The lecture hall cone as a toric deformation

Lukas Katthän

Goethe-Universität Frankfurt

August 3, 2018

Lecture Hall Partitions

A Lecture Hall partition is a finite sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n$ satisfying

$$\frac{\lambda_1}{n} \geq \frac{\lambda_2}{n-1} \geq \cdots \geq \frac{\lambda_n}{1} \geq 0.$$

The set L_n of Lecture Hall partitions is the set of lattice points in the Lecture Hall cone, which is the cone over the simplex with vertices

$$\begin{pmatrix} 1\\0\\n-1\\0\\\vdots\\\vdots\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} n\\n-1\\n-2\\\vdots\\0\\0\\0 \end{pmatrix}, \dots, \begin{pmatrix} n\\n-1\\n-2\\\vdots\\2\\0 \end{pmatrix}, \dots, \begin{pmatrix} n\\n-1\\n-2\\\vdots\\2\\0 \end{pmatrix}, \begin{pmatrix} n\\n-1\\n-2\\\vdots\\2\\1 \end{pmatrix}$$

(My indexing convention is reversed compared with the other talk.)

Lecture Hall Partitions

A Lecture Hall partition is a finite sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n$ satisfying

$$\frac{\lambda_1}{n} \geq \frac{\lambda_2}{n-1} \geq \cdots \geq \frac{\lambda_n}{1} \geq 0.$$

The set L_n of Lecture Hall partitions is the set of lattice points in the Lecture Hall cone, which is the cone over the simplex with vertices

$$\begin{pmatrix} 1\\0\\0\\\vdots\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} n\\n-1\\0\\\vdots\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} n\\n-1\\n-2\\\vdots\\0\\0\\0 \end{pmatrix}, \dots, \begin{pmatrix} n\\n-1\\n-2\\\vdots\\2\\0\\0 \end{pmatrix}, \begin{pmatrix} n\\n-1\\n-2\\\vdots\\2\\0\\0 \end{pmatrix}, \begin{pmatrix} n\\n-1\\n-2\\\vdots\\2\\1 \end{pmatrix}$$

(My indexing convention is reversed compared with the other talk.)

Lecture Hall Partitions

A Lecture Hall partition is a finite sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}^n$ satisfying

$$\frac{\lambda_1}{n} \geq \frac{\lambda_2}{n-1} \geq \cdots \geq \frac{\lambda_n}{1} \geq 0.$$

The set L_n of Lecture Hall partitions is the set of lattice points in the Lecture Hall cone, which is the cone over the simplex with vertices

$$\begin{pmatrix} 1\\0\\0\\\vdots\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} n\\n-1\\0\\\vdots\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} n\\n-1\\n-2\\\vdots\\0\\0\\0 \end{pmatrix}, \dots, \begin{pmatrix} n\\n-1\\n-2\\\vdots\\2\\0 \end{pmatrix}, \begin{pmatrix} n\\n-1\\n-2\\\vdots\\2\\0 \end{pmatrix}, \begin{pmatrix} n\\n-1\\n-2\\\vdots\\2\\1 \end{pmatrix}$$

(My indexing convention is reversed compared with the other talk.)

The Lecture Hall Theorem

The original motivation for studying Lecture Hall Paritions is the Lecture Hall theorem. For a lecture hall partition λ let

 $\begin{aligned} |\lambda|_o &:= \lambda_1 + \lambda_3 + \lambda_5 + \cdots \\ |\lambda|_e &:= \lambda_2 + \lambda_4 + \lambda_6 + \cdots . \end{aligned}$

 $h:holds:that \qquad \sum a_i^{|V_i|}a_i^{|V_i|} = \prod_{i=1}^{d} \frac{1}{1-\sum_{i=1}^{d}a_i^{|V_i|}}$

The Lecture Hall Theorem

The original motivation for studying Lecture Hall Paritions is the Lecture Hall theorem. For a lecture hall partition λ let

$$\begin{split} |\lambda|_o &:= \lambda_1 + \lambda_3 + \lambda_5 + \cdots \\ |\lambda|_e &:= \lambda_2 + \lambda_4 + \lambda_6 + \cdots . \end{split}$$

The Lecture Hall theorem (Bousquet-Mélou and Eriksson, '97)

It holds that
$$\sum_{\lambda\in \mathsf{L}_n}q_1^{|\lambda|_e}q_2^{|\lambda|_e}=\prod_{i=1}^nrac{1}{1-q_1^iq_2^{i-1}}.$$

The Lecture Hall Theorem

It

The original motivation for studying Lecture Hall Paritions is the Lecture Hall theorem. For a lecture hall partition λ let

$$\begin{aligned} |\lambda|_o &:= \lambda_1 + \lambda_3 + \lambda_5 + \cdots \\ |\lambda|_e &:= \lambda_2 + \lambda_4 + \lambda_6 + \cdots . \end{aligned}$$

The Lecture Hall theorem (Bousquet-Mélou and Eriksson, '97)

holds that
$$\sum_{\lambda \in \mathbf{L}_n} q_1^{|\lambda|_o} q_2^{|\lambda|_e} = \prod_{i=1}^n \frac{1}{1 - q_1^i q_2^{i-1}}.$$

The Lecture Hall Theorem

The original motivation for studying Lecture Hall Paritions is the Lecture Hall theorem. For a lecture hall partition λ let

$$\begin{split} |\lambda|_o &:= \lambda_1 + \lambda_3 + \lambda_5 + \cdots \\ |\lambda|_e &:= \lambda_2 + \lambda_4 + \lambda_6 + \cdots . \end{split}$$

The Lecture Hall theorem (Bousquet-Mélou and Eriksson, '97)

It holds that
$$\sum_{\lambda \in \mathbf{L}_n} q_1^{|\lambda|_o} q_2^{|\lambda|_e} = \prod_{i=1}^n \frac{1}{1-q_1^i q_2^{i-1}}.$$

