The lecture hall cone as a toric deformation

Lukas Katthän

Goethe-Universität Frankfurt
August 3, 2018

Lecture Hall Partitions

A Lecture Hall partition is a finite sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ satisfying

$$
\frac{\lambda_{1}}{n} \geq \frac{\lambda_{2}}{n-1} \geq \cdots \geq \frac{\lambda_{n}}{1} \geq 0
$$

Lecture Hall Partitions

A Lecture Hall partition is a finite sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ satisfying

$$
\frac{\lambda_{1}}{n} \geq \frac{\lambda_{2}}{n-1} \geq \cdots \geq \frac{\lambda_{n}}{1} \geq 0
$$

The set \mathbf{L}_{n} of Lecture Hall partitions is the set of lattice points in the Lecture Hall cone, which is the cone over the simplex with vertices

$$
\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
n \\
n-1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
n \\
n-1 \\
n-2 \\
\vdots \\
0 \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
n \\
n-1 \\
n-2 \\
\vdots \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
n \\
n-1 \\
n-2 \\
\vdots \\
2 \\
1
\end{array}\right) .
$$

Lecture Hall Partitions

A Lecture Hall partition is a finite sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ satisfying

$$
\frac{\lambda_{1}}{n} \geq \frac{\lambda_{2}}{n-1} \geq \cdots \geq \frac{\lambda_{n}}{1} \geq 0
$$

The set \mathbf{L}_{n} of Lecture Hall partitions is the set of lattice points in the Lecture Hall cone, which is the cone over the simplex with vertices

$$
\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
n \\
n-1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
n \\
n-1 \\
n-2 \\
\vdots \\
0 \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
n \\
n-1 \\
n-2 \\
\vdots \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
n \\
n-1 \\
n-2 \\
\vdots \\
2 \\
1
\end{array}\right) .
$$

(My indexing convention is reversed compared with the other talk.)

The Lecture Hall Theorem

The original motivation for studying Lecture Hall Paritions is the Lecture Hall theorem.

The Lecture Hall Theorem

The original motivation for studying Lecture Hall Paritions is the Lecture Hall theorem. For a lecture hall partition λ let

$$
\begin{aligned}
&|\lambda|_{o}:=\lambda_{1}+\lambda_{3}+\lambda_{5}+\cdots \\
&|\lambda|_{e}:=\lambda_{2}+\lambda_{4}+\lambda_{6}+\cdots .
\end{aligned}
$$

The Lecture Hall Theorem

The original motivation for studying Lecture Hall Paritions is the Lecture Hall theorem. For a lecture hall partition λ let

$$
\begin{aligned}
|\lambda|_{o} & :=\lambda_{1}+\lambda_{3}+\lambda_{5}+\cdots \\
|\lambda|_{e} & :=\lambda_{2}+\lambda_{4}+\lambda_{6}+\cdots .
\end{aligned}
$$

The Lecture Hall theorem (Bousquet-Mélou and Eriksson, '97)

$$
\text { It holds that } \quad \sum_{\lambda \in \mathbf{L}_{n}} q_{1}^{|\lambda|_{o}} q_{2}^{|\lambda|_{e}}=\prod_{i=1}^{n} \frac{1}{1-q_{1}^{i} q_{2}^{i-1}} \text {. }
$$

The Lecture Hall Theorem

The original motivation for studying Lecture Hall Paritions is the Lecture Hall theorem. For a lecture hall partition λ let

$$
\begin{aligned}
|\lambda|_{o} & :=\lambda_{1}+\lambda_{3}+\lambda_{5}+\cdots \\
|\lambda|_{e} & :=\lambda_{2}+\lambda_{4}+\lambda_{6}+\cdots .
\end{aligned}
$$

The Lecture Hall theorem (Bousquet-Mélou and Eriksson, '97)

$$
\text { It holds that } \quad \sum_{\lambda \in \mathbf{L}_{n}} q_{1}^{|\lambda|_{o}} q_{2}^{|\lambda|_{e}}=\prod_{i=1}^{n} \frac{1}{1-q_{1}^{i} q_{2}^{i-1}} \text {. }
$$

This is a rather strange specialization of the multivariate Ehrhart series. The multivariate Ehrhart series itself does not factor like this.

The Lecture Hall Theorem

Example: $n=3$

The Lecture Hall Theorem

Example: $n=3$
For $n=3$, a Hilbert basis of \mathbf{L}_{n} is given by
$v_{1}:=(1,0,0), v_{2}:=(2,1,0), v_{3}:=(3,2,0)$ and $v_{4}:=(3,2,1)$. There is one relation: $2 v_{2}=v_{1}+v_{3}$.

