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Lecture Hall Partitions

A Lecture Hall partition is a finite sequence A = (A1, A2, ..., Ap) € Z"
satisfying
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Lecture Hall Partitions

A Lecture Hall partition is a finite sequence A = (A1, A2, ..., Ap) € Z"
satisfying
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The set L, of Lecture Hall partitions is the set of lattice points in the
Lecture Hall cone, which is the cone over the simplex with vertices
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Lecture Hall Partitions

A Lecture Hall partition is a finite sequence A = (A1, A2, ..., Ap) € Z"
satisfying

ﬁ> A2 > 00>
n _ n-—17 -

An
— > 0.
1_O

The set L, of Lecture Hall partitions is the set of lattice points in the
Lecture Hall cone, which is the cone over the simplex with vertices

1 n n n n
0 n—1 n—1 n—1 n—1
0 0 n—2 n—2 n—2
0 0 0 2 2
0 0 0 0 1

(My indexing convention is reversed compared with the other talk.)
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The Lecture Hall Theorem

The original motivation for studying Lecture Hall Paritions is the Lecture
Hall theorem.
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The Lecture Hall Theorem
The original motivation for studying Lecture Hall Paritions is the Lecture
Hall theorem. For a lecture hall partition A let

Ao =M1+ A3+ X5+ -
|)\|e::)\2+)\4+)\6+"~.
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The Lecture Hall Theorem

The original motivation for studying Lecture Hall Paritions is the Lecture
Hall theorem. For a lecture hall partition A let

Mo =A1+ A3+ A5+ -
’)\’e::)\2+)\4+)\6+"'-

The Lecture Hall theorem (Bousquet-Mélou and Eriksson, '97)

n

No gle _ 1

It holds that Zq _Hl— ji—1"
AelLy =il 919>
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The Lecture Hall Theorem

The original motivation for studying Lecture Hall Paritions is the Lecture
Hall theorem. For a lecture hall partition A let

Mo =A1+ A3+ A5+ -
’)\’e::)\2+)\4+)\6+'”.

The Lecture Hall theorem (Bousquet-Mélou and Eriksson, '97)

n
T geghle = 1
AeL, i=1 192

This is a rather strange specialization of the multivariate Ehrhart series.
The multivariate Ehrhart series itself does not factor like this.
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The Lecture Hall Theorem

Example: n=3
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The Lecture Hall Theorem

Example: n=3

For n = 3, a Hilbert basis of L, is given by
vi :=(1,0,0),v» :=(2,1,0),v3 :=(3,2,0) and v4 := (3,2,1). Thereis
one relation: 2vo = vi + v3.
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The Lecture Hall Theorem

Example: n=3

For n = 3, a Hilbert basis of L, is given by
vi :=(1,0,0),v» :=(2,1,0),v3 :=(3,2,0) and v4 := (3,2,1). Thereis
one relation: 2vo = vi 4 v3. Thus the multigraded Hilbert series is

1-q}q3
1—q1)(1-a7g2)(1 - q793)(1 — a7 q593)

H(q1,q2,q3) = (
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The Lecture Hall Theorem

Example: n=3

For n = 3, a Hilbert basis of L, is given by
vi :=(1,0,0),v» :=(2,1,0),v3 :=(3,2,0) and v4 := (3,2,1). Thereis
one relation: 2vo = vi 4 v3. Thus the multigraded Hilbert series is

1-q}q3
1—q1)(1-a7g2)(1 - q793)(1 — a7 q593)

H(q1,q2,q3) = (

Specializing to ||, and |A|e amounts to setting g3 = g1. This yields

1-qfd}
1-q1)(1-a3g2)(1 — ¢393)(1 — a3 q51)
1

(1-aq)(1 - aiq2)(1 - q33)’

as predicted by the LH Theorem.

H(q17q27q1) = (
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The Lecture Hall Theorem

There are a number of proofs of the LH Theorem, but it is still not

considered to be well understood:
[...], Theorem 1.2 is hardly understood at all. This is in spite of
the fact that by now there are many proofs, including those of
Bousquet-Mélou and Eriksson [8-10], Andrews [1], Yee [55,56],
Andrews, Paule, Riese, and Strehl [3], Eriksen [31], and Bradford
et al. [11]. We have also contributed to the collection of proofs
with co-authors Corteel [25], Corteel and Lee [20], Andrews and
Corteel [2], Bright [15], and, most recently, Corteel and Lovejoy

[23].