The Lecture Hall Theorem Example: n = 3

For n = 3, a Hilbert basis of L_n is given by $v_1 := (1,0,0), v_2 := (2,1,0), v_3 := (3,2,0)$ and $v_4 := (3,2,1)$. There is one relation: $2v_2 = v_1 + v_3$. Thus the multigraded Hilbert series is

$$H(q_1, q_2, q_3) = \frac{1 - q_1^4 q_2^2}{(1 - q_1)(1 - q_1^2 q_2)(1 - q_1^3 q_2^2)(1 - q_1^3 q_2^2 q_3)}$$

Specializing to $|\lambda|_o$ and $|\lambda|_e$ amounts to setting $q_3 = q_1$. This yields

$$\begin{split} H(q_1,q_2,q_1) &= \frac{1-q_1^4 q_2^2}{(1-q_1)(1-q_1^2 q_2)(1-q_1^3 q_2^2)(1-q_1^3 q_2^2 q_1)} \\ &= \frac{1}{(1-q_1)(1-q_1^2 q_2)(1-q_1^3 q_2^2)}, \end{split}$$

Example: n = 3

For n = 3, a Hilbert basis of L_n is given by $v_1 := (1,0,0), v_2 := (2,1,0), v_3 := (3,2,0)$ and $v_4 := (3,2,1)$. There is one relation: $2v_2 = v_1 + v_3$. Thus the multigraded Hilbert series is

$$H(q_1, q_2, q_3) = \frac{1 - q_1^4 q_2^2}{(1 - q_1)(1 - q_1^2 q_2)(1 - q_1^3 q_2^2)(1 - q_1^3 q_2^2 q_3)}$$

Specializing to $|\lambda|_o$ and $|\lambda|_e$ amounts to setting $q_3 = q_1$. This yields

$$\begin{split} H(q_1,q_2,q_1) &= \frac{1-q_1^4 q_2^2}{(1-q_1)(1-q_1^2 q_2)(1-q_1^3 q_2^2)(1-q_1^3 q_2^2 q_1)} \\ &= \frac{1}{(1-q_1)(1-q_1^2 q_2)(1-q_1^3 q_2^2)}, \end{split}$$

Example: n = 3

For n = 3, a Hilbert basis of L_n is given by $v_1 := (1,0,0), v_2 := (2,1,0), v_3 := (3,2,0)$ and $v_4 := (3,2,1)$. There is one relation: $2v_2 = v_1 + v_3$. Thus the multigraded Hilbert series is

$$egin{aligned} \mathcal{H}(q_1,q_2,q_3) &= rac{1-q_1^4 q_2^2}{(1-q_1)(1-q_1^2 q_2)(1-q_1^3 q_2^2 q_3)}. \end{aligned}$$

Specializing to $|\lambda|_o$ and $|\lambda|_e$ amounts to setting $q_3=q_1.$ This yields

$$H(q_1, q_2, q_1) = \frac{1 - q_1^4 q_2^2}{(1 - q_1)(1 - q_1^2 q_2)(1 - q_1^3 q_2^2)(1 - q_1^3 q_2^2 q_1)} \\ = \frac{1}{(1 - q_1)(1 - q_1^2 q_2)(1 - q_1^3 q_2^2)},$$

Example: n = 3

For n = 3, a Hilbert basis of L_n is given by $v_1 := (1,0,0), v_2 := (2,1,0), v_3 := (3,2,0)$ and $v_4 := (3,2,1)$. There is one relation: $2v_2 = v_1 + v_3$. Thus the multigraded Hilbert series is

$$egin{aligned} \mathcal{H}(q_1,q_2,q_3) &= rac{1-q_1^4 q_2^2}{(1-q_1)(1-q_1^2 q_2)(1-q_1^3 q_2^2)(1-q_1^3 q_2^2 q_3)}, \end{aligned}$$

Specializing to $|\lambda|_o$ and $|\lambda|_e$ amounts to setting $q_3=q_1.$ This yields

$$egin{aligned} \mathcal{H}(q_1,q_2,q_1) &= rac{1-q_1^4q_2^2}{(1-q_1)(1-q_1^2q_2)(1-q_1^3q_2^2)(1-q_1^3q_2^2q_1)} \ &= rac{1}{(1-q_1)(1-q_1^2q_2)(1-q_1^3q_2^2)}, \end{aligned}$$

There are a number of proofs of the LH Theorem, but it is still not considered to be well understood:

[...], Theorem 1.2 is hardly understood at all. This is in spite of the fact that by now there are many proofs, including those of Bousquet-Mélou and Eriksson [8–10], Andrews [1], Yee [55,56], Andrews, Paule, Riese, and Strehl [3], Eriksen [31], and Bradford et al. [11]. We have also contributed to the collection of proofs with co-authors Corteel [25], Corteel and Lee [20], Andrews and Corteel [2], Bright [15], and, most recently, Corteel and Lovejoy [23].

C.D. Savage, "The mathematics of lecture hall partitions", JCTA, 2016.

Let's have another look at the example:

$$egin{aligned} & \mathcal{H}(q_1,q_2,\pmb{q_1}) = rac{1-q_1^4q_2^2}{(1-q_1)(1-q_1^2q_2)(1-q_1^3q_2^2)(1-q_1^3q_2^2\pmb{q_1})} \ &= rac{1}{(1-q_1)(1-q_1^2q_2)(1-q_1^3q_2^2)}, \end{aligned}$$

Observations:

- This works because the last generator has the same Z²-degree as the relation among the other generators.
- The Hilbert series looks like the Hilbert series of a polynomial ring with an unusual 22-grading.

Let's have another look at the example:

$$egin{aligned} & \mathsf{H}(q_1,q_2,\pmb{q_1}) = rac{1-q_1^4q_2^2}{(1-q_1)(1-q_1^2q_2)(1-q_1^3q_2^2)(1-q_1^3q_2^2\pmb{q_1})} \ &= rac{1}{(1-q_1)(1-q_1^2q_2)(1-q_1^3q_2^2)}, \end{aligned}$$

Observations:

- This works because the last generator has the same \mathbb{Z}^2 -degree as the relation among the other generators.
- The Hilbert series looks like the Hilbert series of a polynomial ring with an unusual \mathbb{Z}^2 -grading.

