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Tesler matrix

Definition[Tesler]

For α = (α1, ..., αn) ∈ Zn
≥0, we say that a matrix A = (ai ,j) ∈ Matn(Z) is

a Tesler matrix of hook sum α if :

A is an upper triangular matrix with non-negative entries.

(Hook sum condition) For all 1 ≤ k ≤ n we have

(ak,k + ak,k+1 + ...+ ak,n)− (a1,k + a2,k + ...+ ak−1,k) = αk .

Example
1 1 0 0
0 2 3 0
0 0 6 1
0 0 0 2


α1 = 1 + 1 + 0 + 0 = 2
α2 = 2 + 3 + 0− 1 = 4
α3 = 6 + 1− 3− 0 = 4
α4 = 2− 1− 0− 0 = 1
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Tesler polytope

Definition[Mészáros, Morales and Rhoades]

Let α = (α1, ..., αn) ∈ Zn
≥0 and U(n)≥0 be the set of n×n upper triangular

matrices with non-negative real entries. Then the Tesler polytope of hook
sum α is

Tesn(α) = {A ∈ U(n)≥0 : k-th hook sum = αk for 1 ≤ k ≤ n}

Example

n = 3, α = (1, 2, 3) then

Tes3(1, 2, 3) = {A =

x1 x2 x3
0 x4 x5
0 0 x6

 | x1 + x2 + x3 = α1, x4 + x5 − x2 =

α2, x6 − x3 − x5 = α3, xi ≥ 0, 1 ≤ i ≤ 6}

The integer points inside the Tesn(α) are exactly the Tesler matrices of
hook sum α
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Properties of Tesler polytopes

1 Unimodular in the hook sum subspace.

2 Simple

3 When α ∈ Zn
>0, the face poset of Tesn(α) ∼= Face poset of

∆1 ×∆2 × ...×∆n−1

13



Combinatorially Isomorphic polyhedra

The cone of feasible direction at a vertex of P is

fconev (P) = {u ∈ Rn | v + δu ∈ P for sufficiently small δ}.

Two polyhedra P1 and P2 are combinatorially isomorphic if they have
the same cone of feasible directions at each corresponding vertices.

(Castillo-Liu) For two simple polytopes P = Conv(v1, ..., vm) and
Q = Conv(w1, ...,wm), we say Q is combinatorially isomorphic to P
(Q is a deformation of P) if there exists ai ,j ∈ R>0 (R≥0) satisfying
vi − vj = ai ,j(wi − wj) for each adjacent pair of vertices vi , vj of P
and the corresponding vertices wi , wj of Q.

P1 is a deformation of P2 if ΣP2 is a refinement of ΣP1 .
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Theorem

Theorem (-,Liu)

For any α ∈ Zn
>0, Tesn(α) is combinatorially isomorphic to Tesn(1, ..., 1).

Furthermore, when some coordianates of α are zero, Tesn(α) is a
deformation of Tesn(1, ..., 1).

Has an application on alpha positivity of Tesler polytopes!
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Mcmullen’s formula

Theorem (Mcmullen’s formula)

Let P be a d-dimensional polytope. Then there exists a funtion α such
that the following is true :

|P ∩ Zn| =
∑

F : face of P

α(F ,P) VoldimF (F ).

Where α(F ,P) only depends on the normal cone of P at F .

Corollary

Let P be a polytope and EP = ed t
d + ...+ e1t + 1 be it’s Ehrhart

polynomial. Then, ei =
∑

F : i -th dimensional face of P α(F ,P) Voli (F ).

But α is not unique!

Berline-Vergne alpha (BV-alpha).

Ring-Schürmann mu (RS-mu).
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Reduction theorem

Theorem (Castillo-L, Reduction Theorem)

Suppose Ψ is a function on indicator functions of rational cones C in V
such that

Ψ is a valuation(linear transformation) on the algebra of rational
cones in V

If a cone C contains a line, then Ψ([C ]) = 0.

Let P and Q be two polytopes in V such that Q is a deformation of P.
Then for any fixed k, if we set α(F ,P) = Ψ([ncone(F ,P)/ lin(F )]) and
α(F ,P) > 0 for every k-dimensional face F of P, then α(G ,Q) > 0 for
every k-dimensional face G of Q.

BV-alpha satisfies the above condition.

Corollary

If Q is a deformation of P and P is BV-alpha positive, then Q is also
BV-alpha positive.
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For fixed n, If Tesn(1, ..., 1) is BV-alpha
positive, then Tesn(α) is BV-alpha
positive for any α ∈ Zn

≥0.

