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Let P be a lattice d-polytope.

We define the cone over P as
cone(P) := spanR≥0

{(v , 1) : v ∈ V (P)} ⊂ Rd × R.

We set CZ(P) := cone(P) ∩ Zd+1.

This gives rise to the semigroup algebra

k[P] := k[CZ(P)] := k[xp · ym : (p,m) ∈ CZ(P)].
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We set CZ(P) := cone(P) ∩ Zd+1.
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The Ehrhart series of P equals the Hilbert series of k[P].

If EhrP(z) = h∗(z)
(1−z)d+1 , then we define degree of P as

degP = deg h∗(z).

Example

If P = [0, 1]2, then degP = deg(1 + z) = 1.

P has codegree
2 = 3− 1. [0, 1]2 has no interior lattice points, but [0, 2]2 has one.

The codegree of P is defined as codegP = d + 1− degP.

codegP is the smallest dilation factor k such that kP has an
interior lattice point.

F. Kohl Aalto University

Levelness of Order Polytopes



A Short Intro to Level Polytopes A Short Intro to Order Polytopes Main Results

The Ehrhart series of P equals the Hilbert series of k[P].

If EhrP(z) = h∗(z)
(1−z)d+1 , then we define degree of P as

degP = deg h∗(z).

Example

If P = [0, 1]2, then degP = deg(1 + z) = 1.

P has codegree
2 = 3− 1. [0, 1]2 has no interior lattice points, but [0, 2]2 has one.

The codegree of P is defined as codegP = d + 1− degP.

codegP is the smallest dilation factor k such that kP has an
interior lattice point.

F. Kohl Aalto University

Levelness of Order Polytopes



A Short Intro to Level Polytopes A Short Intro to Order Polytopes Main Results

The Ehrhart series of P equals the Hilbert series of k[P].

If EhrP(z) = h∗(z)
(1−z)d+1 , then we define degree of P as

degP = deg h∗(z).

Example

If P = [0, 1]2, then degP = deg(1 + z) = 1.

P has codegree
2 = 3− 1. [0, 1]2 has no interior lattice points, but [0, 2]2 has one.

The codegree of P is defined as codegP = d + 1− degP.

codegP is the smallest dilation factor k such that kP has an
interior lattice point.

F. Kohl Aalto University

Levelness of Order Polytopes



A Short Intro to Level Polytopes A Short Intro to Order Polytopes Main Results

The Ehrhart series of P equals the Hilbert series of k[P].

If EhrP(z) = h∗(z)
(1−z)d+1 , then we define degree of P as

degP = deg h∗(z).

Example

If P = [0, 1]2, then degP = deg(1 + z) = 1.

P has codegree
2 = 3− 1. [0, 1]2 has no interior lattice points, but [0, 2]2 has one.

The codegree of P is defined as codegP = d + 1− degP.

codegP is the smallest dilation factor k such that kP has an
interior lattice point.

F. Kohl Aalto University

Levelness of Order Polytopes



A Short Intro to Level Polytopes A Short Intro to Order Polytopes Main Results

The Ehrhart series of P equals the Hilbert series of k[P].

If EhrP(z) = h∗(z)
(1−z)d+1 , then we define degree of P as

degP = deg h∗(z).

Example

If P = [0, 1]2, then degP = deg(1 + z) = 1. P has codegree
2 = 3− 1.

[0, 1]2 has no interior lattice points, but [0, 2]2 has one.

The codegree of P is defined as codegP = d + 1− degP.

codegP is the smallest dilation factor k such that kP has an
interior lattice point.

F. Kohl Aalto University

Levelness of Order Polytopes



A Short Intro to Level Polytopes A Short Intro to Order Polytopes Main Results

The Ehrhart series of P equals the Hilbert series of k[P].

If EhrP(z) = h∗(z)
(1−z)d+1 , then we define degree of P as

degP = deg h∗(z).

Example

If P = [0, 1]2, then degP = deg(1 + z) = 1. P has codegree
2 = 3− 1.

[0, 1]2 has no interior lattice points, but [0, 2]2 has one.

The codegree of P is defined as codegP = d + 1− degP.

codegP is the smallest dilation factor k such that kP has an
interior lattice point.

F. Kohl Aalto University

Levelness of Order Polytopes



A Short Intro to Level Polytopes A Short Intro to Order Polytopes Main Results

The Ehrhart series of P equals the Hilbert series of k[P].

