Levelness of Order Polytopes joint with Christian Haase and Akiyoshi Tsuchiya, see [HKT].

< □ > < @ > < 注 > < 注 > ... 注

Freie Universität Berlin \Rightarrow Aalto University

3rd of August, 2018

1 A Short Intro to Level Polytopes

2 A Short Intro to Order Polytopes

3 Main Results

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Aalto University

Levelness of Order Polytopes

Main Results

Outline

2 A Short Intro to Order Polytopes

3 Main Results

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Levelness of Order Polytopes

F. Kohl

Aalto University

• Let *P* be a lattice *d*-polytope.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへの

Aalto University

Levelness of Order Polytopes

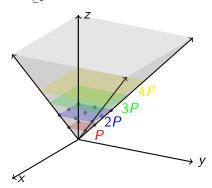
- Let *P* be a lattice *d*-polytope.
- We define the *cone over* P as $\operatorname{cone}(P) := \operatorname{span}_{\mathbb{R}_{>0}}\{(\mathbf{v}, 1) : \mathbf{v} \in V(P)\} \subset \mathbb{R}^d \times \mathbb{R}.$

イロト イヨト イヨト

Levelness of Order Polytopes

Main Results

- Let *P* be a lattice *d*-polytope.
- We define the cone over P as $\operatorname{cone}(P) := \operatorname{span}_{\mathbb{R}_{>0}}\{(\mathbf{v}, 1) : \mathbf{v} \in V(P)\} \subset \mathbb{R}^d \times \mathbb{R}.$



Aalto Universitv

Image: Image:

F. Kohl Levelness of Order Polytopes

- Let *P* be a lattice *d*-polytope.
- We define the *cone over* P as $\operatorname{cone}(P) := \operatorname{span}_{\mathbb{R}_{>0}}\{(\mathbf{v}, 1) : \mathbf{v} \in V(P)\} \subset \mathbb{R}^d \times \mathbb{R}.$

• We set
$$C_{\mathbb{Z}}(P) := \operatorname{cone}(P) \cap \mathbb{Z}^{d+1}$$
.

This gives rise to the semigroup algebra

$$\Bbbk[P] := \Bbbk[\mathsf{C}_{\mathbb{Z}}(P)] := \Bbbk[\boldsymbol{x}^{\boldsymbol{p}} \cdot y^m : (\boldsymbol{p}, m) \in \mathsf{C}_{\mathbb{Z}}(P)].$$

Image: A math a math

Main Results

• The Ehrhart series of P equals the Hilbert series of $\mathbb{k}[P]$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Aalto University

Levelness of Order Polytopes

If
$$\operatorname{Ehr}_P(z) = \frac{h^*(z)}{(1-z)^{d+1}}$$
, then we define *degree of* P as deg $P = \operatorname{deg} h^*(z)$.

Aalto University

・ロト ・日下・ ・ ヨト・

F. Kohl Levelness of Order Polytopes

If
$$\operatorname{Ehr}_P(z) = \frac{h^*(z)}{(1-z)^{d+1}}$$
, then we define *degree of* P as deg $P = \operatorname{deg} h^*(z)$.

Example

If
$$P = [0, 1]^2$$
, then deg $P = deg(1 + z) = 1$.

Aalto University

イロト イロト イヨト イヨ

Levelness of Order Polytopes

If
$$\operatorname{Ehr}_P(z) = \frac{h^*(z)}{(1-z)^{d+1}}$$
, then we define *degree of* P as deg $P = \operatorname{deg} h^*(z)$.

Example

If
$$P = [0, 1]^2$$
, then deg $P = deg(1 + z) = 1$.

• The codegree of P is defined as $\operatorname{codeg} P = d + 1 - \deg P$.

イロト イヨト イヨト イヨ

If
$$\operatorname{Ehr}_P(z) = \frac{h^*(z)}{(1-z)^{d+1}}$$
, then we define *degree of* P as deg $P = \operatorname{deg} h^*(z)$.

Example

If $P = [0, 1]^2$, then deg P = deg(1 + z) = 1. P has codegree 2 = 3 - 1.

• The codegree of P is defined as $\operatorname{codeg} P = d + 1 - \deg P$.

イロト イヨト イヨト イヨ

If
$$\operatorname{Ehr}_P(z) = \frac{h^*(z)}{(1-z)^{d+1}}$$
, then we define *degree of* P as deg $P = \operatorname{deg} h^*(z)$.

Example

If $P = [0, 1]^2$, then deg P = deg(1 + z) = 1. P has codegree 2 = 3 - 1.

