Geometric structure of the Tesler polytopes

Yonggyu Lee and Fu liu

UC-Davis

2018

1

Definition[Tesler]

Definition[Tesler]

For $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}_{\geq 0}^n$, we say that a matrix $A = (a_{i,j}) \in Mat_n(\mathbb{Z})$ is a Tesler matrix of hook sum α if :

• A is an upper triangular matrix with non-negative entries.

Definition[Tesler]

- A is an upper triangular matrix with non-negative entries.
- (Hook sum condition) For all $1 \le k \le n$ we have

$$(a_{k,k} + a_{k,k+1} + ... + a_{k,n}) - (a_{1,k} + a_{2,k} + ... + a_{k-1,k}) = \alpha_k$$

Definition[Tesler]

- A is an upper triangular matrix with non-negative entries.
- (Hook sum condition) For all $1 \le k \le n$ we have

$$(a_{k,k} + a_{k,k+1} + ... + a_{k,n}) - (a_{1,k} + a_{2,k} + ... + a_{k-1,k}) = \alpha_k$$

Example						
Γ1	1	0	О]			
0	2	3	0			
0	0	6	1			
[0	0	0	2			

Definition[Tesler]

For $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}_{\geq 0}^n$, we say that a matrix $A = (a_{i,j}) \in Mat_n(\mathbb{Z})$ is a Tesler matrix of hook sum α if :

- A is an upper triangular matrix with non-negative entries.
- (Hook sum condition) For all $1 \le k \le n$ we have

$$(a_{k,k} + a_{k,k+1} + ... + a_{k,n}) - (a_{1,k} + a_{2,k} + ... + a_{k-1,k}) = \alpha_k.$$

Example					
「1	1	0	0	$\alpha_1 = 1 + 1 + 0 + 0 = 2$	
0	2	3	0		
0	0	6	1		
0	0	0	2		

6

Definition[Tesler]

- A is an upper triangular matrix with non-negative entries.
- (Hook sum condition) For all $1 \le k \le n$ we have

$$(a_{k,k} + a_{k,k+1} + ... + a_{k,n}) - (a_{1,k} + a_{2,k} + ... + a_{k-1,k}) = \alpha_k.$$

Example							
$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	0	0	$\alpha_1 = 1 + 1 + 0 + 0 = 2$ $\alpha_2 = 2 + 3 + 0 - 1 = 4$			
0	0	6	1				
[0	0	0	2				

Definition[Tesler]

- A is an upper triangular matrix with non-negative entries.
- (Hook sum condition) For all $1 \le k \le n$ we have

$$(a_{k,k} + a_{k,k+1} + ... + a_{k,n}) - (a_{1,k} + a_{2,k} + ... + a_{k-1,k}) = \alpha_k.$$

Example							
$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1 2	0 3	0	$\alpha_1 = 1 + 1 + 0 + 0 = 2$ $\alpha_2 = 2 + 3 + 0 - 1 = 4$			
0	0	6	1	$\alpha_3 = 6 + 1 - 3 - 0 = 4$			
0	0	0	2				

Definition[Tesler]

- A is an upper triangular matrix with non-negative entries.
- (Hook sum condition) For all $1 \le k \le n$ we have

$$(a_{k,k} + a_{k,k+1} + ... + a_{k,n}) - (a_{1,k} + a_{2,k} + ... + a_{k-1,k}) = \alpha_k.$$

Example					
Γ1	1	0	0]	$\alpha_1 = 1 + 1 + 0 + 0 = 2$	
0	2	3	0	$\alpha_2 = 2 + 3 + 0 - 1 = 4$	
0	0	6	1	$\alpha_3 = 6 + 1 - 3 - 0 = 4$	
[0	0	0	2	$\alpha_{4} = 2 - 1 - 0 - 0 = 1$	

Tesler polytope

Definition[Mészáros, Morales and Rhoades]

Let $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}_{\geq 0}^n$ and $\mathbb{U}(n)_{\geq 0}$ be the set of $n \times n$ upper triangular matrices with non-negative real entries. Then the Tesler polytope of hook sum α is

 $\operatorname{Tes}_n(\alpha) = \{A \in \mathbb{U}(n)_{\geq 0} : k\text{-th hook sum} = \alpha_k \text{ for } 1 \leq k \leq n\}$

Tesler polytope

Definition[Mészáros, Morales and Rhoades]

Let $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}_{\geq 0}^n$ and $\mathbb{U}(n)_{\geq 0}$ be the set of $n \times n$ upper triangular matrices with non-negative real entries. Then the Tesler polytope of hook sum α is