C.D. Savage, “The mathematics of lecture hall partitions”, JCTA, 2016.
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The Lecture Hall Theorem

Example n = 3, continued

Let's have another look at the example:

1-qfq3
1-q1)(1—a3q2)(1 — qia3)(1 — aig51)
1
(1= aq)(1 - i)l - aiq3)

H(Q1,q27q1) = (
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The Lecture Hall Theorem

Example n = 3, continued

Let's have another look at the example:

1-qfq3
1-q1)(1—a3q2)(1 — qia3)(1 — aig51)
1
(1= aq)(1 - i)l - aiq3)

H(qlaq27q1) = (

Observations:

e This works because the last generator has the same Z?-degree as the
relation among the other generators.
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The Lecture Hall Theorem

Example n = 3, continued

Let's have another look at the example:

1-qfq3
1-q1)(1—a3q2)(1 — qia3)(1 — aig51)
1
(1= aq)(1 - i)l - aiq3)

H(qlaq27q1) = (

Observations:
e This works because the last generator has the same Z?-degree as the
relation among the other generators.
® The Hilbert series looks like the Hilbert series of a polynomial ring
with an unusual Z2-grading.
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The Lecture Hall Theorem

Example n = 3, continued

Let's have another look at the example:

1-qfq3
1-q1)(1—a3q2)(1 — qia3)(1 — aig51)
1
(1= aq)(1 - i)l - aiq3)

H(qlaq27q1) = (

Observations:
e This works because the last generator has the same Z?-degree as the
relation among the other generators.
® The Hilbert series looks like the Hilbert series of a polynomial ring
with an unusual Z2-grading.

This leads to an idea...
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Initial Subalgebras

Some algebraic background

e Let S, :=K[y1,...,yn] be a polynomial ring over some field.
® pi,...,pr €S, polynomials
® <: aterm order on S,,.
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Initial Subalgebras

Some algebraic background

e Let S, :=K[y1,...,yn] be a polynomial ring over some field.
® pi,...,pr €S, polynomials
® <: aterm order on S,.

Definition
Let A:=K[p1,...,ps] be the subalgebra generated by the p1,...,p,. The
inital subalgebra of A is

In<(A) := Span(In<(p) | p € A)



Lukas Katthidn (Frankfurt) The lecture hall cone 6 /17

Initial Subalgebras

Some algebraic background

e Let S, :=K[y1,...,yn] be a polynomial ring over some field.
® pi,...,pr €S, polynomials
® <: aterm order on S,.

Definition
Let A:=K[p1,...,ps] be the subalgebra generated by the p1,...,p,. The
inital subalgebra of A is

In<(A) := Span(In<(p) | p € A)

In general we have that k[In<(p1),...,In<(p;)] € In<(A). The p1,...,p,
are called a SAGBI Basis if equality holds.
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Initial Subalgebras

Some algebraic background

Initial subalgebras behave similar to initial ideals, and SAGBI bases
correspond to Grobner bases.

Here we only need the following:

Lemma (Conca, Herzog, Trung, Valla 1997)

If S, is graded and A C S, is a graded subalgebra, then the Hilbert series
of A and In<(A) coincide.
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The Lecture Hall Theorem

Example n = 3, continued

Hilbert basis of Ls:  (1,0,0),(2,1,0),(3,2,0),(3,2,1) € Z3

o Let S3:=Kk[y1,y2, y3] with grading deg y; := degy3 := (1,0) and
degy, = (07 1)
® Ehrhart ring: A = k[yl,ylzyg,yfy%,yf’yg}@] C Ss.

8 /17
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The Lecture Hall Theorem

Example n = 3, continued

Hilbert basis of Ls:  (1,0,0),(2,1,0),(3,2,0),(3,2,1) € Z3

o Let S3:=Kk[y1,y2, y3] with grading deg y; := degy3 := (1,0) and
degy, = (07 1)
® Ehrhart ring: A = k[yl,ylzyg,yfy%,yf’yg}@] C Ss.

® Instead, we consider A := k[yl,y12y2,yf’y22+y12y22y3,yfy22y3] C Ss.

8 /17
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The Lecture Hall Theorem

Example n = 3, continued

Hilbert basis of Ls:  (1,0,0),(2,1,0),(3,2,0),(3,2,1) € Z3

Let S3 :=Kk[y1, y2, y3] with grading deg y; := deg y3 := (1,0) and
degy» :=(0,1).

Ehrhart ring: A := k[yl,ylzyg,yfy%,yf’y%m] C Ss.