If EhrP(z) = h∗(z)
(1−z)d+1 , then we define degree of P as

degP = deg h∗(z).

Example

If P = [0, 1]2, then degP = deg(1 + z) = 1. P has codegree
2 = 3− 1. [0, 1]2 has no interior lattice points, but [0, 2]2 has one.

The codegree of P is defined as codegP = d + 1− degP.

codegP is the smallest dilation factor k such that kP has an
interior lattice point.

F. Kohl Aalto University

Levelness of Order Polytopes



A Short Intro to Level Polytopes A Short Intro to Order Polytopes Main Results

Let’s look at the structure of the semigroup generated by the
interior lattice points of CZ(P)!

Let k[P◦] = k[CZ(P◦)] be the ideal generated by the
monomials corresponding to the interior lattice points of P.

This is called the canonical module of k[P].

Definition

We say that P is level if the k[P]−module k[P◦] is generated by
elements of the same degree. We say that P is Gorenstein if,
moreover, there is a unique generator of minimal degree.
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Example

Let P = [0, 2]× [0, 1]. P is level and k[P◦] is generated by
(1, 1, 2), (2, 1, 2), and (3, 1, 2).
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Example

Let P = [0, 1]2. P is Gorenstein with minimal generator of k[P◦]
given by (1, 1, 2).
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A partially ordered set — or poset for short — (Π,≤Π) is a
set Π together with a relation ≤Π that is reflexive, transitive,
and antisymmetric.

It’s convenient to illustrate the poset using a Hasse diagram.

Example

Let (Π,≤) = (2{1,2,3},⊂). Then the Hasse diagram is given by

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure: The Hasse diagram of (2{1,2,3},⊂).

.
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In order to better understand posets, Stanley associated a
lattice polytope to each poset.

Definition

The order polytope O(Π) of a finite poset Π is the subset of
RΠ = {f : Π→ R} defined by

0 ≤ f (i) ≤ 1 for all i ∈ Π,

f (i) ≤ f (j) if i ≤Π j .
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Definition

We say that a poset Π is level if O(Π) is a level polytope.

Remark

On height k , CZ(P◦) ∩ Rd+1 is described by

1 ≤ f (i) ≤ k − 1 for all i ∈ Π,

f (i) ≤ f (j)− 1 if i l j .

Remark

A poset Π is Gorenstein if and only if every maximal chain has the
same length, since we then have a unique interior lattice point in
(codegP)P and this point has distance 1 to all facets.
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We will state a characterization of levelness in terms of
weighted digraphs.

We build on work by Miyazaki, see [Miy17].

Definition

Given a poset Π, we define the poset Π = (Π ∪ {∞},≤Π), where

i <Π j :⇐⇒

{
j =∞ and i ∈ Π,

i <Π j .

Similarly, we define Π = (Π ∪ {−∞},≤Π), where

i <Π j :⇐⇒

{
i = −∞ and j ∈ Π,

i <Π j .
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Example

Let again Π = y l x m z . Then Π is depicted in Figure 4.

∞

zy

x

−∞

Figure: Figure 4.
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Now we want to turn Π into a weighted digraph.

Every edge in the Hasse diagram of Π is turned into an up
edge of weight −1.

Now we can pick a set of edges Π′ and add down edges of
weight +1. The associated graph is denoted Γ(Π′).

Example

Let Π′ = {−∞l y , z l x}.
∞

zy

x

−∞
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Either there is a negative directed cycle in Γ(Π′), or there isn’t.

In the latter case, we want to find the shortest path from −∞
to any node.

This procedure gives rise to an integer point in CZ(P◦)
satisfying f (i) + 1 = f (j) for all i l j ∈ Π′.

Both can be done using the Bellman–Ford algorithm in
polynomial time, to be precise, in O(#V ·#E ) .

F. Kohl Aalto University

Levelness of Order Polytopes



A Short Intro to Level Polytopes A Short Intro to Order Polytopes Main Results

Either there is a negative directed cycle in Γ(Π′), or there isn’t.

In the latter case, we want to find the shortest path from −∞
to any node.

This procedure gives rise to an integer point in CZ(P◦)
satisfying f (i) + 1 = f (j) for all i l j ∈ Π′.

Both can be done using the Bellman–Ford algorithm in
polynomial time, to be precise, in O(#V ·#E ) .

F. Kohl Aalto University

Levelness of Order Polytopes



A Short Intro to Level Polytopes A Short Intro to Order Polytopes Main Results

Either there is a negative directed cycle in Γ(Π′), or there isn’t.

