplices may be huge
- Nice properties in dimension 4, not true in dimension bigger (no cyclic group property, no unimodular facet guaranteed,...)
- Maybe more interesting look first at hollow 4-polytopes instead
- What's the maximum width for empty d-simplices depending on the dimension?

What to look next?

Open questions and future work:

- Natural question: Dimension 5?
- Computationally intense
- The number of families and sporadic simplices may be huge
- Nice properties in dimension 4, not true in dimension bigger (no cyclic group property, no unimodular facet guaranteed,...)
- Maybe more interesting look first at hollow 4-polytopes instead
- What's the maximum width for empty d-simplices depending on the dimension?

Thanks for your attention! And thank a lot Akiyoshi and Hibi

1 O. Iglesias Valiño and F. Santos, Classification of empty lattice 4 -simplices of width larger than two.
To be published in TAMS
2 O. Iglesias Valiño and F. Santos, The complete classification of empty lattice 4 -simplices.
In preparation

Supported by grants MTM2017-83750-P, MTM2014-54207-P;
BES-2015-073128 of the Spanish Ministry of Science (AEI/FEDER, UE)

Appendix

For people interested in Ehrhart polynomials:

Figure : h_{3}^{*} and h_{2}^{*} coefficients for some families of simplices