The Lecture Hall Theorem

Example: $n=3$

For $n=3$, a Hilbert basis of \mathbf{L}_{n} is given by $v_{1}:=(1,0,0), v_{2}:=(2,1,0), v_{3}:=(3,2,0)$ and $v_{4}:=(3,2,1)$. There is one relation: $2 v_{2}=v_{1}+v_{3}$. Thus the multigraded Hilbert series is

$$
H\left(q_{1}, q_{2}, q_{3}\right)=\frac{1-q_{1}^{4} q_{2}^{2}}{\left(1-q_{1}\right)\left(1-q_{1}^{2} q_{2}\right)\left(1-q_{1}^{3} q_{2}^{2}\right)\left(1-q_{1}^{3} q_{2}^{2} q_{3}\right)} .
$$

The Lecture Hall Theorem

Example: $n=3$

For $n=3$, a Hilbert basis of \mathbf{L}_{n} is given by $v_{1}:=(1,0,0), v_{2}:=(2,1,0), v_{3}:=(3,2,0)$ and $v_{4}:=(3,2,1)$. There is one relation: $2 v_{2}=v_{1}+v_{3}$. Thus the multigraded Hilbert series is

$$
H\left(q_{1}, q_{2}, q_{3}\right)=\frac{1-q_{1}^{4} q_{2}^{2}}{\left(1-q_{1}\right)\left(1-q_{1}^{2} q_{2}\right)\left(1-q_{1}^{3} q_{2}^{2}\right)\left(1-q_{1}^{3} q_{2}^{2} q_{3}\right)}
$$

Specializing to $|\lambda|_{o}$ and $|\lambda|_{e}$ amounts to setting $q_{3}=q_{1}$. This yields

$$
\begin{aligned}
H\left(q_{1}, q_{2}, q_{1}\right) & =\frac{1-q_{1}^{4} q_{2}^{2}}{\left(1-q_{1}\right)\left(1-q_{1}^{2} q_{2}\right)\left(1-q_{1}^{3} q_{2}^{2}\right)\left(1-q_{1}^{3} q_{2}^{2} q_{1}\right)} \\
& =\frac{1}{\left(1-q_{1}\right)\left(1-q_{1}^{2} q_{2}\right)\left(1-q_{1}^{3} q_{2}^{2}\right)}
\end{aligned}
$$

as predicted by the LH Theorem.

The Lecture Hall Theorem

There are a number of proofs of the LH Theorem, but it is still not considered to be well understood:
[...], Theorem 1.2 is hardly understood at all. This is in spite of the fact that by now there are many proofs, including those of Bousquet-Mélou and Eriksson [8-10], Andrews [1], Yee [55,56], Andrews, Paule, Riese, and Strehl [3], Eriksen [31], and Bradford et al. [11]. We have also contributed to the collection of proofs with co-authors Corteel [25], Corteel and Lee [20], Andrews and Corteel [2], Bright [15], and, most recently, Corteel and Lovejoy [23].
C.D. Savage, "The mathematics of lecture hall partitions", JCTA, 2016.

The Lecture Hall Theorem

Example $n=3$, continued

Let's have another look at the example:

$$
\begin{aligned}
H\left(q_{1}, q_{2}, q_{1}\right) & =\frac{1-q_{1}^{4} q_{2}^{2}}{\left(1-q_{1}\right)\left(1-q_{1}^{2} q_{2}\right)\left(1-q_{1}^{3} q_{2}^{2}\right)\left(1-q_{1}^{3} q_{2}^{2} q_{1}\right)} \\
& =\frac{1}{\left(1-q_{1}\right)\left(1-q_{1}^{2} q_{2}\right)\left(1-q_{1}^{3} q_{2}^{2}\right)}
\end{aligned}
$$

The Lecture Hall Theorem

Example $n=3$, continued

Let's have another look at the example:

$$
\begin{aligned}
H\left(q_{1}, q_{2}, q_{1}\right) & =\frac{1-q_{1}^{4} q_{2}^{2}}{\left(1-q_{1}\right)\left(1-q_{1}^{2} q_{2}\right)\left(1-q_{1}^{3} q_{2}^{2}\right)\left(1-q_{1}^{3} q_{2}^{2} q_{1}\right)} \\
& =\frac{1}{\left(1-q_{1}\right)\left(1-q_{1}^{2} q_{2}\right)\left(1-q_{1}^{3} q_{2}^{2}\right)}
\end{aligned}
$$

Observations:

- This works because the last generator has the same \mathbb{Z}^{2}-degree as the relation among the other generators.

The Lecture Hall Theorem

Example $n=3$, continued

Let's have another look at the example:

$$
\begin{aligned}
H\left(q_{1}, q_{2}, q_{1}\right) & =\frac{1-q_{1}^{4} q_{2}^{2}}{\left(1-q_{1}\right)\left(1-q_{1}^{2} q_{2}\right)\left(1-q_{1}^{3} q_{2}^{2}\right)\left(1-q_{1}^{3} q_{2}^{2} q_{1}\right)} \\
& =\frac{1}{\left(1-q_{1}\right)\left(1-q_{1}^{2} q_{2}\right)\left(1-q_{1}^{3} q_{2}^{2}\right)}
\end{aligned}
$$

Observations:

- This works because the last generator has the same \mathbb{Z}^{2}-degree as the relation among the other generators.
- The Hilbert series looks like the Hilbert series of a polynomial ring with an unusual \mathbb{Z}^{2}-grading.

The Lecture Hall Theorem

Example $n=3$, continued

Let's have another look at the example:

$$
\begin{aligned}
H\left(q_{1}, q_{2}, q_{1}\right) & =\frac{1-q_{1}^{4} q_{2}^{2}}{\left(1-q_{1}\right)\left(1-q_{1}^{2} q_{2}\right)\left(1-q_{1}^{3} q_{2}^{2}\right)\left(1-q_{1}^{3} q_{2}^{2} q_{1}\right)} \\
& =\frac{1}{\left(1-q_{1}\right)\left(1-q_{1}^{2} q_{2}\right)\left(1-q_{1}^{3} q_{2}^{2}\right)}
\end{aligned}
$$

Observations:

- This works because the last generator has the same \mathbb{Z}^{2}-degree as the relation among the other generators.
- The Hilbert series looks like the Hilbert series of a polynomial ring with an unusual \mathbb{Z}^{2}-grading.
This leads to an idea...