Instead, we consider A := K[y, y2yo, y3y2+y2y3ys, y2ydys] C Ss.
Fact: A = In(A), and thus their Hilbert series coincide. (Here, < is
any order with y3 < y1.)
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The Lecture Hall Theorem

Example n = 3, continued

Hilbert basis of Ls:  (1,0,0),(2,1,0),(3,2,0),(3,2,1) € Z3

o Let S3:=Kk[y1,y2, y3] with grading deg y; := degy3 := (1,0) and
degy» :=(0,1).

® Ehrhart ring: A = k[yl,ylzyg,yfy%,yf’y%m] C Ss.

e Instead, we consider A :=K[y1, y2yo, y2y2+y2y3ys, y3ydys] C Ss.

® Fact: A= In(A), and thus their Hilbert series coincide. (Here, < is
any order with y3 < y1.)

e Observation: yPy2ys = y1 - (Viy2 + y2y2ys) — (v2y2)?.
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The Lecture Hall Theorem

Example n = 3, continued

Hilbert basis of Ls:  (1,0,0),(2,1,0),(3,2,0),(3,2,1) € Z3

o Let S3:=Kk[y1,y2, y3] with grading deg y; := degy3 := (1,0) and
degy» :=(0,1).

® Ehrhart ring: A = k[yl,ylzyg,yfyzz,yfy%m] C Ss.

e Instead, we consider A :=K[y1, y2yo, y2y2+y2y3ys, y3ydys] C Ss.

® Fact: A= In(A), and thus their Hilbert series coincide. (Here, < is
any order with y3 < y1.)

® Observation: yPy3ys = y1 - (viy5 + yiviys) — (¥1y2)*.

® Hence, A= k[yl,ylzyg,yfy22 + y12y22y3]. The generators are
algebracially independent, hence this is a polynomial ring and the LH
theorem follows (for n = 3).
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The Lecture Hall Theorem

Example n = 3, continued

Hilbert basis of L3:  (1,0,0),(2,1,0),(3,2,0),(3,2,1) € Z3

e Let S3:=K[y1, 2, y3] with grading deg y; := degy3 := (1,0) and
degy» :=(0,1).

e Ehrhart ring: A :=Kk[y1, y2y2, yiy2, viy3ys] C Ss.

* Instead, we consider A := k[y1, y2ya, yiva+yivivs, yivays] C Ss.

® Fact: A= In(A), and thus their Hilbert series coincide. (Here, < is
any order with y3 < y;.)

® Observation: yiy3ys = y1 - (Viy2 + y2yays) — (V2y2)?.

® Hence, A= ]1«§[y1,y12y2,y13y22 + y12y22y3]. The generators are
algebracially independent, hence this is a polynomial ring and the LH
theorem follows (for n = 3).

Next, we try to guess similar polynomials for general n.



Lukas Katthidn (Frankfurt) The lecture hall cone 9/17

The Lecture Hall Polynomials

Let S, :=K[y1,y2,...,Yn]. We consider the following Z?-grading on S,:

(0,1) if i is even,
degy; 1=
(1,0) if iis odd.
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The Lecture Hall Polynomials

10 / 17

For a sequence of polynomials P := P1, P>,... in S, we define an infinite

matrix M(P) by setting
M(P);; = {_Pj—i-l—l ifj =i
N
Explicitly, M(P) looks as follows:

P =P —P3 —P4
0 —P, —P, —P;
MP)=1] 0 0 —-P —P
0 0 0 —-P

(This is a Toeplitz matrix.)

0 otherwise.
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The Lecture Hall Polynomials

—Pj_ip1 ifj>i
M(P);; = ’ :
0 otherwise.

Notation:

® For A, B C N let AZ(M(P)) be the submatrix using rows in A and
columns in B.
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The Lecture Hall Polynomials

—Pi_jiy1 ifj>i
M(P);; = ’ :
0 otherwise.

Notation:
® For A, B C N let AZ(M(P)) be the submatrix using rows in A and
columns in B.
® Forie Nlet

&(P) = —det Al ;21 (m(PY).

In other words: &;(P) is defined using the maximal top-aligned square
submatrix of M(P), whose top right corner is —P; and which does not
contain any of the zeros of M(P).
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The Lecture Hall Polynomials

—Pjjiy1 ifj>i
0 otherwise.

M(P);J = {

&(P) = —det AL 1521 (M(P)).
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The Lecture Hall Polynomials

—Pjjiy1 ifj>i
M(P)ij =1 " .
0 otherwise.

&(P) = —det AL 1521 (M(P)).
Definition

The Lecture Hall polynomials are those Laurent polynomials
01,02, ...,0, € Quot(S,), such that

Eillr, bay ... )=yt vy

for all i > 1.
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The Lecture Hall Polynomials

—Pjjiy1 ifj>i
0 otherwise.