Let's have another look at the example:

$$egin{aligned} & \mathsf{H}(q_1,q_2,\pmb{q_1}) = rac{1-q_1^4q_2^2}{(1-q_1)(1-q_1^2q_2)(1-q_1^3q_2^2)(1-q_1^3q_2^2\pmb{q_1})} \ &= rac{1}{(1-q_1)(1-q_1^2q_2)(1-q_1^3q_2^2)}, \end{aligned}$$

Observations:

- This works because the last generator has the same \mathbb{Z}^2 -degree as the relation among the other generators.
- The Hilbert series looks like the Hilbert series of a polynomial ring with an unusual \mathbb{Z}^2 -grading.

Let's have another look at the example:

$$egin{aligned} & \mathsf{H}(q_1,q_2,\pmb{q_1}) = rac{1-q_1^4q_2^2}{(1-q_1)(1-q_1^2q_2)(1-q_1^3q_2^2)(1-q_1^3q_2^2\pmb{q_1})} \ &= rac{1}{(1-q_1)(1-q_1^2q_2)(1-q_1^3q_2^2)}, \end{aligned}$$

Observations:

- This works because the last generator has the same \mathbb{Z}^2 -degree as the relation among the other generators.
- The Hilbert series looks like the Hilbert series of a polynomial ring with an unusual \mathbb{Z}^2 -grading.

Initial Subalgebras

Some algebraic background

- Let $S_n := \Bbbk[y_1, \ldots, y_n]$ be a polynomial ring over some field.
- $p_1, \ldots, p_r \in S_n$ polynomials
- \prec : a term order on S_n .

Definition

Let $A := \Bbbk[p_1, \ldots, p_r]$ be the subalgebra generated by the p_1, \ldots, p_r . The inital subalgebra of A is

 $\ln_{\prec}(A) := \operatorname{Span}_{\Bbbk}(\ln_{\prec}(p) \mid p \in A)$

In general we have that $\Bbbk[\ln_{\prec}(p_1), \dots, \ln_{\prec}(p_r)] \subseteq \ln_{\prec}(A)$. The p_1, \dots, p_r are called a SAGBI Basis if equality holds.

Initial Subalgebras

Some algebraic background

- Let $S_n := \Bbbk[y_1, \ldots, y_n]$ be a polynomial ring over some field.
- $p_1, \ldots, p_r \in S_n$ polynomials
- \prec : a term order on S_n .

Definition

Let $A := \Bbbk[p_1, \ldots, p_r]$ be the subalgebra generated by the p_1, \ldots, p_r . The initial subalgebra of A is

$$\operatorname{In}_{\prec}(A) := \operatorname{Span}_{\Bbbk}(\operatorname{In}_{\prec}(p) \mid p \in A)$$

In general we have that $\mathbb{k}[\ln_{\prec}(p_1), \dots, \ln_{\prec}(p_r)] \subseteq \ln_{\prec}(A)$. The p_1, \dots, p_r are called a SAGBI Basis if equality holds.

Initial Subalgebras

Some algebraic background

- Let $S_n := \Bbbk[y_1, \ldots, y_n]$ be a polynomial ring over some field.
- $p_1, \ldots, p_r \in S_n$ polynomials
- \prec : a term order on S_n .

Definition

Let $A := \Bbbk[p_1, \ldots, p_r]$ be the subalgebra generated by the p_1, \ldots, p_r . The initial subalgebra of A is

$$\operatorname{In}_{\prec}(A) := \operatorname{Span}_{\Bbbk}(\operatorname{In}_{\prec}(p) \mid p \in A)$$

In general we have that $\mathbb{k}[\ln_{\prec}(p_1), \ldots, \ln_{\prec}(p_r)] \subseteq \ln_{\prec}(A)$. The p_1, \ldots, p_r are called a SAGBI Basis if equality holds.

Some algebraic background

Initial subalgebras behave similar to initial ideals, and SAGBI bases correspond to Gröbner bases.

Here we only need the following:

Lemma (Conca, Herzog, Trung, Valla 1997)

If S_n is graded and $A \subseteq S_n$ is a graded subalgebra, then the Hilbert series of A and $\ln_{\prec}(A)$ coincide.

Example n = 3, continued

Hilbert basis of $\textbf{L}_3 {:} \quad (1,0,0), (2,1,0), (3,2,0), (3,2,1) \in \mathbb{Z}^3$

- Let $S_3 := k[y_1, y_2, y_3]$ with grading deg $y_1 := \deg y_3 := (1, 0)$ and deg $y_2 := (0, 1)$.
- Ehrhart ring: $A := \mathbb{k}[y_1, y_1^2 y_2, y_1^3 y_2^2, y_1^3 y_2^2 y_3] \subset S_3.$
- Instead, we consider $\tilde{A} := \mathbb{k}[y_1, y_1^2 y_2, y_1^3 y_2^2 + y_1^2 y_2^2 y_3, y_1^3 y_2^2 y_3] \subset S_3.$
- Fact: A = In_≺(Ã), and thus their Hilbert series coincide. (Here, ≺ is any order with y₃ ≺ y₁.)
- Observation: $y_1^3 y_2^2 y_3 = y_1 \cdot (y_1^3 y_2^2 + y_1^2 y_2^2 y_3) (y_1^2 y_2)^2$.
- Hence, Ã = k[y₁, y₁²y₂, y₁³y₂² + y₁²y₂²y₃]. The generators are algebracially independent, hence this is a polynomial ring and the LH theorem follows (for n = 3).