Initial Subalgebras

Some algebraic background

- Let $S_{n}:=\mathbb{k}\left[y_{1}, \ldots, y_{n}\right]$ be a polynomial ring over some field.
- $p_{1}, \ldots, p_{r} \in S_{n}$ polynomials
- \prec : a term order on S_{n}.

Initial Subalgebras

Some algebraic background

- Let $S_{n}:=\mathbb{k}\left[y_{1}, \ldots, y_{n}\right]$ be a polynomial ring over some field.
- $p_{1}, \ldots, p_{r} \in S_{n}$ polynomials
- \prec : a term order on S_{n}.

Definition

Let $A:=\mathbb{k}\left[p_{1}, \ldots, p_{r}\right]$ be the subalgebra generated by the p_{1}, \ldots, p_{r}. The inital subalgebra of A is

$$
\ln _{\prec}(A):=\operatorname{Span}_{\mathbb{k}^{k}}\left(\ln _{\prec}(p) \mid p \in A\right)
$$

Initial Subalgebras

Some algebraic background

- Let $S_{n}:=\mathbb{k}\left[y_{1}, \ldots, y_{n}\right]$ be a polynomial ring over some field.
- $p_{1}, \ldots, p_{r} \in S_{n}$ polynomials
- \prec : a term order on S_{n}.

Definition

Let $A:=\mathbb{k}\left[p_{1}, \ldots, p_{r}\right]$ be the subalgebra generated by the p_{1}, \ldots, p_{r}. The inital subalgebra of A is

$$
\ln _{\prec}(A):=\operatorname{Span}_{\mathrm{k}}\left(\ln _{\prec}(p) \mid p \in A\right)
$$

In general we have that $\mathbb{k}\left[\ln _{\prec}\left(p_{1}\right), \ldots, \ln _{\prec}\left(p_{r}\right)\right] \subseteq \ln _{\prec}(A)$. The p_{1}, \ldots, p_{r} are called a SAGBI Basis if equality holds.

Initial Subalgebras

Some algebraic background

Initial subalgebras behave similar to initial ideals, and SAGBI bases correspond to Gröbner bases.

Here we only need the following:
Lemma (Conca, Herzog, Trung, Valla 1997)
If S_{n} is graded and $A \subseteq S_{n}$ is a graded subalgebra, then the Hilbert series of A and $\ln _{\prec}(A)$ coincide.

The Lecture Hall Theorem

Example $n=3$, continued

Hilbert basis of $\mathbf{L}_{3}: \quad(1,0,0),(2,1,0),(3,2,0),(3,2,1) \in \mathbb{Z}^{3}$

- Let $S_{3}:=\mathbb{k}\left[y_{1}, y_{2}, y_{3}\right]$ with grading $\operatorname{deg} y_{1}:=\operatorname{deg} y_{3}:=(1,0)$ and $\operatorname{deg} y_{2}:=(0,1)$.
- Ehrhart ring: $A:=\mathbb{k}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}, y_{1}^{3} y_{2}^{2} y_{3}\right] \subset S_{3}$.

The Lecture Hall Theorem

Example $n=3$, continued

Hilbert basis of $\mathbf{L}_{3}: \quad(1,0,0),(2,1,0),(3,2,0),(3,2,1) \in \mathbb{Z}^{3}$

- Let $S_{3}:=\mathbb{k}\left[y_{1}, y_{2}, y_{3}\right]$ with grading $\operatorname{deg} y_{1}:=\operatorname{deg} y_{3}:=(1,0)$ and $\operatorname{deg} y_{2}:=(0,1)$.
- Ehrhart ring: $A:=\mathbb{k}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}, y_{1}^{3} y_{2}^{2} y_{3}\right] \subset S_{3}$.
- Instead, we consider $\tilde{A}:=\mathbb{k}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}+y_{1}^{2} y_{2}^{2} y_{3}, y_{1}^{3} y_{2}^{2} y_{3}\right] \subset S_{3}$.

The Lecture Hall Theorem

Example $n=3$, continued

 Hilbert basis of $\mathbf{L}_{3}: \quad(1,0,0),(2,1,0),(3,2,0),(3,2,1) \in \mathbb{Z}^{3}$- Let $S_{3}:=\mathbb{k}\left[y_{1}, y_{2}, y_{3}\right]$ with grading $\operatorname{deg} y_{1}:=\operatorname{deg} y_{3}:=(1,0)$ and $\operatorname{deg} y_{2}:=(0,1)$.
- Ehrhart ring: $A:=\mathbb{k}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}, y_{1}^{3} y_{2}^{2} y_{3}\right] \subset S_{3}$.
- Instead, we consider $\tilde{A}:=\mathbb{k}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}+y_{1}^{2} y_{2}^{2} y_{3}, y_{1}^{3} y_{2}^{2} y_{3}\right] \subset S_{3}$.
- Fact: $A=\ln _{\prec}(\tilde{A})$, and thus their Hilbert series coincide. (Here, \prec is any order with $y_{3} \prec y_{1}$.)