 $\mathsf{Tes}_n(\alpha) = \{A \in \mathbb{U}(n)_{\geq 0} : k\text{-th hook sum} = \alpha_k \text{ for } 1 \leq k \leq n\}$

Example

$$n = 3, \ \alpha = (1, 2, 3) \text{ then}$$

$$\mathsf{Tes}_3(1, 2, 3) = \{A = \begin{bmatrix} x_1 & x_2 & x_3 \\ 0 & x_4 & x_5 \\ 0 & 0 & x_6 \end{bmatrix} \mid x_1 + x_2 + x_3 = \alpha_1, \ x_4 + x_5 - x_2 = \alpha_2, \ x_6 - x_3 - x_5 = \alpha_3, \ x_i \ge 0, \ 1 \le i \le 6\}$$

Tesler polytope

Definition[Mészáros, Morales and Rhoades]

Let $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}_{\geq 0}^n$ and $\mathbb{U}(n)_{\geq 0}$ be the set of $n \times n$ upper triangular matrices with non-negative real entries. Then the Tesler polytope of hook sum α is

 $\mathsf{Tes}_n(\alpha) = \{A \in \mathbb{U}(n)_{\geq 0} : k\text{-th hook sum} = \alpha_k \text{ for } 1 \leq k \leq n\}$

Example

$$n = 3, \ \alpha = (1, 2, 3) \text{ then}$$

$$\text{Tes}_3(1, 2, 3) = \{A = \begin{bmatrix} x_1 & x_2 & x_3 \\ 0 & x_4 & x_5 \\ 0 & 0 & x_6 \end{bmatrix} \mid x_1 + x_2 + x_3 = \alpha_1, \ x_4 + x_5 - x_2 = \alpha_2, \ x_6 - x_3 - x_5 = \alpha_3, \ x_i \ge 0, \ 1 \le i \le 6\}$$

The integer points inside the $\text{Tes}_n(\alpha)$ are exactly the Tesler matrices of hook sum α 12

- Unimodular in the hook sum subspace.
- 2 Simple
- When $\alpha \in \mathbb{Z}_{>0}^n$, the face poset of $\text{Tes}_n(\alpha) \cong$ Face poset of $\Delta_1 \times \Delta_2 \times ... \times \Delta_{n-1}$

• The cone of feasible direction at a vertex of P is

 $fcone_v(P) = \{ u \in \mathbb{R}^n \mid v + \delta u \in P \text{ for sufficiently small } \delta \}.$

• The cone of feasible direction at a vertex of P is

 $fcone_v(P) = \{ u \in \mathbb{R}^n \mid v + \delta u \in P \text{ for sufficiently small } \delta \}.$

• Two polyhedra P_1 and P_2 are combinatorially isomorphic if they have the same cone of feasible directions at each corresponding vertices.

• The cone of feasible direction at a vertex of P is

 $fcone_v(P) = \{ u \in \mathbb{R}^n \mid v + \delta u \in P \text{ for sufficiently small } \delta \}.$

• Two polyhedra P_1 and P_2 are combinatorially isomorphic if they have the same cone of feasible directions at each corresponding vertices.

• The cone of feasible direction at a vertex of P is

 $fcone_v(P) = \{ u \in \mathbb{R}^n \mid v + \delta u \in P \text{ for sufficiently small } \delta \}.$

• Two polyhedra P_1 and P_2 are combinatorially isomorphic if they have the same cone of feasible directions at each corresponding vertices.

- (Castillo-Liu) For two simple polytopes $P = \text{Conv}(v_1, ..., v_m)$ and $Q = \text{Conv}(w_1, ..., w_m)$, we say Q is combinatorially isomorphic to P (Q is a deformation of P) if there exists $a_{i,j} \in \mathbb{R}_{>0}$ ($\mathbb{R}_{\geq 0}$) satisfying $v_i v_j = a_{i,j}(w_i w_j)$ for each adjacent pair of vertices v_i , v_j of P and the corresponding vertices w_i , w_j of Q.
- P_1 is a deformation of P_2 if Σ_{P_2} is a refinement of Σ_{P_1} .

Theorem (-,Liu)

For any $\alpha \in \mathbb{Z}_{>0}^n$, $\text{Tes}_n(\alpha)$ is combinatorially isomorphic to $\text{Tes}_n(1,...,1)$. Furthermore, when some coordianates of α are zero, $\text{Tes}_n(\alpha)$ is a deformation of $\text{Tes}_n(1,...,1)$.