In the latter case, we want to find the shortest path from −∞
to any node.

This procedure gives rise to an integer point in CZ(P◦)
satisfying f (i) + 1 = f (j) for all i l j ∈ Π′.

Both can be done using the Bellman–Ford algorithm in
polynomial time, to be precise, in O(#V ·#E ) .

F. Kohl Aalto University

Levelness of Order Polytopes



A Short Intro to Level Polytopes A Short Intro to Order Polytopes Main Results

Either there is a negative directed cycle in Γ(Π′), or there isn’t.

In the latter case, we want to find the shortest path from −∞
to any node.

This procedure gives rise to an integer point in CZ(P◦)
satisfying f (i) + 1 = f (j) for all i l j ∈ Π′.

Both can be done using the Bellman–Ford algorithm in
polynomial time, to be precise, in O(#V ·#E ) .

F. Kohl Aalto University

Levelness of Order Polytopes



A Short Intro to Level Polytopes A Short Intro to Order Polytopes Main Results

Example

Let Π′ = {y l x}. Then Γ(Π′) is illustrated below, along with the
integer point returned by the Bellman–Ford algorithm.

-∞

∞

x

y

(a) codeg Π = 4.

0

5

1

2

3

2

3

4

(b) Point on y + 1 = x .
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Now we are ready to state our main results:

Theorem

A poset Π is level if and only if for all Π′ such that Γ(Π′) does not
contain a negative cycle, the graph Γ(Π′ ∪ {longest chains})
contains no negative cycle.

Remark

If Γ(Π′) does not contain a negative cycle ⇔ point on face⋂
ilj∈Π′{xi + 1 = xj}.

No negative cycle in Γ(Π′ ∪ {longest chains}) ⇔ there is a
point on height codegO(Π) on the same face.

F. Kohl Aalto University
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Example

A non-level poset.

Π

x

y

(a) codeg Π = 4. 0

5

1

2

3

2

3

4

(b) Point on y + 1 = x .

-∞

∞

(c) A negative cycle in
Γ(Π′ ∪
{longest chains }).
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Example

A non-level poset, where Π′ needs to contain at least two edges.

x

∞

−∞

w

y

z

(a) Fink’s poset.

4

3

2

1

4

3

2

5

4

3

1

(b) A point on the face
{y + 1 = x} ∩ {z + 1 = w}.
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Corollary

Levelness of posets is in co-NP, i.e., there is a short certificate to
show non-levelness.

Remark

This certificate is given by the edges in Π′.

Theorem

The ordinal sum Π = Π1 / Π2 of two posets Π1, Π2 is level if and
only if both Π1 and Π2 are level.
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Theorem

The ordinal sum Π = Π1 / Π2 of two posets Π1, Π2 is level if and
only if both Π1 and Π2 are level.

Π1 Π2

Π1 / Π2

Figure: Ordinal sum of a chain of length 3 and an antichain of length 2.

Proposition

Let Π := Π1 / Π2. Then h∗Π = h∗Π1
h∗Π2

.

Remark

There are posets Π1, Π2 that have the same h∗-polynomial, but
where Π1 is level and Π2 is not, see [Hib88].

Theorem

Let Π be a poset on d elements and Π1, . . . ,Πm the connected
components of Π. If each Πi is level, then Π is level.
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Theorem

Let Π be a poset on d elements and let Cs be the chain with s
elements. Then the poset on the set Π ∪ Cs , where elements from
Π and Cs are incomparable, is level for all s ≥ d .

(a) Non-level poset Π.
(b) Level poset Π ∪ C6.
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Thanks for your attention!

F. Kohl Aalto University

Levelness of Order Polytopes



A Short Intro to Level Polytopes A Short Intro to Order Polytopes Main Results

Takayuki Hibi, Level rings and algebras with straightening
laws, J. Algebra 117 (1988), no. 2, 343–362. MR 957445

Christian Haase, Florian Kohl, and Akiyoshi Tsuchiya,
Levelness of order polytopes.

Mitsuhiro Miyazaki, On the generators of the canonical module
of a Hibi ring: a criterion of level property and the degrees of
generators, J. Algebra 480 (2017), 215–236. MR 3633306

F. Kohl Aalto University

Levelness of Order Polytopes


	A Short Intro to Level Polytopes
	A Short Intro to Order Polytopes
	Main Results