The Lecture Hall Theorem

Example $n=3$, continued

 Hilbert basis of $\mathbf{L}_{3}: \quad(1,0,0),(2,1,0),(3,2,0),(3,2,1) \in \mathbb{Z}^{3}$- Let $S_{3}:=\mathbb{k}\left[y_{1}, y_{2}, y_{3}\right]$ with grading $\operatorname{deg} y_{1}:=\operatorname{deg} y_{3}:=(1,0)$ and $\operatorname{deg} y_{2}:=(0,1)$.
- Ehrhart ring: $A:=\mathbb{k}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}, y_{1}^{3} y_{2}^{2} y_{3}\right] \subset S_{3}$.
- Instead, we consider $\tilde{A}:=\mathbb{k}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}+y_{1}^{2} y_{2}^{2} y_{3}, y_{1}^{3} y_{2}^{2} y_{3}\right] \subset S_{3}$.
- Fact: $A=\ln _{\prec}(\tilde{A})$, and thus their Hilbert series coincide. (Here, \prec is any order with $y_{3} \prec y_{1}$.)
- Observation: $y_{1}^{3} y_{2}^{2} y_{3}=y_{1} \cdot\left(y_{1}^{3} y_{2}^{2}+y_{1}^{2} y_{2}^{2} y_{3}\right)-\left(y_{1}^{2} y_{2}\right)^{2}$.

The Lecture Hall Theorem

Example $n=3$, continued

Hilbert basis of $\mathbf{L}_{3}: \quad(1,0,0),(2,1,0),(3,2,0),(3,2,1) \in \mathbb{Z}^{3}$

- Let $S_{3}:=\mathbb{k}\left[y_{1}, y_{2}, y_{3}\right]$ with grading $\operatorname{deg} y_{1}:=\operatorname{deg} y_{3}:=(1,0)$ and $\operatorname{deg} y_{2}:=(0,1)$.
- Ehrhart ring: $A:=\mathbb{R}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}, y_{1}^{3} y_{2}^{2} y_{3}\right] \subset S_{3}$.
- Instead, we consider $\tilde{A}:=\mathbb{k}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}+y_{1}^{2} y_{2}^{2} y_{3}, y_{1}^{3} y_{2}^{2} y_{3}\right] \subset S_{3}$.
- Fact: $A=\ln _{\prec}(\tilde{A})$, and thus their Hilbert series coincide. (Here, \prec is any order with $y_{3} \prec y_{1}$.)
- Observation: $y_{1}^{3} y_{2}^{2} y_{3}=y_{1} \cdot\left(y_{1}^{3} y_{2}^{2}+y_{1}^{2} y_{2}^{2} y_{3}\right)-\left(y_{1}^{2} y_{2}\right)^{2}$.
- Hence, $\tilde{A}=\mathbb{k}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}+y_{1}^{2} y_{2}^{2} y_{3}\right]$. The generators are algebracially independent, hence this is a polynomial ring and the LH theorem follows (for $n=3$).

The Lecture Hall Theorem

Example $n=3$, continued

Hilbert basis of $\mathbf{L}_{3}: \quad(1,0,0),(2,1,0),(3,2,0),(3,2,1) \in \mathbb{Z}^{3}$

- Let $S_{3}:=\mathbb{k}\left[y_{1}, y_{2}, y_{3}\right]$ with grading $\operatorname{deg} y_{1}:=\operatorname{deg} y_{3}:=(1,0)$ and $\operatorname{deg} y_{2}:=(0,1)$.
- Ehrhart ring: $A:=\mathbb{R}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}, y_{1}^{3} y_{2}^{2} y_{3}\right] \subset S_{3}$.
- Instead, we consider $\tilde{A}:=\mathbb{k}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}+y_{1}^{2} y_{2}^{2} y_{3}, y_{1}^{3} y_{2}^{2} y_{3}\right] \subset S_{3}$.
- Fact: $A=\ln _{\prec}(\tilde{A})$, and thus their Hilbert series coincide. (Here, \prec is any order with $y_{3} \prec y_{1}$.)
- Observation: $y_{1}^{3} y_{2}^{2} y_{3}=y_{1} \cdot\left(y_{1}^{3} y_{2}^{2}+y_{1}^{2} y_{2}^{2} y_{3}\right)-\left(y_{1}^{2} y_{2}\right)^{2}$.
- Hence, $\tilde{A}=\mathbb{k}\left[y_{1}, y_{1}^{2} y_{2}, y_{1}^{3} y_{2}^{2}+y_{1}^{2} y_{2}^{2} y_{3}\right]$. The generators are algebracially independent, hence this is a polynomial ring and the LH theorem follows (for $n=3$).
Next, we try to guess similar polynomials for general n.