- The codegree of P is defined as $\operatorname{codeg} P = d + 1 \deg P$.
- codeg P is the smallest dilation factor k such that kP has an interior lattice point.

F. Kohl

<ロト <問 > < 注 > < 注 >

If
$$\operatorname{Ehr}_P(z) = \frac{h^*(z)}{(1-z)^{d+1}}$$
, then we define *degree of* P as deg $P = \deg h^*(z)$.

Example

If $P = [0, 1]^2$, then deg P = deg(1 + z) = 1. P has codegree 2 = 3 - 1. $[0, 1]^2$ has no interior lattice points, but $[0, 2]^2$ has one.

- The codegree of P is defined as $\operatorname{codeg} P = d + 1 \operatorname{deg} P$.
- codeg P is the smallest dilation factor k such that kP has an interior lattice point.

F. Kohl

メロト メロト メヨト メヨ

■ Let's look at the structure of the semigroup generated by the interior lattice points of C_Z(P)!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Aalto University

F. Kohl Levelness of Order Polytopes

Image: A math a math

Aalto University

- Let's look at the structure of the semigroup generated by the interior lattice points of C_Z(P)!
- Let k[P°] = k[C_ℤ(P°)] be the ideal generated by the monomials corresponding to the interior lattice points of P.

- Let's look at the structure of the semigroup generated by the interior lattice points of C_Z(P)!
- Let k[P°] = k[C_ℤ(P°)] be the ideal generated by the monomials corresponding to the interior lattice points of P.
- This is called the *canonical module of* k[P].

< □ > < 同 > < Ξ > <</p>

- Let's look at the structure of the semigroup generated by the interior lattice points of C_Z(P)!
- Let k[P°] = k[C_ℤ(P°)] be the ideal generated by the monomials corresponding to the interior lattice points of P.
- This is called the *canonical module of* k[P].

Definition

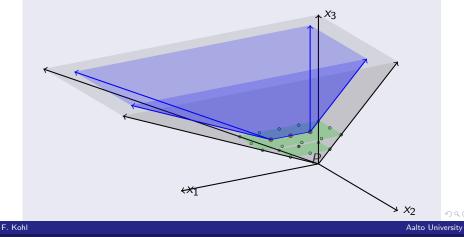
We say that *P* is *level* if the $\Bbbk[P]$ -module $k[P^\circ]$ is generated by elements of the same degree. We say that *P* is *Gorenstein* if, moreover, there is a unique generator of minimal degree.

< □ > < 同 > < 回 > < Ξ > < Ξ

Main Results

Example

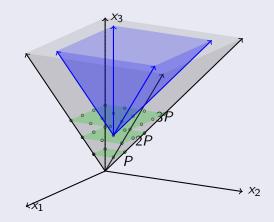
Let $P = [0,2] \times [0,1]$. P is level and $\Bbbk[P^\circ]$ is generated by (1,1,2), (2,1,2), and (3,1,2).



Levelness of Order Polytopes

Example

Let $P = [0, 1]^2$. P is Gorenstein with minimal generator of $\Bbbk[P^\circ]$ given by (1, 1, 2).



Aalto University

F. Kohl

Levelness of Order Polytopes

Main Results

Outline

1 A Short Intro to Level Polytopes

2 A Short Intro to Order Polytopes

3 Main Results

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Aalto University

Levelness of Order Polytopes

Main Results

A partially ordered set — or poset for short — (Π, ≤_Π) is a set Π together with a relation ≤_Π that is reflexive, transitive, and antisymmetric.

Aalto University

Levelness of Order Polytopes

- A partially ordered set or poset for short (Π, ≤_Π) is a set Π together with a relation ≤_Π that is reflexive, transitive, and antisymmetric.
- It's convenient to illustrate the poset using a *Hasse diagram*.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへの

Aalto University

Levelness of Order Polytopes

- A partially ordered set or poset for short (Π, ≤_Π) is a set Π together with a relation ≤_Π that is reflexive, transitive, and antisymmetric.
- It's convenient to illustrate the poset using a *Hasse diagram*.

Example

Let $(\Pi, \leq) = (2^{\{1,2,3\}}, \subset)$. Then the Hasse diagram is given by

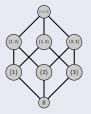


Figure: The Hasse diagram of $(2^{\{1,2,3\}}, \subset)$.

Aalto University

F. Kohl Levelness of Order Polytopes In order to better understand posets, Stanley associated a lattice polytope to each poset.

Aalto University

Levelness of Order Polytopes

In order to better understand posets, Stanley associated a lattice polytope to each poset.