Example n = 3, continued

Hilbert basis of $\textbf{L}_3 {:} \quad (1,0,0), (2,1,0), (3,2,0), (3,2,1) \in \mathbb{Z}^3$

- Let $S_3 := k[y_1, y_2, y_3]$ with grading deg $y_1 := \deg y_3 := (1, 0)$ and deg $y_2 := (0, 1)$.
- Ehrhart ring: $A := \mathbb{k}[y_1, y_1^2 y_2, y_1^3 y_2^2, y_1^3 y_2^2 y_3] \subset S_3.$
- Instead, we consider $\tilde{A} := \Bbbk[y_1, y_1^2 y_2, y_1^3 y_2^2 + y_1^2 y_2^2 y_3, y_1^3 y_2^2 y_3] \subset S_3.$
- Fact: A = In_≺(Ã), and thus their Hilbert series coincide. (Here, ≺ is any order with y₃ ≺ y₁.)
- Observation: $y_1^3 y_2^2 y_3 = y_1 \cdot (y_1^3 y_2^2 + y_1^2 y_2^2 y_3) (y_1^2 y_2)^2$.
- Hence, $\tilde{A} = \mathbb{k}[y_1, y_1^2 y_2, y_1^3 y_2^2 + y_1^2 y_2^2 y_3]$. The generators are algebracially independent, hence this is a polynomial ring and the LH theorem follows (for n = 3).

Example n = 3, continued

Hilbert basis of $\textbf{L}_3 {:} \quad (1,0,0), (2,1,0), (3,2,0), (3,2,1) \in \mathbb{Z}^3$

- Let $S_3 := k[y_1, y_2, y_3]$ with grading deg $y_1 := \deg y_3 := (1, 0)$ and deg $y_2 := (0, 1)$.
- Ehrhart ring: $A := \mathbb{k}[y_1, y_1^2 y_2, y_1^3 y_2^2, y_1^3 y_2^2 y_3] \subset S_3.$
- Instead, we consider $\tilde{A} := \Bbbk[y_1, y_1^2 y_2, y_1^3 y_2^2 + y_1^2 y_2^2 y_3, y_1^3 y_2^2 y_3] \subset S_3.$
- Fact: $A = \ln_{\prec}(\tilde{A})$, and thus their Hilbert series coincide. (Here, \prec is any order with $y_3 \prec y_1$.)
- Observation: $y_1^3 y_2^2 y_3 = y_1 \cdot (y_1^3 y_2^2 + y_1^2 y_2^2 y_3) (y_1^2 y_2)^2$.
- Hence, A

 = k[y₁, y₁²y₂, y₁³y₂² + y₁²y₂²y₃]. The generators are
 algebracially independent, hence this is a polynomial ring and the LH
 theorem follows (for n = 3).

Example n = 3, continued

Hilbert basis of $\textbf{L}_3 {:} \quad (1,0,0), (2,1,0), (3,2,0), (3,2,1) \in \mathbb{Z}^3$

- Let $S_3 := k[y_1, y_2, y_3]$ with grading deg $y_1 := \deg y_3 := (1, 0)$ and deg $y_2 := (0, 1)$.
- Ehrhart ring: $A := \mathbb{k}[y_1, y_1^2 y_2, y_1^3 y_2^2, y_1^3 y_2^2 y_3] \subset S_3.$
- Instead, we consider $\tilde{A} := \Bbbk[y_1, y_1^2 y_2, y_1^3 y_2^2 + y_1^2 y_2^2 y_3, y_1^3 y_2^2 y_3] \subset S_3.$
- Fact: $A = \ln_{\prec}(\tilde{A})$, and thus their Hilbert series coincide. (Here, \prec is any order with $y_3 \prec y_1$.)
- Observation: $y_1^3 y_2^2 y_3 = y_1 \cdot (y_1^3 y_2^2 + y_1^2 y_2^2 y_3) (y_1^2 y_2)^2$.
- Hence, $A = \mathbb{k}[y_1, y_1^2y_2, y_1^3y_2^2 + y_1^2y_2^2y_3]$. The generators are algebracially independent, hence this is a polynomial ring and the LH theorem follows (for n = 3).

Example n = 3, continued

Hilbert basis of $\textbf{L}_3 {:} \quad (1,0,0), (2,1,0), (3,2,0), (3,2,1) \in \mathbb{Z}^3$

- Let $S_3 := k[y_1, y_2, y_3]$ with grading deg $y_1 := \deg y_3 := (1, 0)$ and deg $y_2 := (0, 1)$.
- Ehrhart ring: $A := \mathbb{k}[y_1, y_1^2 y_2, y_1^3 y_2^2, y_1^3 y_2^2 y_3] \subset S_3.$
- Instead, we consider $\tilde{A} := \Bbbk[y_1, y_1^2 y_2, y_1^3 y_2^2 + y_1^2 y_2^2 y_3, y_1^3 y_2^2 y_3] \subset S_3.$
- Fact: $A = \ln_{\prec}(\tilde{A})$, and thus their Hilbert series coincide. (Here, \prec is any order with $y_3 \prec y_1$.)
- Observation: $y_1^3 y_2^2 y_3 = y_1 \cdot (y_1^3 y_2^2 + y_1^2 y_2^2 y_3) (y_1^2 y_2)^2$.
- Hence, $\tilde{A} = \mathbb{k}[y_1, y_1^2 y_2, y_1^3 y_2^2 + y_1^2 y_2^2 y_3]$. The generators are algebracially independent, hence this is a polynomial ring and the LH theorem follows (for n = 3).