The Lecture Hall Polynomials

Let $S_{n}:=\mathbb{k}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$. We consider the following \mathbb{Z}^{2}-grading on S_{n} :

$$
\operatorname{deg} y_{i}:= \begin{cases}(0,1) & \text { if } i \text { is even } \\ (1,0) & \text { if } i \text { is odd }\end{cases}
$$

The Lecture Hall Polynomials

For a sequence of polynomials $\mathbf{P}:=P_{1}, P_{2}, \ldots$ in S_{n} we define an infinite matrix $M(\mathbf{P})$ by setting

$$
M(\mathbf{P})_{i, j}:= \begin{cases}-P_{j-i+1} & \text { if } j \geq i \\ 0 & \text { otherwise }\end{cases}
$$

Explicitly, $M(\mathbf{P})$ looks as follows:

$$
M(\mathbf{P})=\left(\begin{array}{ccccc}
-P_{1} & -P_{2} & -P_{3} & -P_{4} & \ldots \\
0 & -P_{1} & -P_{2} & -P_{3} & \ldots \\
0 & 0 & -P_{1} & -P_{2} & \ldots \\
0 & 0 & 0 & -P_{1} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

(This is a Toeplitz matrix.)

The Lecture Hall Polynomials

$$
M(\mathbf{P})_{i, j}:= \begin{cases}-P_{j-i+1} & \text { if } j \geq i \\ 0 & \text { otherwise. }\end{cases}
$$

Notation:

- For $A, B \subset \mathbb{N}$ let $\Delta_{B}^{A}(M(\mathbf{P}))$ be the submatrix using rows in A and columns in B.

The Lecture Hall Polynomials

$$
M(\mathbf{P})_{i, j}:= \begin{cases}-P_{j-i+1} & \text { if } j \geq i \\ 0 & \text { otherwise. }\end{cases}
$$

Notation:

- For $A, B \subset \mathbb{N}$ let $\Delta_{B}^{A}(M(\mathbf{P}))$ be the submatrix using rows in A and columns in B.
- For $i \in \mathbb{N}$ let

$$
\mathcal{E}_{i}(\mathbf{P}):=-\operatorname{det} \Delta_{\{\lfloor i / 2\rfloor, \ldots, i\}}^{\{1, \ldots, \Gamma i / 2\rceil\}}(M(\mathbf{P})) .
$$

In other words: $\mathcal{E}_{i}(\mathbf{P})$ is defined using the maximal top-aligned square submatrix of $M(\mathbf{P})$, whose top right corner is $-P_{i}$ and which does not contain any of the zeros of $M(\mathbf{P})$.

The Lecture Hall Polynomials

$$
\begin{aligned}
& M(\mathbf{P})_{i, j}:= \begin{cases}-P_{j-i+1} & \text { if } j \geq i \\
0 & \text { otherwise. }\end{cases} \\
& \mathcal{E}_{i}(\mathbf{P}):=-\operatorname{det} \Delta_{\{\lfloor 1 / 2], \ldots, i\}}^{\{1, \ldots, 2\rceil\}}(M(\mathbf{P})) .
\end{aligned}
$$

The Lecture Hall Polynomials

$$
\begin{aligned}
& M(\mathbf{P})_{i, j}:= \begin{cases}-P_{j-i+1} & \text { if } j \geq i \\
0 & \text { otherwise. }\end{cases} \\
& \mathcal{E}_{i}(\mathbf{P}):=-\operatorname{det} \Delta_{\{\lfloor 1 / 2\rfloor, \ldots, \ldots,\}}^{\{1, \ldots,[/ 2\}\}}(M(\mathbf{P})) .
\end{aligned}
$$

Definition

The Lecture Hall polynomials are those Laurent polynomials $\ell_{1}, \ell_{2}, \ldots, \ell_{n} \in \operatorname{Quot}\left(S_{n}\right)$, such that

$$
\mathcal{E}_{i}\left(\ell_{1}, \ell_{2}, \ldots\right)=y_{1}^{i} y_{2}^{i-1} \cdots y_{i-1}^{2} y_{i}
$$

for all $i \geq 1$.

The Lecture Hall Polynomials

$$
\begin{aligned}
& M(\mathbf{P})_{i, j}:= \begin{cases}-P_{j-i+1} & \text { if } j \geq i \\
0 & \text { otherwise. }\end{cases} \\
& \mathcal{E}_{i}(\mathbf{P}):=-\operatorname{det} \Delta_{\{\lfloor 1 / 2\rfloor, \ldots, \ldots, i\}}^{\{1, \ldots, i / 2\}\}}(M(\mathbf{P})) .
\end{aligned}
$$

Definition

The Lecture Hall polynomials are those Laurent polynomials $\ell_{1}, \ell_{2}, \ldots, \ell_{n} \in \operatorname{Quot}\left(S_{n}\right)$, such that

$$
\mathcal{E}_{i}\left(\ell_{1}, \ell_{2}, \ldots\right)=y_{1}^{i} y_{2}^{i-1} \cdots y_{i-1}^{2} y_{i}
$$

for all $i \geq 1$.
These equations can be used to iteratively compute the ℓ_{i}. In particular, the ℓ_{i} are well-defined.

The Lecture Hall Polynomials

Example

$$
\mathcal{E}_{i}\left(\ell_{1}, \ell_{2}, \ldots\right)=y_{1}^{i} y_{2}^{i-1} \cdots y_{i-1}^{2} y_{i}
$$

Abbreviation: $\mathbf{P}_{\mathrm{LH}}:=\ell_{1}, \ell_{2}, \ldots$ We compute the first ℓ_{i}.