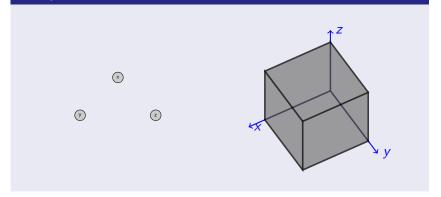
Definition

The order polytope $\mathcal{O}(\Pi)$ of a finite poset Π is the subset of $\mathbb{R}^{\Pi} = \{f : \Pi \to \mathbb{R}\}$ defined by

$$\begin{split} 0 &\leq f(i) \leq 1 & \text{for all } i \in \Pi, \\ f(i) &\leq f(j) & \text{if } i \leq_{\Pi} j. \end{split}$$

< □ > < 同 > < 回 > < Ξ > < Ξ

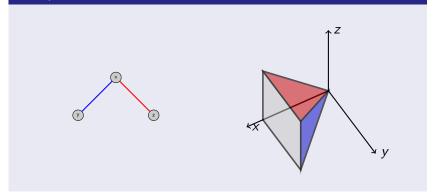
Example



Aalto University

Levelness of Order Polytopes

Example



イロト イヨト イヨト イヨ

Levelness of Order Polytopes

Main Results

Definition

We say that a poset Π is *level* if $\mathcal{O}(\Pi)$ is a level polytope.

<ロト <回ト < 臣ト < 臣ト 三目 の Q

Aalto University

F. Kohl Levelness of Order Polytopes

Main Results

Definition

We say that a poset Π is *level* if $\mathcal{O}(\Pi)$ is a level polytope.

Remark

On height k, $C_{\mathbb{Z}}(P^{\circ}) \cap \mathbb{R}^{d+1}$ is described by

$$1 \le f(i) \le k - 1$$
 for all $i \in \Pi$,
 $f(i) \le f(j) - 1$ if $i < j$.

Aalto University

・ロト ・四ト ・ヨト ・ヨト

F. Kohl Levelness of Order Polytopes

Main Results

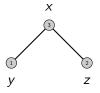
Definition

We say that a poset Π is *level* if $\mathcal{O}(\Pi)$ is a level polytope.

Remark

On height k, $C_{\mathbb{Z}}(P^{\circ}) \cap \mathbb{R}^{d+1}$ is described by

$1 \leq f(i) \leq k-1$	for all $i \in \Pi$,
$f(i) \leq f(j) - 1$	if $i \lessdot j$.



イロト イヨト イヨト イヨ

Levelness of Order Polytopes

Definition

We say that a poset Π is *level* if $\mathcal{O}(\Pi)$ is a level polytope.

Remark

On height k, $C_{\mathbb{Z}}(P^{\circ}) \cap \mathbb{R}^{d+1}$ is described by

$1 \leq f(i) \leq k-1$	for all $i \in \Pi$,
$f(i) \leq f(j) - 1$	if $i \lessdot j$.

Remark

A poset Π is Gorenstein if and only if every maximal chain has the same length, since we then have a unique interior lattice point in $(\operatorname{codeg} P)P$ and this point has distance 1 to all facets.

イロト イヨト イヨト イヨ

Main Results •00000000000000

Outline

2 A Short Intro to Order Polytopes

3 Main Results

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Aalto University

Levelness of Order Polytopes

 We will state a characterization of levelness in terms of weighted digraphs.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Aalto University

Levelness of Order Polytopes

- We will state a characterization of levelness in terms of weighted digraphs.
- We build on work by Miyazaki, see [Miy17].

・ロト・日本・日本・日本・日本・日本

Aalto University

F. Kohl Levelness of Order Polytopes

Main Results

- We will state a characterization of levelness in terms of weighted digraphs.
- We build on work by Miyazaki, see [Miy17].

Definition

Given a poset Π , we define the poset $\overline{\Pi} = (\Pi \cup \{\infty\}, \leq_{\overline{\Pi}})$, where

$$i <_{\overline{\Pi}} j :\iff \begin{cases} j = \infty \text{ and } i \in \Pi, \\ i <_{\overline{\Pi}} j. \end{cases}$$

Similarly, we define $\underline{\Pi} = (\Pi \cup \{-\infty\}, \leq_{\underline{\Pi}})$, where

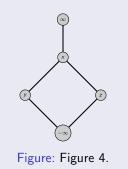
$$i <_{\underline{\Pi}} j :\iff \begin{cases} i = -\infty \text{ and } j \in \Pi, \\ i <_{\Pi} j. \end{cases}$$

Aalto University

Levelness of Order Polytopes

Example

Let again $\Pi = y \triangleleft x > z$. Then $\overline{\Pi}$ is depicted in Figure 4.