Theorem (-,Liu)

For any $\alpha \in \mathbb{Z}_{>0}^n$, $\text{Tes}_n(\alpha)$ is combinatorially isomorphic to $\text{Tes}_n(1,...,1)$. Furthermore, when some coordianates of α are zero, $\text{Tes}_n(\alpha)$ is a deformation of $\text{Tes}_n(1,...,1)$.

Has an application on alpha positivity of Tesler polytopes!

Theorem (Mcmullen's formula)

Let P be a d-dimensional polytope. Then there exists a function α such that the following is true :

$$|P \cap \mathbb{Z}^n| = \sum_{F : face of P} \alpha(F, P) \operatorname{Vol}_{dimF}(F).$$

Where $\alpha(F, P)$ only depends on the normal cone of P at F.

Theorem (Mcmullen's formula)

Let P be a d-dimensional polytope. Then there exists a function α such that the following is true :

$$|P \cap \mathbb{Z}^n| = \sum_{F : face of P} \alpha(F, P) \operatorname{Vol}_{dimF}(F).$$

Where $\alpha(F, P)$ only depends on the normal cone of P at F.

Corollary

Let P be a polytope and $E_P = e_d t^d + ... + e_1 t + 1$ be it's Ehrhart polynomial. Then, $e_i = \sum_{F : i-th \ dimensional \ face \ of \ P} \alpha(F, P) \operatorname{Vol}_i(F)$.

Theorem (Mcmullen's formula)

Let P be a d-dimensional polytope. Then there exists a function α such that the following is true :

$$|P \cap \mathbb{Z}^n| = \sum_{F : face of P} \alpha(F, P) \operatorname{Vol}_{dimF}(F).$$

Where $\alpha(F, P)$ only depends on the normal cone of P at F.

Corollary

Let P be a polytope and $E_P = e_d t^d + ... + e_1 t + 1$ be it's Ehrhart polynomial. Then, $e_i = \sum_{F : i-th \ dimensional \ face \ of \ P} \alpha(F, P) \operatorname{Vol}_i(F)$.

But α is not unique!

- Berline-Vergne alpha (BV-alpha).
- Ring-Schürmann mu (RS-mu).

Theorem (Castillo-L, Reduction Theorem)

Suppose Ψ is a function on indicator functions of rational cones C in V such that

- Ψ is a valuation(linear transformation) on the algebra of rational cones in V
- If a cone C contains a line, then $\Psi([C]) = 0$.

Let P and Q be two polytopes in V such that Q is a deformation of P. Then for any fixed k, if we set $\alpha(F, P) = \Psi([\operatorname{ncone}(F, P)/\operatorname{lin}(F)])$ and $\alpha(F, P) > 0$ for every k-dimensional face F of P, then $\alpha(G, Q) > 0$ for every k-dimensional face G of Q.

Theorem (Castillo-L, Reduction Theorem)

Suppose Ψ is a function on indicator functions of rational cones C in V such that

- Ψ is a valuation(linear transformation) on the algebra of rational cones in V
- If a cone C contains a line, then $\Psi([C]) = 0$.

Let P and Q be two polytopes in V such that Q is a deformation of P. Then for any fixed k, if we set $\alpha(F, P) = \Psi([\operatorname{ncone}(F, P)/\operatorname{lin}(F)])$ and $\alpha(F, P) > 0$ for every k-dimensional face F of P, then $\alpha(G, Q) > 0$ for every k-dimensional face G of Q.

BV-alpha satisfies the above condition.

Theorem (Castillo-L, Reduction Theorem)

Suppose Ψ is a function on indicator functions of rational cones C in V such that

- Ψ is a valuation(linear transformation) on the algebra of rational cones in V
- If a cone C contains a line, then $\Psi([C]) = 0$.

Let P and Q be two polytopes in V such that Q is a deformation of P. Then for any fixed k, if we set $\alpha(F, P) = \Psi([\operatorname{ncone}(F, P)/\operatorname{lin}(F)])$ and $\alpha(F, P) > 0$ for every k-dimensional face F of P, then $\alpha(G, Q) > 0$ for every k-dimensional face G of Q.

BV-alpha satisfies the above condition.

Corollary

If Q is a deformation of P and P is BV-alpha positive, then Q is also BV-alpha positive.

For fixed *n*, If $\text{Tes}_n(1, ..., 1)$ is BV-alpha positive, then $\text{Tes}_n(\alpha)$ is BV-alpha positive for any $\alpha \in \mathbb{Z}_{>0}^n$.

For fixed *n*, If $\text{Tes}_n(1, ..., 1)$ is BV-alpha positive, then $\text{Tes}_n(\alpha)$ is BV-alpha positive for any $\alpha \in \mathbb{Z}_{\geq 0}^n$. Conjecture (Morales) : $\text{Tes}_n(1, ..., 1)$ is Ehrhart positive.