Example n = 3, continued

Hilbert basis of $\textbf{L}_3 {:} \quad (1,0,0), (2,1,0), (3,2,0), (3,2,1) \in \mathbb{Z}^3$

- Let $S_3 := k[y_1, y_2, y_3]$ with grading deg $y_1 := \deg y_3 := (1, 0)$ and deg $y_2 := (0, 1)$.
- Ehrhart ring: $A := \mathbb{k}[y_1, y_1^2 y_2, y_1^3 y_2^2, y_1^3 y_2^2 y_3] \subset S_3.$
- Instead, we consider $\tilde{A} := \Bbbk[y_1, y_1^2 y_2, y_1^3 y_2^2 + y_1^2 y_2^2 y_3, y_1^3 y_2^2 y_3] \subset S_3.$
- Fact: $A = \ln_{\prec}(\tilde{A})$, and thus their Hilbert series coincide. (Here, \prec is any order with $y_3 \prec y_1$.)
- Observation: $y_1^3 y_2^2 y_3 = y_1 \cdot (y_1^3 y_2^2 + y_1^2 y_2^2 y_3) (y_1^2 y_2)^2$.
- Hence, $\tilde{A} = \mathbb{k}[y_1, y_1^2 y_2, y_1^3 y_2^2 + y_1^2 y_2^2 y_3]$. The generators are algebracially independent, hence this is a polynomial ring and the LH theorem follows (for n = 3).

Let $S_n := \Bbbk[y_1, y_2, \dots, y_n]$. We consider the following \mathbb{Z}^2 -grading on S_n :

$$\deg y_i := \begin{cases} (0,1) & \text{if } i \text{ is even,} \\ (1,0) & \text{if } i \text{ is odd.} \end{cases}$$

For a sequence of polynomials $\mathbf{P} := P_1, P_2, \ldots$ in S_n we define an infinite matrix $M(\mathbf{P})$ by setting

$$M(\mathbf{P})_{i,j} := egin{cases} -P_{j-i+1} & ext{if } j \geq i \\ 0 & ext{otherwise.} \end{cases}$$

Explicitly, $M(\mathbf{P})$ looks as follows:

$$M(\mathbf{P}) = \begin{pmatrix} -P_1 & -P_2 & -P_3 & -P_4 & \dots \\ 0 & -P_1 & -P_2 & -P_3 & \dots \\ 0 & 0 & -P_1 & -P_2 & \dots \\ 0 & 0 & 0 & -P_1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

(This is a Toeplitz matrix.)

$$M(\mathbf{P})_{i,j} := egin{cases} -P_{j-i+1} & ext{if } j \geq i \ 0 & ext{otherwise.} \end{cases}$$

Notation:

For A, B ⊂ N let Δ^A_B(M(P)) be the submatrix using rows in A and columns in B.

• For $i \in \mathbb{N}$ let

$$\mathcal{E}_i(\mathbf{P}) := -\det \Delta_{\{\lfloor i/2 \rfloor, \dots, i\}}^{\{1, \dots, \lceil i/2 \rceil\}}(M(\mathbf{P})).$$

In other words: $\mathcal{E}_i(\mathbf{P})$ is defined using the maximal top-aligned square submatrix of $M(\mathbf{P})$, whose top right corner is $-P_i$ and which does not contain any of the zeros of $M(\mathbf{P})$.

$$M(\mathbf{P})_{i,j} := egin{cases} -P_{j-i+1} & ext{if } j \geq i \\ 0 & ext{otherwise.} \end{cases}$$

Notation:

- For A, B ⊂ N let Δ^A_B(M(P)) be the submatrix using rows in A and columns in B.
- For $i \in \mathbb{N}$ let

$$\mathcal{E}_i(\mathbf{P}) := -\det \Delta_{\{\lfloor i/2 \rfloor, \dots, i\}}^{\{1, \dots, \lceil i/2 \rceil\}}(M(\mathbf{P})).$$

In other words: $\mathcal{E}_i(\mathbf{P})$ is defined using the maximal top-aligned square submatrix of $M(\mathbf{P})$, whose top right corner is $-P_i$ and which does not contain any of the zeros of $M(\mathbf{P})$.

$$\begin{split} \mathcal{M}(\mathbf{P})_{i,j} &:= \begin{cases} -P_{j-i+1} & \text{if } j \geq i \\ 0 & \text{otherwise.} \end{cases} \\ \mathcal{E}_i(\mathbf{P}) &:= -\det \Delta_{\{\lfloor i/2 \rfloor, \dots, i\}}^{\{1, \dots, \lceil i/2 \rceil\}}(\mathcal{M}(\mathbf{P})). \end{split}$$

Definition

The Lecture Hall polynomials are those Laurent polynomials $\ell_1, \ell_2, \ldots, \ell_n \in Quot(S_n)$, such that

$$\mathcal{E}_i(\ell_1,\ell_2,\dots)=y_1^iy_2^{i-1}\cdots y_{i-1}^2y_i$$

for all $i \geq 1$.

These equations can be used to iteratively compute the ℓ_i . In particular, the ℓ_i are well-defined.

$$\begin{split} \mathcal{M}(\mathbf{P})_{i,j} &:= \begin{cases} -P_{j-i+1} & \text{if } j \geq i \\ 0 & \text{otherwise.} \end{cases} \\ \mathcal{E}_i(\mathbf{P}) &:= -\det \Delta_{\{\lfloor i/2 \rfloor, \dots, i\}}^{\{1, \dots, \lceil i/2 \rceil\}}(\mathcal{M}(\mathbf{P})). \end{split}$$

Definition

The Lecture Hall polynomials are those Laurent polynomials $\ell_1, \ell_2, \ldots, \ell_n \in Quot(S_n)$, such that

$$\mathcal{E}_i(\ell_1,\ell_2,\dots)=y_1^iy_2^{i-1}\cdots y_{i-1}^2y_i$$

for all $i \geq 1$.

These equations can be used to iteratively compute the ℓ_i . In particular, the ℓ_i are well-defined.

$$\begin{split} \mathcal{M}(\mathbf{P})_{i,j} &:= \begin{cases} -P_{j-i+1} & \text{if } j \geq i \\ 0 & \text{otherwise.} \end{cases} \\ \mathcal{E}_i(\mathbf{P}) &:= -\det \Delta_{\{\lfloor i/2 \rfloor, \dots, i \}}^{\{1, \dots, \lceil i/2 \rceil\}}(\mathcal{M}(\mathbf{P})). \end{split}$$

Definition

The Lecture Hall polynomials are those Laurent polynomials $\ell_1, \ell_2, \ldots, \ell_n \in Quot(S_n)$, such that

$$\mathcal{E}_i(\ell_1,\ell_2,\dots)=y_1^iy_2^{i-1}\cdots y_{i-1}^2y_i$$

for all $i \geq 1$.