The Lecture Hall Polynomials

Example

$$
\mathcal{E}_{i}\left(\ell_{1}, \ell_{2}, \ldots\right)=y_{1}^{i} y_{2}^{i-1} \cdots y_{i-1}^{2} y_{i}
$$

Abbreviation: $\mathbf{P}_{\mathrm{LH}}:=\ell_{1}, \ell_{2}, \ldots$. We compute the first ℓ_{i}.

$$
y_{1}=\mathcal{E}_{1}\left(\mathbf{P}_{\mathrm{LH}}\right)=-\operatorname{det}\left(-\ell_{1}\right)=\ell_{1}
$$

$$
\Longrightarrow \ell_{1}=y_{1}
$$

The Lecture Hall Polynomials

Example

$$
\mathcal{E}_{i}\left(\ell_{1}, \ell_{2}, \ldots\right)=y_{1}^{i} y_{2}^{i-1} \cdots y_{i-1}^{2} y_{i}
$$

Abbreviation: $\mathbf{P}_{\mathrm{LH}}:=\ell_{1}, \ell_{2}, \ldots$ We compute the first ℓ_{i}.

$$
\begin{aligned}
y_{1} & =\mathcal{E}_{1}\left(\mathbf{P}_{\mathrm{LH}}\right) \\
y_{1}^{2} y_{2} & =-\mathcal{E}_{2}\left(\mathbf{P}_{\mathrm{LH}}\right)
\end{aligned}=-\operatorname{det}\left(-\ell_{1}\right)=\ell_{1}\left(-\ell_{2}\right)=\ell_{2} .
$$

$$
\Longrightarrow \ell_{1}=y_{1}
$$

$$
\Longrightarrow \ell_{2}=y_{1}^{2} y_{2}
$$

The Lecture Hall Polynomials

Example

$$
\mathcal{E}_{i}\left(\ell_{1}, \ell_{2}, \ldots\right)=y_{1}^{i} y_{2}^{i-1} \cdots y_{i-1}^{2} y_{i}
$$

Abbreviation: $\mathbf{P}_{\mathrm{LH}}:=\ell_{1}, \ell_{2}, \ldots$. We compute the first ℓ_{i}.

$$
\begin{aligned}
y_{1} & =\mathcal{E}_{1}\left(\mathbf{P}_{\mathrm{LH}}\right)=-\operatorname{det}\left(-\ell_{1}\right)=\ell_{1} \\
y_{1}^{2} y_{2} & =\mathcal{E}_{2}\left(\mathbf{P}_{\mathrm{LH}}\right)=-\operatorname{det}\left(-\ell_{2}\right)=\ell_{2} \\
y_{1}^{3} y_{2}^{2} y_{3} & =\mathcal{E}_{3}\left(\mathbf{P}_{\mathrm{LH}}\right)=-\operatorname{det}\left(\begin{array}{ll}
-\ell_{2} & -\ell_{3} \\
-\ell_{1} & -\ell_{2}
\end{array}\right)=\ell_{1} \ell_{3}-\ell_{2}^{2} \\
& \Longrightarrow \ell_{3}=y_{1}^{3} y_{2}^{2}+y_{1}^{2} y_{2}^{2} y_{3}=y_{1}^{2} y_{2}^{2}\left(y_{1}+y_{3}\right)
\end{aligned}
$$

The Lecture Hall Polynomials

Example

$$
\mathcal{E}_{i}\left(\ell_{1}, \ell_{2}, \ldots\right)=y_{1}^{i} y_{2}^{i-1} \cdots y_{i-1}^{2} y_{i}
$$

Abbreviation: $\mathbf{P}_{\mathrm{LH}}:=\ell_{1}, \ell_{2}, \ldots$. We compute the first ℓ_{i}.

$$
\begin{aligned}
y_{1} & =\mathcal{E}_{1}\left(\mathbf{P}_{\mathrm{LH}}\right)=-\operatorname{det}\left(-\ell_{1}\right)=\ell_{1} \\
y_{1}^{2} y_{2} & =\mathcal{E}_{2}\left(\mathbf{P}_{\mathrm{LH}}\right)=-\operatorname{det}\left(-\ell_{2}\right)=\ell_{2} \\
y_{1}^{3} y_{2}^{2} y_{3} & =\mathcal{E}_{3}\left(\mathbf{P}_{\mathrm{LH}}\right)=-\operatorname{det}\left(\begin{array}{ll}
-\ell_{2} & -\ell_{3} \\
-\ell_{1} & -\ell_{2}
\end{array}\right)=\ell_{1} \ell_{3}-\ell_{2}^{2} \\
& \Longrightarrow \ell_{3}=y_{1}^{3} y_{2}^{2}+y_{1}^{2} y_{2}^{2} y_{3}=y_{1}^{2} y_{2}^{2}\left(y_{1}+y_{3}\right) \\
y_{1}^{4} y_{3}^{3} y_{2}^{2} y_{1} & =\mathcal{E}_{4}\left(\mathbf{P}_{\mathrm{LH}}\right)=-\operatorname{det}\left(\begin{array}{ll}
-\ell_{3} & -\ell_{4} \\
-\ell_{2} & -\ell_{3}
\end{array}\right)=\ell_{2} \ell_{4}-\ell_{3}^{2} \\
& \Longrightarrow \ell_{4}=y_{1}^{2} y_{2}^{3}\left(y_{1}+y_{3}\right)^{2}+y_{4}^{2} y_{3}^{2} y_{2}^{2} y_{1}
\end{aligned}
$$

The Lecture Hall Polynomials

Easy observations:

- Each ℓ_{i} is a Laurent polynomial, has coefficients in \mathbb{Z}, and is homogeneous of degree $(i, i-1)$.
- For each $i \geq 0$, the i-th Lecture Hall polynomial ℓ_{i} depends only on the variables y_{1}, \ldots, y_{i}, and it is non-constant as a function of y_{i}.