F. Kohl Levelness of Order Polytopes

Main Results

• Now we want to turn $\overline{\Pi}$ into a weighted digraph.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

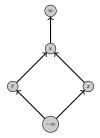
Aalto University

Levelness of Order Polytopes

Main Results

- Now we want to turn $\overline{\Pi}$ into a weighted digraph.
- Every edge in the Hasse diagram of <u>Π</u> is turned into an up edge of weight -1.

- Now we want to turn $\overline{\Pi}$ into a weighted digraph.
- Every edge in the Hasse diagram of <u><u></u> is turned into an up edge of weight -1.</u>



Aalto University

Image: Image:

F. Kohl Levelness of Order Polytopes

- Now we want to turn $\overline{\Pi}$ into a weighted digraph.
- Every edge in the Hasse diagram of <u>Π</u> is turned into an up edge of weight -1.
- Now we can pick a set of edges Π' and add down edges of weight +1. The associated graph is denoted Γ(Π').

Image: A math a math

- Now we want to turn $\overline{\Pi}$ into a weighted digraph.
- Every edge in the Hasse diagram of <u>Π</u> is turned into an up edge of weight -1.
- Now we can pick a set of edges Π' and add down edges of weight +1. The associated graph is denoted Γ(Π').

Example

```
Let \Pi' = \{-\infty \leqslant y, z \leqslant x\}.
```

• Either there is a negative directed cycle in $\Gamma(\Pi')$, or there isn't.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Aalto University

F. Kohl Levelness of Order Polytopes

Aalto University

- Either there is a negative directed cycle in $\Gamma(\Pi')$, or there isn't.
- In the latter case, we want to find the shortest path from $-\infty$ to any node.

イロト イヨト イヨト

Aalto University

- Either there is a negative directed cycle in $\Gamma(\Pi')$, or there isn't.
- In the latter case, we want to find the shortest path from $-\infty$ to any node.

• • • • • • • • • • • •

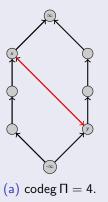
This procedure gives rise to an integer point in C_Z(P[◦]) satisfying f(i) + 1 = f(j) for all i < j ∈ Π'.</p>

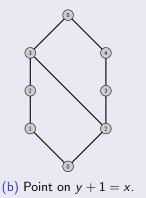
- Either there is a negative directed cycle in $\Gamma(\Pi')$, or there isn't.
- In the latter case, we want to find the shortest path from $-\infty$ to any node.
- This procedure gives rise to an integer point in $C_{\mathbb{Z}}(P^{\circ})$ satisfying f(i) + 1 = f(j) for all $i < j \in \Pi'$.
- Both can be done using the Bellman–Ford algorithm in polynomial time, to be precise, in $O(\#V \cdot \#E)$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Example

Let $\Pi' = \{y \le x\}$. Then $\Gamma(\Pi')$ is illustrated below, along with the integer point returned by the Bellman–Ford algorithm.





Levelness of Order Polytopes

Main Results 0000000000000

Now we are ready to state our main results:

<ロ> <回> <回> < 回> < 回> < 回> < 回> < 回</p>

Aalto University

Levelness of Order Polytopes

Now we are ready to state our main results:

Theorem

A poset Π is level if and only if for all Π' such that $\Gamma(\Pi')$ does not contain a negative cycle, the graph $\Gamma(\Pi' \cup \{\text{longest chains}\})$ contains no negative cycle.

F. Kohl Levelness of Order Polytopes Aalto University

< □ > < 同 > < Ξ > <</p>

Now we are ready to state our main results:

Theorem

A poset Π is level if and only if for all Π' such that $\Gamma(\Pi')$ does not contain a negative cycle, the graph $\Gamma(\Pi' \cup \{\text{longest chains}\})$ contains no negative cycle.

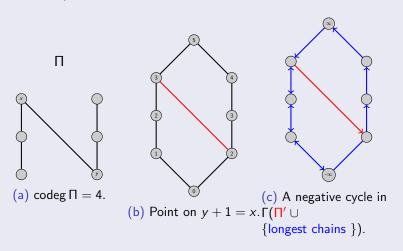
Remark

- If $\Gamma(\Pi')$ does not contain a negative cycle \Leftrightarrow point on face $\bigcap_{i < j \in \Pi'} \{x_i + 1 = x_j\}.$
- No negative cycle in Γ(Π' ∪ {longest chains}) ⇔ there is a point on height codeg O(Π) on the same face.

イロト イヨト イヨト イヨ

Example

A non-level poset.