Projections of Tesler Polytopes

Theorem

Let $\mathbb{U}(n)$ be the set of n×n upper triangular matrices with non-negative entries and $(x_{i,j}) \in \mathbb{U}(n)$. Then for any $(j_1, j_2, ..., j_{n-1}) \in [n] \times [n-1] \times [n-1] \times ... \times [2]$, A map $\phi : \mathbb{U}(n) \longrightarrow \mathbb{U}(n)$ defined by

$$\phi((x_{i,j})) = (y_{i,j}) Where \quad y_{i,j} = \begin{cases} x_{i,j} & \text{if } j \neq j_i \\ 0 & \text{if } j = j_i \end{cases}$$

Defines a unimodular transformation between the hook sum space and $\mathbb{R}^{\binom{n}{2}}$.

Projections of Tesler Polytopes

Theorem

Let $\mathbb{U}(n)$ be the set of n×n upper triangular matrices with non-negative entries and $(x_{i,j}) \in \mathbb{U}(n)$. Then for any $(j_1, j_2, ..., j_{n-1}) \in [n] \times [n-1] \times [n-1] \times ... \times [2]$, A map $\phi : \mathbb{U}(n) \longrightarrow \mathbb{U}(n)$ defined by

$$\phi((x_{i,j})) = (y_{i,j}) Where \quad y_{i,j} = egin{cases} x_{i,j} & ext{if } j
eq j_i \ 0 & ext{if } j = j_i \end{cases}$$

Defines a unimodular transformation between the hook sum space and $\mathbb{R}^{\binom{n}{2}}$.

$$\begin{bmatrix} d_1 & x_{1,1} & x_{1,2} & \cdots & x_{1,n-1} \\ & d_2 & x_{2,2} & \cdots & x_{2,n-1} \\ & & \ddots & & \vdots \\ & & & d_{n-1} & x_{n-1,n-1} \\ & & & & & d_n \end{bmatrix} \longrightarrow \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n-1} \\ & x_{2,2} & \cdots & x_{2,n-1} \\ & & \ddots & \vdots \\ & & & & x_{n-1,n-1} \end{bmatrix}$$

Projection examples

BV-alpha positivity of some faces of the Tesler polytope

BV-alpha for codim=2 face F. Let
 C = fcone(F, P) / lin(F) = Cone(u₁, u₂) where u₁ and u₂ form a basis for the orthogonal projection of Zⁿ to ℝⁿ / lin(F). Then,

$$\alpha(F,P) = \frac{1}{4} + \frac{1}{12} \left(\frac{\langle u_1, u_2 \rangle}{\langle u_1, u_1 \rangle} + \frac{\langle u_1, u_2 \rangle}{\langle u_2, u_2 \rangle} \right).$$

BV-alpha for codim=3 face F. Let
 C = fcone(F, P) / lin(F) = Cone(u₁, u₂, u₃). Where u₁ and u₂ form a basis for the orthogonal projection of Zⁿ to ℝⁿ / lin(F). Then,

$$\alpha(\mathsf{F},\mathsf{P}) = \frac{1}{8} + \frac{1}{24} \left(\frac{\langle u_1, u_2 \rangle}{\langle u_1, u_1 \rangle} + \frac{\langle u_1, u_2 \rangle}{\langle u_2, u_2 \rangle} + \frac{\langle u_1, u_3 \rangle}{\langle u_1, u_1 \rangle} + \frac{\langle u_1, u_3 \rangle}{\langle u_3, u_3 \rangle} + \frac{\langle u_2, u_3 \rangle}{\langle u_2, u_2 \rangle} + \frac{\langle u_2, u_3 \rangle}{\langle u_3, u_3 \rangle} \right).$$

• codim=4 formula has way more than 1000 terms...

Let F be a codimension 2 face of $Tes_3(1,1,1)$.

$$\mu(F) = 1 - (1 - a - b)\mu(\mathit{Tes}_3(1, 1, 1)) - rac{1}{2}\mu(\mathit{Facet})$$
x2

Let F be a codimension 2 face of $Tes_3(1,1,1)$.

$$\mu(F) = 1 - (1 - a - b)\mu(Tes_3(1, 1, 1)) - \frac{1}{2}\mu(Facet)$$
x2

$$\mu(F) = 1 - (1 - \frac{1}{2} - b) - \frac{1}{2}$$

Let F be a codimension 2 face of $Tes_3(1, 1, 1)$.