The Lecture Hall Polynomials

Easy observations:

- Each ℓ_{i} is a Laurent polynomial, has coefficients in \mathbb{Z}, and is homogeneous of degree $(i, i-1)$.
- For each $i \geq 0$, the i-th Lecture Hall polynomial ℓ_{i} depends only on the variables y_{1}, \ldots, y_{i}, and it is non-constant as a function of y_{i}.

Conjecture

Each Lecture Hall polynomial ℓ_{i} is in fact a polynomial.

The Lecture Hall Polynomials

Easy observations:

- Each ℓ_{i} is a Laurent polynomial, has coefficients in \mathbb{Z}, and is homogeneous of degree ($i, i-1$).
- For each $i \geq 0$, the i-th Lecture Hall polynomial ℓ_{i} depends only on the variables y_{1}, \ldots, y_{i}, and it is non-constant as a function of y_{i}.

Conjecture

Each Lecture Hall polynomial ℓ_{i} is in fact a polynomial.
We verified this conjecture for $i \leq 12$.

The Lecture Hall Polynomials

Easy observations:

- Each ℓ_{i} is a Laurent polynomial, has coefficients in \mathbb{Z}, and is homogeneous of degree $(i, i-1)$.
- For each $i \geq 0$, the i-th Lecture Hall polynomial ℓ_{i} depends only on the variables y_{1}, \ldots, y_{i}, and it is non-constant as a function of y_{i}.

Conjecture

Each Lecture Hall polynomial ℓ_{i} is in fact a polynomial.
We verified this conjecture for $i \leq 12$. This is a purely combinatorial conjecture.

The Lecture Hall Polynomials

Each ℓ_{i} depends on y_{i}, but not on $y_{j}, j>i$. This implies that ℓ_{i} are algebraically independent, and thus we get:

Corollary

The algebra $A_{n}:=\mathbb{Q}\left[\ell_{1}, \ldots, \ell_{n}\right] \subset \mathbb{Q u o t}\left(S_{n}\right)$ is isomorphic to a \mathbb{Z}^{2}-graded polynomial ring. Its Hilbert series equals

$$
\prod_{i=1}^{n} \frac{1}{1-q_{1}^{i} q_{2}^{i-1}}
$$

This is the right-hand side of the LH theorem.

The Lecture Hall Polynomials

Each ℓ_{i} depends on y_{i}, but not on $y_{j}, j>i$. This implies that ℓ_{i} are algebraically independent, and thus we get:

Corollary

The algebra $A_{n}:=\mathbb{Q}\left[\ell_{1}, \ldots, \ell_{n}\right] \subset \mathbb{Q u o t}\left(S_{n}\right)$ is isomorphic to a \mathbb{Z}^{2}-graded polynomial ring. Its Hilbert series equals

$$
\prod_{i=1}^{n} \frac{1}{1-q_{1}^{i} q_{2}^{i-1}}
$$

This is the right-hand side of the LH theorem.
$\ln _{\prec}\left(A_{n}\right)$ is supposed to be the Ehrhart ring. But the latter has 2^{n-1} generators, while A_{n} has only n. So the ℓ_{n} cannot be a SAGBI basis, and thus we need extra generators.

The Lecture Hall Polynomials

A candidate for the SAGBI basis

Definition

For a finite set $S \subseteq \mathbb{N}, S \neq \emptyset$ let

$$
\ell_{S}:=-\operatorname{det} \Delta_{S+1}^{[\# S]}\left(M\left(\mathbf{P}_{\mathrm{LH}}\right)\right),
$$

where $S+1:=\{s+1 \mid s \in S\}$. In other words, ℓ_{S} is the negative of the minor of $M\left(\mathbf{P}_{\mathrm{LH}}\right)$ using $\# S$ many top rows and the columns in $S+1$. In addition, we set $\ell_{\emptyset}:=\ell_{1}$.

The Lecture Hall Polynomials

A candidate for the SAGBI basis

Definition

For a finite set $S \subseteq \mathbb{N}, S \neq \emptyset$ let

$$
\ell_{S}:=-\operatorname{det} \Delta_{S+1}^{[\# S]}\left(M\left(\mathbf{P}_{\mathrm{LH}}\right)\right)
$$

where $S+1:=\{s+1 \mid s \in S\}$. In other words, ℓ_{S} is the negative of the minor of $M\left(\mathbf{P}_{\mathrm{LH}}\right)$ using $\# S$ many top rows and the columns in $S+1$. In addition, we set $\ell_{\emptyset}:=\ell_{1}$.

Note that $\ell_{i}=\ell_{\{i-1\}}$ for $i \in \mathbb{N}$, and that $\ell_{\{\lfloor i / 2\rfloor, \ldots, i-1\}}=\mathcal{E}_{i}\left(\mathbf{P}_{\mathrm{LH}}\right)=y_{1}^{i} y_{2}^{i-1} \cdots y_{i-1}^{2} y_{i}$.

