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Lecture Hall Partitions

A Lecture Hall partition is a finite sequence λ = (λ1, λ2, . . . , λn) ∈ Zn

satisfying
λ1
n ≥

λ2
n − 1 ≥ · · · ≥

λn
1 ≥ 0.

The set Ln of Lecture Hall partitions is the set of lattice points in the
Lecture Hall cone, which is the cone over the simplex with vertices
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(My indexing convention is reversed compared with the other talk.)
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The Lecture Hall Theorem

The original motivation for studying Lecture Hall Paritions is the Lecture
Hall theorem. For a lecture hall partition λ let

|λ|o := λ1 + λ3 + λ5 + · · ·
|λ|e := λ2 + λ4 + λ6 + · · · .

The Lecture Hall theorem (Bousquet-Mélou and Eriksson, ’97)

It holds that
∑
λ∈Ln

q|λ|o1 q|λ|e2 =
n∏

i=1

1
1− qi

1q
i−1
2

.

This is a rather strange specialization of the multivariate Ehrhart series.
The multivariate Ehrhart series itself does not factor like this.
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The Lecture Hall Theorem
Example: n = 3

For n = 3, a Hilbert basis of Ln is given by
v1 := (1, 0, 0), v2 := (2, 1, 0), v3 := (3, 2, 0) and v4 := (3, 2, 1). There is
one relation: 2v2 = v1 + v3. Thus the multigraded Hilbert series is

H(q1, q2, q3) = 1− q4
1q2

2
(1− q1)(1− q2

1q2)(1− q3
1q2

2)(1− q3
1q2

2q3)
.

Specializing to |λ|o and |λ|e amounts to setting q3 = q1. This yields

H(q1, q2, q1) = 1− q4
1q2

2
(1− q1)(1− q2

1q2)(1− q3
1q2

2)(1− q3
1q2

2q1)

= 1
(1− q1)(1− q2

1q2)(1− q3
1q2

2)
,

as predicted by the LH Theorem.
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The Lecture Hall Theorem

There are a number of proofs of the LH Theorem, but it is still not
considered to be well understood:

[...], Theorem 1.2 is hardly understood at all. This is in spite of
the fact that by now there are many proofs, including those of
Bousquet-Mélou and Eriksson [8–10], Andrews [1], Yee [55,56],
Andrews, Paule, Riese, and Strehl [3], Eriksen [31], and Bradford
et al. [11]. We have also contributed to the collection of proofs
with co-authors Corteel [25], Corteel and Lee [20], Andrews and
Corteel [2], Bright [15], and, most recently, Corteel and Lovejoy
[23].

C.D. Savage, “The mathematics of lecture hall partitions”, JCTA, 2016.
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The Lecture Hall Theorem
Example n = 3, continued

Let’s have another look at the example:

H(q1, q2, q1) = 1− q4
1q2

2
(1− q1)(1− q2

1q2)(1− q3
1q2

2)(1− q3
1q2

2q1)

= 1
(1− q1)(1− q2

1q2)(1− q3
1q2

2)
,

Observations:
• This works because the last generator has the same Z2-degree as the

relation among the other generators.
• The Hilbert series looks like the Hilbert series of a polynomial ring

with an unusual Z2-grading.
This leads to an idea...
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Initial Subalgebras
Some algebraic background

• Let Sn := k[y1, . . . , yn] be a polynomial ring over some field.
• p1, . . . , pr ∈ Sn polynomials
• ≺: a term order on Sn.

Definition
Let A := k[p1, . . . , pr ] be the subalgebra generated by the p1, . . . , pr . The
inital subalgebra of A is

In≺(A) := Spank(In≺(p) p ∈ A)

In general we have that k[In≺(p1), . . . , In≺(pr )] ⊆ In≺(A). The p1, . . . , pr
are called a SAGBI Basis if equality holds.
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Initial Subalgebras
Some algebraic background

Initial subalgebras behave similar to initial ideals, and SAGBI bases
correspond to Gröbner bases.