Conjecture (Morales) : Tesn(1, ..., 1) is
Ehrhart positive.
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Projections of Tesler Polytopes

Theorem

Let U(n) be the set of nxn upper triangular matrices with non-negative
entries and (xi ,j) ∈ U(n). Then for any
(j1, j2, ..., jn−1) ∈ [n]× [n − 1]× [n − 1]× ...× [2],
A map φ : U(n) −→ U(n) defined by

φ((xi ,j)) = (yi ,j)Where yi ,j =

{
xi ,j if j 6= ji

0 if j = ji

Defines a unimodular transformation between the hook sum space and

R(n2).


d1 x1,1 x1,2 · · · x1,n−1

d2 x2,2 · · · x2,n−1
. . . · · ·

...
dn−1 xn−1,n−1

dn

 −→

x1,1 x1,2 · · · x1,n−1

x2,2 · · · x2,n−1
. . .

...
xn−1,n−1


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Projection examples
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BV-alpha positivity of some faces of the Tesler polytope

BV-alpha for codim=2 face F . Let
C = fcone(F ,P)/ lin(F ) = Cone(u1, u2) where u1 and u2 form a basis
for the orthogonal projection of Zn to Rn / lin(F ). Then,

α(F ,P) =
1

4
+

1

12
(
〈u1, u2〉
〈u1, u1〉

+
〈u1, u2〉
〈u2, u2〉

).

BV-alpha for codim=3 face F . Let
C = fcone(F ,P)/ lin(F ) = Cone(u1, u2, u3). Where u1 and u2 form a
basis for the orthogonal projection of Zn to Rn / lin(F ). Then,

α(F ,P) = 1
8 + 1

24( 〈u1,u2〉〈u1,u1〉 + 〈u1,u2〉
〈u2,u2〉 + 〈u1,u3〉

〈u1,u1〉 + 〈u1,u3〉
〈u3,u3〉 + 〈u2,u3〉

〈u2,u2〉 + 〈u2,u3〉
〈u3,u3〉).

codim=4 formula has way more than 1000 terms...
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RS-mu positivity of some faces of the Tesler polyrope

Let F be a codimension 2 face of Tes3(1, 1, 1).

µ(F ) = 1− (1− a− b)µ(Tes3(1, 1, 1))− 1

2
µ(Facet)x2

µ(F ) = 1− (1− 1

2
− b)− 1

2

µ(F ) = b
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Flow Polytopes and Tesler polytopes

Definition

For any α = (α1, ..., αn) ∈ Zn, the flow polytope Flown(α) of complete
graph Kn+1 with net flow αi on vertex i for i = 1, 2, ..., n and −

∑n
i=1 αi

on n + 1 is the set of functions f : E → R≥0 where E is the edge set of
Kn+1 such that

∑
j>s f (k, j)−

∑
i<k f (i , k) = αk .

Theorem (Mészáros, Morales, Rhoades.)

for α ∈ Zn
≥0, Flown(α) ∼= Tesn(α).
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Chambers

1 Consider A+
n = {ei − ej | 1 ≤ i < j ≤ n + 1}

2 B+
n = {ei − ej | 1 ≤ i < j ≤ n} ∪ {ek | 1 ≤ k ≤ n}

3 Wall := Hyperplane generated by n-1 elements of B+
n

4 Chamber := a connected component of Cone(B+
n )−

⋃
W : Wall W
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Flow polytopes in different chambers

41



Flow polytopes in different chambers
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Flow polytopes in different chambers
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Flow polytopes in different chambers
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Some questions

1 α(F ,Tesn(1, ..., 1)) = µ(F ,Tesn(1, ..., 1)) ?

2 If α1 and α2 is from the same chamber, Flown(α1) and Flown(α2) are
combinatorially isomorphic?

3 For fixed n, which of the chambers give polytopes that are
deformations of Tesn(1, ..., 1)?
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Vertices of the Tesler polytopes

For any nxn matrix A = (ai ,j), define the support map s(A) = (si ,j) where

si ,j =

{
1, if ai ,j 6= 0

0, if ai ,j = 0

Theorem (Mészáros, Morales and Rhoades)

For α ∈ Nn,

Vert(Tesn(α)) = {A : A is a permutation Tesler matrix} Where
permutation Tesler matrices are the nxn Tesler matrices with exactly
one nonzero entry in each rows.

Two vertices v and w of Tesn(α) are adjacent iff s(v) can be
obtained from s(w) by moving 1 in a row to a different column in the
same row.
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Idea of the proof by example

α = (3, 2, 3, 2, 1)

v =


0 3 0 0 0

0 5 0 0
8 0 0

0 2
3

 w =


0 0 0 3 0

0 2 0 0
5 0 0

0 5
6



w − v =


0 −3 0 3 0

0 −3 0 0
−3 0 0

0 3
3

 = 3


0 −1 0 1 0

0 −1 0 0
−1 0 0

0 1
1


In general, w − v = p ∗M where p is some positive integer and M is a
matrix consisting of 0, 1,−1’s (M is in fact an edge direction). Changing
α only changes p but doesn’t affect M.
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