The Lecture Hall Polynomials

Our main conjecture
Let \prec be the degree-lexicographic term order on $S_{n}:=\mathbb{Q}\left[y_{1}, \ldots, y_{n}\right]$ with $y_{1} \succ y_{2} \succ \ldots \succ y_{n}$, and let $A_{n}=\mathbb{Q}\left[\ell_{1}, \ldots, \ell_{n}\right]$.

The Lecture Hall Polynomials

Our main conjecture
Let \prec be the degree-lexicographic term order on $S_{n}:=\mathbb{Q}\left[y_{1}, \ldots, y_{n}\right]$ with $y_{1} \succ y_{2} \succ \ldots \succ y_{n}$, and let $A_{n}=\mathbb{Q}\left[\ell_{1}, \ldots, \ell_{n}\right]$.

Conjecture

Assume that all the ℓ_{i} are polynomials. Then:
(1) The initial subalgebra $\ln _{\prec}\left(A_{n}\right)$ equals the Ehrhart ring of \mathbf{L}_{n}.

The Lecture Hall Polynomials

Our main conjecture
Let \prec be the degree-lexicographic term order on $S_{n}:=\mathbb{Q}\left[y_{1}, \ldots, y_{n}\right]$ with $y_{1} \succ y_{2} \succ \ldots \succ y_{n}$, and let $A_{n}=\mathbb{Q}\left[\ell_{1}, \ldots, \ell_{n}\right]$.

Conjecture

Assume that all the ℓ_{i} are polynomials. Then:
(1) The initial subalgebra $\ln _{\prec}\left(A_{n}\right)$ equals the Ehrhart ring of \mathbf{L}_{n}.
(2) The set of exponent vectors of $\left\{\ln _{\prec}\left(\ell_{S}\right) \mid S \subseteq[n-1]\right\}$ is the Hilbert basis of \mathbf{L}_{n}.

- This implies the LH theorem.

The Lecture Hall Polynomials

Our main conjecture
Let \prec be the degree-lexicographic term order on $S_{n}:=\mathbb{Q}\left[y_{1}, \ldots, y_{n}\right]$ with $y_{1} \succ y_{2} \succ \ldots \succ y_{n}$, and let $A_{n}=\mathbb{Q}\left[\ell_{1}, \ldots, \ell_{n}\right]$.

Conjecture

Assume that all the ℓ_{i} are polynomials. Then:
(1) The initial subalgebra $\ln _{\prec}\left(A_{n}\right)$ equals the Ehrhart ring of \mathbf{L}_{n}.
(2) The set of exponent vectors of $\left\{\ln _{\prec}\left(\ell_{S}\right) \mid S \subseteq[n-1]\right\}$ is the Hilbert basis of \mathbf{L}_{n}.

- This implies the LH theorem.
- Also, it implies that $\left\{\ell_{S} \mid S \subseteq[n-1]\right\}$ is a SAGBI basis for A_{n}

The Lecture Hall Polynomials

Our main conjecture
Let \prec be the degree-lexicographic term order on $S_{n}:=\mathbb{Q}\left[y_{1}, \ldots, y_{n}\right]$ with $y_{1} \succ y_{2} \succ \ldots \succ y_{n}$, and let $A_{n}=\mathbb{Q}\left[\ell_{1}, \ldots, \ell_{n}\right]$.

Conjecture

Assume that all the ℓ_{i} are polynomials. Then:
(1) The initial subalgebra $\ln _{\prec}\left(A_{n}\right)$ equals the Ehrhart ring of \mathbf{L}_{n}.
(2) The set of exponent vectors of $\left\{\ln _{\prec}\left(\ell_{S}\right) \mid S \subseteq[n-1]\right\}$ is the Hilbert basis of \mathbf{L}_{n}.

- This implies the LH theorem.
- Also, it implies that $\left\{\ell_{S} \mid S \subseteq[n-1]\right\}$ is a SAGBI basis for A_{n}
- I verified the conjecture for $n \leq 12$.

The Lecture Hall Polynomials

Our main conjecture
Let \prec be the degree-lexicographic term order on $S_{n}:=\mathbb{Q}\left[y_{1}, \ldots, y_{n}\right]$ with $y_{1} \succ y_{2} \succ \ldots \succ y_{n}$, and let $A_{n}=\mathbb{Q}\left[\ell_{1}, \ldots, \ell_{n}\right]$.

Conjecture

Assume that all the ℓ_{i} are polynomials. Then:
(1) The initial subalgebra $\ln _{\prec}\left(A_{n}\right)$ equals the Ehrhart ring of \mathbf{L}_{n}.
(2) The set of exponent vectors of $\left\{\ln _{\prec}\left(\ell_{S}\right) \mid S \subseteq[n-1]\right\}$ is the Hilbert basis of \mathbf{L}_{n}.

- This implies the LH theorem.
- Also, it implies that $\left\{\ell_{S} \mid S \subseteq[n-1]\right\}$ is a SAGBI basis for A_{n}
- I verified the conjecture for $n \leq 12$.
- Note: For $n \leq 12$, the leading term of every ℓ_{S} has coefficient 1 . This is the reason for our choice of signs.

The end.
Thank you