M(P);J = {

&(P) = —det AL 1521 (M(P)).

Definition
The Lecture Hall polynomials are those Laurent polynomials
01,02, ...,0, € Quot(S,), such that

Eillr, loy ... ) =yiya by

for all i > 1.

These equations can be used to iteratively compute the ¢;. In particular,
the ¢; are well-defined.
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The Lecture Hall Polynomials

Example

Eillti, b ) =yiya Tty
Abbreviation: Pyy := ¢1,/02,.... We compute the first ;.



Lukas Katthidn (Frankfurt) The lecture hall cone 13 /17

The Lecture Hall Polynomials

Example

Eillr,la, ) = yiys Ty
Abbreviation: Pry :=¥¢1,45,.... We compute the first ¢;.

y1i= gl(PLH) = — det(—El) =/ = {1 = 1
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The Lecture Hall Polynomials

Example
Eillr, ba,. ) = yivy t - yiwi
Abbreviation: Pry :=¥¢1,45,.... We compute the first ¢;.
y1i= gl(PLH) = — det(—El) =/ = {1 = 1

yiye = E(Pru) = — det(—62) = £ = b =yiy
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The Lecture Hall Polynomials

Example
Eill, b ) =yivi vy
Abbreviation: Pyy := ¢1,/02,.... We compute the first ;.
y1 = gl(PLH) = — det(—El) =/ = {1 = Y1
Yiys = E2(PLy) = —det(—L2) = £, = b=y
—lr -/
yf’y22y3 = 83(PLH) = —det 2 3) = 5153 - ﬁ%
—01 —0

= (3= )iy + yiviys = yii(n + y3)
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The Lecture Hall Polynomials

Example

gi(£17£27 LRI ) = yll.yé_l o ‘yl'2—1-y’.
Abbreviation: Pyy := ¢1,/02,.... We compute the first ;.

y1 =& (Pry) = —det(—41) = 1
yiye = E(Pru) = — det(—62) = £

0y —t
Yiv3ys = E3(PLu) = — det (—Ei _é) = 143 — 13
= (3=y?y; + yiviys = yivi(y1 + y3)
05—t
Viyayiyi = Ea(PLu) = — det (—Ez —Zi) = loly — 13

— U=y + 1) + v2Y3vin

= b=y
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The Lecture Hall Polynomials

Easy observations:

® Each /; is a Laurent polynomial, has coefficients in Z, and is
homogeneous of degree (i,i — 1).

® For each i > 0, the i-th Lecture Hall polynomial ¢; depends only on
the variables y1,...,y;, and it is non-constant as a function of y;.
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The Lecture Hall Polynomials

Easy observations:

® Each /; is a Laurent polynomial, has coefficients in Z, and is
homogeneous of degree (i,i — 1).

® For each i > 0, the i-th Lecture Hall polynomial ¢; depends only on
the variables y1,...,y;, and it is non-constant as a function of y;.

Conjecture
Each Lecture Hall polynomial ¢; is in fact a polynomial.
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The Lecture Hall Polynomials

Easy observations:

® Each /; is a Laurent polynomial, has coefficients in Z, and is
homogeneous of degree (i,i — 1).

® For each i > 0, the i-th Lecture Hall polynomial ¢; depends only on
the variables y1,...,y;, and it is non-constant as a function of y;.

Conjecture
Each Lecture Hall polynomial ¢; is in fact a polynomial.

We verified this conjecture for i < 12.
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The Lecture Hall Polynomials

Easy observations:

® Each /; is a Laurent polynomial, has coefficients in Z, and is
homogeneous of degree (i,i — 1).

® For each i > 0, the i-th Lecture Hall polynomial ¢; depends only on
the variables y1,...,y;, and it is non-constant as a function of y;.

Conjecture
Each Lecture Hall polynomial ¢; is in fact a polynomial.

We verified this conjecture for i < 12. This is a purely combinatorial
conjecture.
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The Lecture Hall Polynomials

Each /; depends on y;, but not on y;,j > i. This implies that ¢; are
algebraically independent, and thus we get:

Corollary

The algebra A, := Q[f1,...,¢,] C Quot(S,) is isomorphic to a Z2-graded
polynomial ring. Its Hilbert series equals

n 1
il—gig

This is the right-hand side of the LH theorem.
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The Lecture Hall Polynomials

Each /; depends on y;, but not on y;,j > i. This implies that ¢; are
algebraically independent, and thus we get:

Corollary

The algebra A, := Q[f1,...,¢,] C Quot(S,) is isomorphic to a Z2-graded
polynomial ring. Its Hilbert series equals
n 1

=

i=1 1%
This is the right-hand side of the LH theorem.