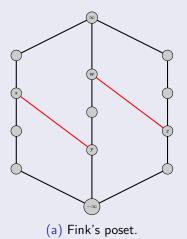


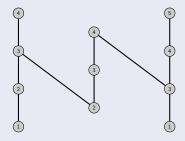
Aalto University

Levelness of Order Polytopes

Example

A non-level poset, where Π' needs to contain at least two edges.





(b) A point on the face $\{y+1=x\} \cap \{z+1=w\}.$

Aalto University

Corollary

Levelness of posets is in co-NP, i.e., there is a short certificate to show non-levelness.

F. Kohl Levelness of Order Polytopes Aalto University

・ロン ・日 ・ ・ ヨン・

Corollary

Levelness of posets is in co-NP, i.e., there is a short certificate to show non-levelness.

Remark

This certificate is given by the edges in Π' .

F. Kohl Levelness of Order Polytopes <ロ>
<日>
<日>
<日>
<日>
<10>
<10>
<10>
<10>
<10>
<10>
<10>
<10</p>
<p

Aalto University

Corollary

Levelness of posets is in co-NP, i.e., there is a short certificate to show non-levelness.

Remark

This certificate is given by the edges in Π' .

Theorem

The ordinal sum $\Pi = \Pi_1 \triangleleft \Pi_2$ of two posets Π_1 , Π_2 is level if and only if both Π_1 and Π_2 are level.

メロト メロト メヨト メヨ

Levelness of Order Polytopes

Theorem

The ordinal sum $\Pi = \Pi_1 \triangleleft \Pi_2$ of two posets Π_1 , Π_2 is level if and only if both Π_1 and Π_2 are level.

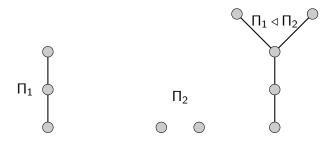


Figure: Ordinal sum of a chain of length 3 and an antichain of length 2.

メロト メロト メヨト メヨ

Theorem

The ordinal sum $\Pi = \Pi_1 \triangleleft \Pi_2$ of two posets Π_1 , Π_2 is level if and only if both Π_1 and Π_2 are level.

Proposition

Let $\Pi := \Pi_1 \triangleleft \Pi_2$. Then $h_{\Pi}^* = h_{\Pi_1}^* h_{\Pi_2}^*$.

Aalto University

F. Kohl Levelness of Order Polytopes

Theorem

The ordinal sum $\Pi = \Pi_1 \triangleleft \Pi_2$ of two posets Π_1 , Π_2 is level if and only if both Π_1 and Π_2 are level.

Proposition

Let
$$\Pi := \Pi_1 \triangleleft \Pi_2$$
. Then $h_{\Pi}^* = h_{\Pi_1}^* h_{\Pi_2}^*$.

Remark

There are posets Π_1 , Π_2 that have the same h^* -polynomial, but where Π_1 is level and Π_2 is not, see [Hib88].

Theorem

The ordinal sum $\Pi = \Pi_1 \triangleleft \Pi_2$ of two posets Π_1 , Π_2 is level if and only if both Π_1 and Π_2 are level.

Proposition

Let
$$\Pi := \Pi_1 \triangleleft \Pi_2$$
. Then $h_{\Pi}^* = h_{\Pi_1}^* h_{\Pi_2}^*$.

Remark

There are posets Π_1 , Π_2 that have the same h^* -polynomial, but where Π_1 is level and Π_2 is not, see [Hib88].

Theorem

Let Π be a poset on d elements and Π_1, \ldots, Π_m the connected components of Π . If each Π_i is level, then Π is level.

F. Kohl

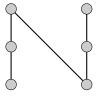
Levelness of Order Polytopes

Aalto University

イロト イヨト イヨト イ

Theorem

Let Π be a poset on d elements and let C_s be the chain with s elements. Then the poset on the set $\Pi \cup C_s$, where elements from Π and C_s are incomparable, is level for all $s \ge d$.



(a) Non-level poset Π.

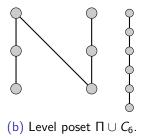


Image: A math a math

Thanks for your attention!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Aalto University

Levelness of Order Polytopes

- Takayuki Hibi, Level rings and algebras with straightening laws, J. Algebra 117 (1988), no. 2, 343–362. MR 957445
- Christian Haase, Florian Kohl, and Akiyoshi Tsuchiya, *Levelness of order polytopes*.
- Mitsuhiro Miyazaki, On the generators of the canonical module of a Hibi ring: a criterion of level property and the degrees of generators, J. Algebra **480** (2017), 215–236. MR 3633306

Image: A math a math