Here we only need the following:

Lemma (Conca, Herzog, Trung, Valla 1997)
If Sn is graded and A ⊆ Sn is a graded subalgebra, then the Hilbert series
of A and In≺(A) coincide.
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The Lecture Hall Theorem
Example n = 3, continued

Hilbert basis of L3: (1, 0, 0), (2, 1, 0), (3, 2, 0), (3, 2, 1) ∈ Z3

• Let S3 := k[y1, y2, y3] with grading deg y1 := deg y3 := (1, 0) and
deg y2 := (0, 1).
• Ehrhart ring: A := k[y1, y2

1 y2, y3
1 y2

2 , y3
1 y2

2 y3] ⊂ S3.
• Instead, we consider Ã := k[y1, y2

1 y2, y3
1 y2

2 +y2
1 y2

2 y3, y3
1 y2

2 y3] ⊂ S3.
• Fact: A = In≺(Ã), and thus their Hilbert series coincide. (Here, ≺ is
any order with y3 ≺ y1.)
• Observation: y3

1 y2
2 y3 = y1 · (y3

1 y2
2 + y2

1 y2
2 y3)− (y2

1 y2)2.
• Hence, Ã = k[y1, y2

1 y2, y3
1 y2

2 + y2
1 y2

2 y3]. The generators are
algebracially independent, hence this is a polynomial ring and the LH
theorem follows (for n = 3).

Next, we try to guess similar polynomials for general n.
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The Lecture Hall Polynomials

Let Sn := k[y1, y2, . . . , yn]. We consider the following Z2-grading on Sn:

deg yi :=
{

(0, 1) if i is even,
(1, 0) if i is odd.
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The Lecture Hall Polynomials

For a sequence of polynomials P := P1,P2, . . . in Sn we define an infinite
matrix M(P) by setting

M(P)i ,j :=
{
−Pj−i+1 if j ≥ i
0 otherwise.

Explicitly, M(P) looks as follows:

M(P) =


−P1 −P2 −P3 −P4 . . .
0 −P1 −P2 −P3 . . .
0 0 −P1 −P2 . . .
0 0 0 −P1 . . .
...

...
...

... . . .


(This is a Toeplitz matrix.)
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The Lecture Hall Polynomials

M(P)i ,j :=
{
−Pj−i+1 if j ≥ i
0 otherwise.

Notation:
• For A,B ⊂ N let ∆A

B(M(P)) be the submatrix using rows in A and
columns in B.

• For i ∈ N let

Ei (P) := − det ∆{ 1,...,di/2e }
{ bi/2c,...,i } (M(P)).

In other words: Ei (P) is defined using the maximal top-aligned square
submatrix of M(P), whose top right corner is −Pi and which does not
contain any of the zeros of M(P).
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The Lecture Hall Polynomials

M(P)i ,j :=
{
−Pj−i+1 if j ≥ i
0 otherwise.

Ei (P) := − det ∆{ 1,...,di/2e }
{ bi/2c,...,i } (M(P)).

Definition
The Lecture Hall polynomials are those Laurent polynomials
`1, `2, . . . , `n ∈ Quot(Sn), such that

Ei (`1, `2, . . . ) = y i
1y i−1

2 · · · y2
i−1yi

for all i ≥ 1.

These equations can be used to iteratively compute the `i . In particular,
the `i are well-defined.
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The Lecture Hall Polynomials
Example

Ei (`1, `2, . . . ) = y i
1y i−1

2 · · · y2
i−1yi

Abbreviation: PLH := `1, `2, . . . . We compute the first `i .

y1 = E1(PLH) = − det(−`1) = `1 =⇒ `1 = y1

y2
1 y2 = E2(PLH) = − det(−`2) = `2 =⇒ `2 = y2

1 y2

y3
1 y2

2 y3 = E3(PLH) = − det
(
−`2 −`3
−`1 −`2

)
= `1`3 − `22

=⇒ `3 = y3
1 y2

2 + y2
1 y2

2 y3 = y2
1 y2

2 (y1 + y3)

y4
1 y3

3 y2
2 y1 = E4(PLH) = − det

(
−`3 −`4
−`2 −`3

)
= `2`4 − `23

=⇒ `4 = y2
1 y3

2 (y1 + y3)2 + y2
4 y2

3 y2
2 y1
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The Lecture Hall Polynomials

Easy observations:
• Each `i is a Laurent polynomial, has coefficients in Z, and is

homogeneous of degree (i , i − 1).
• For each i ≥ 0, the i-th Lecture Hall polynomial `i depends only on

the variables y1, . . . , yi , and it is non-constant as a function of yi .