InZ(A,) is supposed to be the Ehrhart ring. But the latter has 27!
generators, while A, has only n. So the £, cannot be a SAGBI basis, and
thus we need extra generators.
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The Lecture Hall Polynomials
A candidate for the SAGBI basis

Definition
For a finite set S C N, S # () let

ls := —det Ag_’ﬁ(/\/l(PLH)),

where S+1:={s+1|s € S}. Inother words, {s is the negative of the
minor of M(Pyry) using #S many top rows and the columns in S+ 1. In
addition, we set £ 1= /.



Lukas Katthidn (Frankfurt) The lecture hall cone 16 / 17

The Lecture Hall Polynomials
A candidate for the SAGBI basis

Definition
For a finite set S C N, S # () let

(s = —det Ag_’ﬁ(/\/l(PLH)),

where S+1:={s+1|s € S}. Inother words, {s is the negative of the

minor of M(Pyry) using #S many top rows and the columns in S+ 1. In
addition, we set £ 1= /.

Note that ¢; = £;;_y for i € N, and that
Ciliga)io1y = E(PLE) = yiys 7t y2 1y
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The Lecture Hall Polynomials

Our main conjecture

Let < be the degree-lexicographic term order on S, := Q[y1, . .., y»] with
yi>= Y2 = ... > yn, and let A, = Q[l1,...,4n].



Lukas Katthidn (Frankfurt) The lecture hall cone 17 /17

The Lecture Hall Polynomials

Our main conjecture

Let < be the degree-lexicographic term order on S, := Q[y1, . .., y»] with
yi>= Y2 = ... > yn, and let A, = Q[l1,...,4n].

Conjecture

Assume that all the ¢; are polynomials. Then:

@ The initial subalgebra In<(A,) equals the Ehrhart ring of L.
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The Lecture Hall Polynomials

Our main conjecture

Let < be the degree-lexicographic term order on S, := Q[y1, . .., y»] with
yi>= Y2 = ... > yn, and let A, = Q[l1,...,4n].

Conjecture
Assume that all the ¢; are polynomials. Then:

@ The initial subalgebra In<(A,) equals the Ehrhart ring of L.

@® The set of exponent vectors of { In<x(¢s)|S C [n— 1]} is the Hilbert
basis of L.

® This implies the LH theorem.
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The Lecture Hall Polynomials

Our main conjecture

Let < be the degree-lexicographic term order on S, := Q[y1, . .., y»] with
yi>= Y2 = ... > yn, and let A, = Q[l1,...,4n].

Conjecture

Assume that all the ¢; are polynomials. Then:
@ The initial subalgebra In<(A,) equals the Ehrhart ring of L.

@® The set of exponent vectors of { In<x(¢s)|S C [n— 1]} is the Hilbert
basis of L.

® This implies the LH theorem.
e Also, it implies that {¢s|S C [n— 1] } is a SAGBI basis for A,
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The Lecture Hall Polynomials

Our main conjecture

Let < be the degree-lexicographic term order on S, := Q[y1, . .., y»] with
yi>= Y2 = ... > yn, and let A, = Q[l1,...,4n].

Conjecture

Assume that all the ¢; are polynomials. Then:
@ The initial subalgebra In<(A,) equals the Ehrhart ring of L.

@® The set of exponent vectors of { In<x(¢s)|S C [n— 1]} is the Hilbert
basis of L.

® This implies the LH theorem.
e Also, it implies that {¢s|S C [n— 1] } is a SAGBI basis for A,
® | verified the conjecture for n < 12.
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The Lecture Hall Polynomials

Our main conjecture

Let < be the degree-lexicographic term order on S, := Q[y1, . .., y»] with
yi>= Y2 = ... > yn, and let A, = Q[l1,...,4n].

Conjecture

Assume that all the ¢; are polynomials. Then:
@ The initial subalgebra In<(A,) equals the Ehrhart ring of L.

@® The set of exponent vectors of { In<x(¢s)|S C [n— 1]} is the Hilbert
basis of L.

This implies the LH theorem.
Also, it implies that {¢s|S C [n— 1] } is a SAGBI basis for A,

| verified the conjecture for n < 12.

Note: For n < 12, the leading term of every {5 has coefficient 1. This
is the reason for our choice of signs.



The end.
Thank you
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