These equations can be used to iteratively compute the ℓ_i . In particular, the ℓ_i are well-defined.

$$\mathcal{E}_i(\ell_1,\ell_2,\dots)=y_1^iy_2^{i-1}\cdots y_{i-1}^2y_i$$

$$\mathcal{E}_i(\ell_1,\ell_2,\dots)=y_1^iy_2^{i-1}\cdots y_{i-1}^2y_i$$

$$y_{1} = \mathcal{E}_{1}(\mathbf{P}_{LH}) = -\det(-\ell_{1}) = \ell_{1} \implies \ell_{1} = y_{1}$$

$$y_{1}^{2}y_{2} = \mathcal{E}_{2}(\mathbf{P}_{LH}) = -\det(-\ell_{2}) = \ell_{2} \implies \ell_{2} = y_{1}^{2}y_{2}^{2}$$

$$y_{1}^{3}y_{2}^{2}y_{3} = \mathcal{E}_{3}(\mathbf{P}_{LH}) = -\det\left(-\ell_{2} - \ell_{3} - \ell_{2}\right) = \ell_{1}\ell_{3} - \ell_{2}^{2}$$

$$\implies \ell_{3} = y_{1}^{3}y_{2}^{2} + y_{1}^{2}y_{2}^{2}y_{3} = y_{1}^{2}y_{2}^{2}(y_{1} + y_{3})$$

$$y_{1}^{4}y_{3}^{3}y_{2}^{2}y_{1} = \mathcal{E}_{4}(\mathbf{P}_{LH}) = -\det\left(-\ell_{3} - \ell_{4} - \ell_{3}\right) = \ell_{2}\ell_{4} - \ell_{3}^{2}$$

$$\implies \ell_{4} = y_{1}^{2}y_{2}^{3}(y_{1} + y_{3})^{2} + y_{4}^{2}y_{3}^{2}y_{2}^{2}y_{1}$$

$$\mathcal{E}_i(\ell_1,\ell_2,\dots)=y_1^iy_2^{i-1}\cdots y_{i-1}^2y_i$$

$$y_{1} = \mathcal{E}_{1}(\mathbf{P}_{LH}) = -\det(-\ell_{1}) = \ell_{1} \qquad \implies \ell_{1} = y_{1}$$

$$y_{1}^{2}y_{2} = \mathcal{E}_{2}(\mathbf{P}_{LH}) = -\det(-\ell_{2}) = \ell_{2} \qquad \implies \ell_{2} = y_{1}^{2}y_{2}$$

$$y_{1}^{3}y_{2}^{2}y_{3} = \mathcal{E}_{3}(\mathbf{P}_{LH}) = -\det\left(-\ell_{2} - \ell_{3}\right) = \ell_{1}\ell_{3} - \ell_{2}^{2}$$

$$\implies \ell_{3} = y_{1}^{3}y_{2}^{2} + y_{1}^{2}y_{2}^{2}y_{3} = y_{1}^{2}y_{2}^{2}(y_{1} + y_{3})$$

$$(y_{3}^{3}y_{2}^{2}y_{1} = \mathcal{E}_{4}(\mathbf{P}_{LH}) = -\det\left(-\ell_{3} - \ell_{4}\right) = \ell_{2}\ell_{4} - \ell_{3}^{2}$$

$$\implies \ell_{4} = y_{1}^{2}y_{2}^{3}(y_{1} + y_{3})^{2} + y_{4}^{2}y_{3}^{2}y_{2}^{2}y_{1}$$

$$\mathcal{E}_i(\ell_1,\ell_2,\dots)=y_1^iy_2^{i-1}\cdots y_{i-1}^2y_i$$

$$y_{1} = \mathcal{E}_{1}(\mathbf{P}_{LH}) = -\det(-\ell_{1}) = \ell_{1} \implies \ell_{1} = y_{1}$$

$$y_{1}^{2}y_{2} = \mathcal{E}_{2}(\mathbf{P}_{LH}) = -\det(-\ell_{2}) = \ell_{2} \implies \ell_{2} = y_{1}^{2}y_{2}$$

$$y_{1}^{3}y_{2}^{2}y_{3} = \mathcal{E}_{3}(\mathbf{P}_{LH}) = -\det\begin{pmatrix}-\ell_{2} & -\ell_{3}\\ -\ell_{1} & -\ell_{2}\end{pmatrix} = \ell_{1}\ell_{3} - \ell_{2}^{2}$$

$$\implies \ell_{3} = y_{1}^{3}y_{2}^{2} + y_{1}^{2}y_{2}^{2}y_{3} = y_{1}^{2}y_{2}^{2}(y_{1} + y_{3})$$

$$(y_{3}^{3}y_{2}^{2}y_{1} = \mathcal{E}_{4}(\mathbf{P}_{LH}) = -\det\begin{pmatrix}-\ell_{3} & -\ell_{4}\\ -\ell_{2} & -\ell_{3}\end{pmatrix} = \ell_{2}\ell_{4} - \ell_{3}^{2}$$

$$\implies \ell_{4} = y_{4}^{2}y_{3}^{3}(y_{1} + y_{2})^{2} + y_{4}^{2}y_{2}^{2}y_{3}^{2} = \ell_{2}\ell_{4} - \ell_{3}^{2}$$

$$\mathcal{E}_i(\ell_1,\ell_2,\dots)=y_1^iy_2^{i-1}\cdots y_{i-1}^2y_i$$

$$y_{1} = \mathcal{E}_{1}(\mathbf{P}_{LH}) = -\det(-\ell_{1}) = \ell_{1} \implies \ell_{1} = y_{1}$$