Conjecture
Each Lecture Hall polynomial `i is in fact a polynomial.

We verified this conjecture for i ≤ 12. This is a purely combinatorial
conjecture.
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The Lecture Hall Polynomials

Each `i depends on yi , but not on yj , j > i . This implies that `i are
algebraically independent, and thus we get:

Corollary

The algebra An := Q[`1, . . . , `n] ⊂ Quot(Sn) is isomorphic to a Z2-graded
polynomial ring. Its Hilbert series equals

n∏
i=1

1
1− qi

1q
i−1
2

This is the right-hand side of the LH theorem.

In≺(An) is supposed to be the Ehrhart ring. But the latter has 2n−1

generators, while An has only n. So the `n cannot be a SAGBI basis, and
thus we need extra generators.



Lukas Katthän (Frankfurt) The lecture hall cone 15 / 17

The Lecture Hall Polynomials

Each `i depends on yi , but not on yj , j > i . This implies that `i are
algebraically independent, and thus we get:

Corollary

The algebra An := Q[`1, . . . , `n] ⊂ Quot(Sn) is isomorphic to a Z2-graded
polynomial ring. Its Hilbert series equals

n∏
i=1

1
1− qi

1q
i−1
2

This is the right-hand side of the LH theorem.

In≺(An) is supposed to be the Ehrhart ring. But the latter has 2n−1

generators, while An has only n. So the `n cannot be a SAGBI basis, and
thus we need extra generators.



Lukas Katthän (Frankfurt) The lecture hall cone 16 / 17

The Lecture Hall Polynomials
A candidate for the SAGBI basis

Definition
For a finite set S ⊆ N, S 6= ∅ let

`S := − det ∆[#S]
S+1 (M(PLH)),

where S + 1 := { s + 1 s ∈ S }. In other words, `S is the negative of the
minor of M(PLH) using #S many top rows and the columns in S + 1. In
addition, we set `∅ := `1.

Note that `i = `{ i−1 } for i ∈ N, and that
`{ bi/2c,...,i−1 } = Ei (PLH) = y i

1y i−1
2 · · · y2

i−1yi .



Lukas Katthän (Frankfurt) The lecture hall cone 16 / 17

The Lecture Hall Polynomials
A candidate for the SAGBI basis

Definition
For a finite set S ⊆ N, S 6= ∅ let

`S := − det ∆[#S]
S+1 (M(PLH)),

where S + 1 := { s + 1 s ∈ S }. In other words, `S is the negative of the
minor of M(PLH) using #S many top rows and the columns in S + 1. In
addition, we set `∅ := `1.

Note that `i = `{ i−1 } for i ∈ N, and that
`{ bi/2c,...,i−1 } = Ei (PLH) = y i

1y i−1
2 · · · y2

i−1yi .



Lukas Katthän (Frankfurt) The lecture hall cone 17 / 17

The Lecture Hall Polynomials
Our main conjecture

Let ≺ be the degree-lexicographic term order on Sn := Q[y1, . . . , yn] with
y1 � y2 � . . . � yn, and let An = Q[`1, . . . , `n].

Conjecture

Assume that all the `i are polynomials.Then:
1 The initial subalgebra In≺(An) equals the Ehrhart ring of Ln.
2 The set of exponent vectors of { In≺(`S) S ⊆ [n − 1] } is the Hilbert

basis of Ln.

• This implies the LH theorem.
• Also, it implies that { `S S ⊆ [n − 1] } is a SAGBI basis for An
• I verified the conjecture for n ≤ 12.
• Note: For n ≤ 12, the leading term of every `S has coefficient 1. This

is the reason for our choice of signs.
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The end.
Thank you
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