$$\mu(F) = 1 - (1 - a - b)\mu(\mathit{Tes}_3(1, 1, 1)) - rac{1}{2}\mu(\mathit{Facet})$$
x2

$$\mu(F) = 1 - (1 - \frac{1}{2} - b) - \frac{1}{2}$$
$$\mu(F) = b$$

Definition

For any $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}^n$, the flow polytope $\operatorname{Flow}_n(\alpha)$ of complete graph K_{n+1} with net flow α_i on vertex i for i = 1, 2, ..., n and $-\sum_{i=1}^n \alpha_i$ on n+1 is the set of functions $f : E \to \mathbb{R}_{\geq 0}$ where E is the edge set of K_{n+1} such that $\sum_{j>s} f(k,j) - \sum_{i < k} f(i,k) = \alpha_k$.

Theorem (Mészáros, Morales, Rhoades.)

for $\alpha \in \mathbb{Z}_{\geq 0}^n$, $\operatorname{Flow}_n(\alpha) \cong \operatorname{Tes}_n(\alpha)$.

• Consider $A_n^+ = \{e_i - e_j \mid 1 \le i < j \le n+1\}$

Consider A⁺_n = {e_i − e_j | 1 ≤ i < j ≤ n + 1}
B⁺_n = {e_i − e_j | 1 ≤ i < j ≤ n} ∪ {e_k | 1 ≤ k ≤ n}
Wall := Hyperplane generated by n-1 elements of B⁺_n

- Consider $A_n^+ = \{e_i e_j \mid 1 \le i < j \le n+1\}$
- $B_n^+ = \{ e_i e_j \ | \ 1 \le i < j \le n \} \cup \{ e_k \ | \ 1 \le k \le n \}$
- Solution Wall := Hyperplane generated by n-1 elements of B_n^+
- Chamber := a connected component of $Cone(B_n^+) \bigcup_{W : Wall} W$

(3,2,1)

(3,2,1)

(3,2,-1)

1 0 x=15 3 0 y=15 3

(3,2,1)

(3,2,-1)

(3,2,1)

(3,2,-2)

(3,2,-3)

(3,2,-1)

44

- $\alpha(F, \operatorname{Tes}_n(1, ..., 1)) = \mu(F, \operatorname{Tes}_n(1, ..., 1))$?
- If α₁ and α₂ is from the same chamber, Flow_n(α₁) and Flow_n(α₂) are combinatorially isomorphic?
- For fixed n, which of the chambers give polytopes that are deformations of Tes_n(1,...,1)?

For any nxn matrix $A = (a_{i,j})$, define the support map $s(A) = (s_{i,j})$ where $s_{i,j} = \begin{cases} 1, & \text{if } a_{i,j} \neq 0 \\ 0, & \text{if } a_{i,j} = 0 \end{cases}$

Theorem (Mészáros, Morales and Rhoades)

For $\alpha \in \mathbb{N}^n$,

- Vert(Tes_n(α)) = {A : A is a permutation Tesler matrix} Where permutation Tesler matrices are the nxn Tesler matrices with exactly one nonzero entry in each rows.
- Two vertices v and w of Tes_n(α) are adjacent iff s(v) can be obtained from s(w) by moving 1 in a row to a different column in the same row.

Idea of the proof by example

$$\alpha = (3, 2, 3, 2, 1)$$

$$v = \begin{bmatrix} 0 & 3 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 8 & 0 & 0 \\ 0 & 2 \\ 3 \end{bmatrix} \qquad w = \begin{bmatrix} 0 & 0 & 0 & 3 & 0 \\ 0 & 2 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 5 \\ 0 & 5 \end{bmatrix}$$

$$w - v = \begin{bmatrix} 0 & -3 & 0 & 3 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 \\ 1 \end{bmatrix}$$

In general, w - v = p * M where p is some positive integer and M is a matrix consisting of 0, 1, -1's (M is in fact an edge direction). Changing α only changes p but doesn't affect M.

References

- Karola Mészáros, Alejandro H. Morales, Brendon Rhoades, The polytope of Tesler matrices.
- Integer Points in Polyhedra by Alexander Barvinok.
- J. Pommersheim and H. Thomas, *Cycles representing the Todd class of a toric variety*, J. Amer. Math. Soc. 17 (2004), no. 4, 983–994. MR 2083474
- M. H. Ring and A. Schürmann, *Local formulas for Ehrhart coefficients from lattice tiles*, arXiv:1709.10390.
- Federico Castillo and Fu Liu, *Deformation Cones of nested Braid fans*, arXiv:1710.01899.
- Federico Castillo and Fu liu, *Berline-Vergne valuation and generalized permutohedra*, Discrete and Computational Geometry, to appear.