$$y_{1}^{2}y_{2} = \mathcal{E}_{2}(\mathbf{P}_{LH}) = -\det(-\ell_{2}) = \ell_{2} \implies \ell_{2} = y_{1}^{2}y_{2}$$

$$y_{1}^{3}y_{2}^{2}y_{3} = \mathcal{E}_{3}(\mathbf{P}_{LH}) = -\det\left(\begin{pmatrix}-\ell_{2} & -\ell_{3} \\ -\ell_{1} & -\ell_{2}\end{pmatrix}\right) = \ell_{1}\ell_{3} - \ell_{2}^{2}$$

$$\implies \ell_{3} = y_{1}^{3}y_{2}^{2} + y_{1}^{2}y_{2}^{2}y_{3} = y_{1}^{2}y_{2}^{2}(y_{1} + y_{3})$$

$$y_{1}^{4}y_{3}^{3}y_{2}^{2}y_{1} = \mathcal{E}_{4}(\mathbf{P}_{LH}) = -\det\left(\begin{pmatrix}-\ell_{3} & -\ell_{4} \\ -\ell_{2} & -\ell_{3}\end{pmatrix}\right) = \ell_{2}\ell_{4} - \ell_{3}^{2}$$

$$\implies \ell_{4} = y_{1}^{2}y_{2}^{3}(y_{1} + y_{3})^{2} + y_{4}^{2}y_{3}^{2}y_{2}^{2}y_{1}$$

ture nall cone

The Lecture Hall Polynomials

Easy observations:

- Each ℓ_i is a Laurent polynomial, has coefficients in Z, and is homogeneous of degree (i, i − 1).
- For each i ≥ 0, the i-th Lecture Hall polynomial l_i depends only on the variables y₁,..., y_i, and it is non-constant as a function of y_i.

Conjecture

Each Lecture Hall polynomial l_i is in fact a polynomial.

Easy observations:

- Each ℓ_i is a Laurent polynomial, has coefficients in Z, and is homogeneous of degree (i, i − 1).
- For each i ≥ 0, the i-th Lecture Hall polynomial l_i depends only on the variables y₁,..., y_i, and it is non-constant as a function of y_i.

Conjecture

Each Lecture Hall polynomial ℓ_i is in fact a polynomial.

Easy observations:

- Each ℓ_i is a Laurent polynomial, has coefficients in Z, and is homogeneous of degree (i, i − 1).
- For each i ≥ 0, the i-th Lecture Hall polynomial l_i depends only on the variables y₁,..., y_i, and it is non-constant as a function of y_i.

Conjecture

Each Lecture Hall polynomial ℓ_i is in fact a polynomial.

Easy observations:

- Each ℓ_i is a Laurent polynomial, has coefficients in Z, and is homogeneous of degree (i, i − 1).
- For each i ≥ 0, the i-th Lecture Hall polynomial l_i depends only on the variables y₁,..., y_i, and it is non-constant as a function of y_i.

Conjecture

Each Lecture Hall polynomial ℓ_i is in fact a polynomial.

Each ℓ_i depends on y_i , but not on y_j , j > i. This implies that ℓ_i are algebraically independent, and thus we get:

Corollary

The algebra $A_n := \mathbb{Q}[\ell_1, \dots, \ell_n] \subset \text{Quot}(S_n)$ is isomorphic to a \mathbb{Z}^2 -graded polynomial ring. Its Hilbert series equals

$$\prod_{i=1}^n \frac{1}{1 - q_1^i q_2^{i-1}}$$

This is the right-hand side of the LH theorem.

 $\ln_{\prec}(A_n)$ is supposed to be the Ehrhart ring. But the latter has 2^{n-1} generators, while A_n has only n. So the ℓ_n cannot be a SAGBI basis, and thus we need extra generators.

Each ℓ_i depends on y_i , but not on y_j , j > i. This implies that ℓ_i are algebraically independent, and thus we get:

Corollary

The algebra $A_n := \mathbb{Q}[\ell_1, \dots, \ell_n] \subset \text{Quot}(S_n)$ is isomorphic to a \mathbb{Z}^2 -graded polynomial ring. Its Hilbert series equals

$$\prod_{i=1}^n \frac{1}{1 - q_1^i q_2^{i-1}}$$

This is the right-hand side of the LH theorem.

 $\ln_{\prec}(A_n)$ is supposed to be the Ehrhart ring. But the latter has 2^{n-1} generators, while A_n has only n. So the ℓ_n cannot be a SAGBI basis, and thus we need extra generators.

A candidate for the SAGBI basis

Definition

For a finite set $S \subseteq \mathbb{N}, S \neq \emptyset$ let

$$\ell_{\mathcal{S}} := -\det \Delta^{[\#\mathcal{S}]}_{\mathcal{S}+1}(M(\mathbf{P}_{\mathrm{LH}})),$$

where $S + 1 := \{ s + 1 \mid s \in S \}$. In other words, ℓ_S is the negative of the minor of $M(\mathbf{P}_{LH})$ using #S many top rows and the columns in S + 1. In addition, we set $\ell_{\emptyset} := \ell_1$.

Note that $\ell_i = \ell_{\{i-1\}}$ for $i \in \mathbb{N}$, and that $\ell_{\{\lfloor i/2 \rfloor, ..., i-1\}} = \mathcal{E}_i(\mathbf{P}_{LH}) = y_1^i y_2^{i-1} \cdots y_{i-1}^2 y_i$.

A candidate for the SAGBI basis

Definition

For a finite set $S \subseteq \mathbb{N}, S \neq \emptyset$ let

$$\ell_{\mathcal{S}} := -\det \Delta^{[\#\mathcal{S}]}_{\mathcal{S}+1}(M(\mathbf{P}_{\mathrm{LH}})),$$

where $S + 1 := \{ s + 1 \mid s \in S \}$. In other words, ℓ_S is the negative of the minor of $M(\mathbf{P}_{LH})$ using #S many top rows and the columns in S + 1. In addition, we set $\ell_{\emptyset} := \ell_1$.

Note that $\ell_i = \ell_{\{i-1\}}$ for $i \in \mathbb{N}$, and that $\ell_{\{\lfloor i/2 \rfloor, \dots, i-1\}} = \mathcal{E}_i(\mathbf{P}_{LH}) = y_1^i y_2^{i-1} \cdots y_{i-1}^2 y_i.$

Our main conjecture

Let \prec be the degree-lexicographic term order on $S_n := \mathbb{Q}[y_1, \ldots, y_n]$ with $y_1 \succ y_2 \succ \ldots \succ y_n$, and let $A_n = \mathbb{Q}[\ell_1, \ldots, \ell_n]$.

Conjecture

- all a sun assistant starges (all fair) equals the Ebrian rule of La
 - Provide and the process of a subscription of { [1, 2, 2, 1] } [2, 2, 1] } [2, 2, 1] }
 - This implies the LH theorem.
 - Also, it implies that $\{ \ell_S \mid S \subseteq [n-1] \}$ is a SAGBI basis for A_n
 - I verified the conjecture for $n \leq 12$.
 - Note: For n ≤ 12, the leading term of every ℓ_S has coefficient 1. This is the reason for our choice of signs.

Our main conjecture

Let \prec be the degree-lexicographic term order on $S_n := \mathbb{Q}[y_1, \ldots, y_n]$ with $y_1 \succ y_2 \succ \ldots \succ y_n$, and let $A_n = \mathbb{Q}[\ell_1, \ldots, \ell_n]$.

Conjecture

- **1** The initial subalgebra $In_{\prec}(A_n)$ equals the Ehrhart ring of L_n .
- 2 The set of exponent vectors of { In_≺(l_S) | S ⊆ [n − 1] } is the Hilbert basis of L_n.
- This implies the LH theorem.
- Also, it implies that $\{ \ell_S \mid S \subseteq [n-1] \}$ is a SAGBI basis for A_n
- I verified the conjecture for $n \leq 12$.
- Note: For n ≤ 12, the leading term of every ℓ_S has coefficient 1. This is the reason for our choice of signs.

Our main conjecture

Let \prec be the degree-lexicographic term order on $S_n := \mathbb{Q}[y_1, \ldots, y_n]$ with $y_1 \succ y_2 \succ \ldots \succ y_n$, and let $A_n = \mathbb{Q}[\ell_1, \ldots, \ell_n]$.

Conjecture

- **1** The initial subalgebra $In_{\prec}(A_n)$ equals the Ehrhart ring of L_n .
- 2 The set of exponent vectors of { ln_≺(ℓ_S) | S ⊆ [n − 1] } is the Hilbert basis of L_n.
- This implies the LH theorem.
- Also, it implies that $\{ \ell_S \mid S \subseteq [n-1] \}$ is a SAGBI basis for A_n
- I verified the conjecture for n ≤ 12.
- Note: For n ≤ 12, the leading term of every ℓ_S has coefficient 1. This is the reason for our choice of signs.

Our main conjecture

Let \prec be the degree-lexicographic term order on $S_n := \mathbb{Q}[y_1, \ldots, y_n]$ with $y_1 \succ y_2 \succ \ldots \succ y_n$, and let $A_n = \mathbb{Q}[\ell_1, \ldots, \ell_n]$.

Conjecture

- **1** The initial subalgebra $\ln_{\prec}(A_n)$ equals the Ehrhart ring of \mathbf{L}_n .
- 2 The set of exponent vectors of { ln_≺(ℓ_S) | S ⊆ [n − 1] } is the Hilbert basis of L_n.
- This implies the LH theorem.
- Also, it implies that $\{ \ell_S \mid S \subseteq [n-1] \}$ is a SAGBI basis for A_n
- I verified the conjecture for n ≤ 12.
- Note: For n ≤ 12, the leading term of every ℓ_S has coefficient 1. This is the reason for our choice of signs.

Our main conjecture

Let \prec be the degree-lexicographic term order on $S_n := \mathbb{Q}[y_1, \ldots, y_n]$ with $y_1 \succ y_2 \succ \ldots \succ y_n$, and let $A_n = \mathbb{Q}[\ell_1, \ldots, \ell_n]$.

Conjecture

- **1** The initial subalgebra $In_{\prec}(A_n)$ equals the Ehrhart ring of L_n .
- 2 The set of exponent vectors of { ln_≺(ℓ_S) | S ⊆ [n − 1] } is the Hilbert basis of L_n.
- This implies the LH theorem.
- Also, it implies that $\{ \ell_S \mid S \subseteq [n-1] \}$ is a SAGBI basis for A_n
- I verified the conjecture for $n \leq 12$.
- Note: For n ≤ 12, the leading term of every ℓ_S has coefficient 1. This is the reason for our choice of signs.

Our main conjecture

Let \prec be the degree-lexicographic term order on $S_n := \mathbb{Q}[y_1, \ldots, y_n]$ with $y_1 \succ y_2 \succ \ldots \succ y_n$, and let $A_n = \mathbb{Q}[\ell_1, \ldots, \ell_n]$.

Conjecture

- **1** The initial subalgebra $\ln_{\prec}(A_n)$ equals the Ehrhart ring of \mathbf{L}_n .
- 2 The set of exponent vectors of { ln_≺(ℓ_S) | S ⊆ [n − 1] } is the Hilbert basis of L_n.
- This implies the LH theorem.
- Also, it implies that $\{ \ell_S \mid S \subseteq [n-1] \}$ is a SAGBI basis for A_n
- I verified the conjecture for $n \leq 12$.
- Note: For n ≤ 12, the leading term of every ℓ_S has coefficient 1. This is the reason for our choice of signs.

The end. Thank you