Geometric structure of the Tesler polytopes

Yonggyu Lee and Fu liu

UC-Davis

2018

Tesler matrix

Definition[Tesler]

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, we say that a matrix $A=\left(a_{i, j}\right) \in \operatorname{Mat}_{n}(\mathbb{Z})$ is a Tesler matrix of hook sum α if :

Tesler matrix

Definition[Tesler]

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, we say that a matrix $A=\left(a_{i, j}\right) \in \operatorname{Mat}_{n}(\mathbb{Z})$ is a Tesler matrix of hook sum α if :

- A is an upper triangular matrix with non-negative entries.

Tesler matrix

Definition[Tesler]

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, we say that a matrix $A=\left(a_{i, j}\right) \in \operatorname{Mat}_{n}(\mathbb{Z})$ is a Tesler matrix of hook sum α if :

- A is an upper triangular matrix with non-negative entries.
- (Hook sum condition) For all $1 \leq k \leq n$ we have

$$
\left(a_{k, k}+a_{k, k+1}+\ldots+a_{k, n}\right)-\left(a_{1, k}+a_{2, k}+\ldots+a_{k-1, k}\right)=\alpha_{k}
$$

Tester matrix

Definition[Tesler]

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, we say that a matrix $A=\left(a_{i, j}\right) \in \operatorname{Mat}_{n}(\mathbb{Z})$ is a Tester matrix of hook sum α if :

- A is an upper triangular matrix with non-negative entries.
- (Hook sum condition) For all $1 \leq k \leq n$ we have

$$
\left(a_{k, k}+a_{k, k+1}+\ldots+a_{k, n}\right)-\left(a_{1, k}+a_{2, k}+\ldots+a_{k-1, k}\right)=\alpha_{k} .
$$

Example

$\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$

Tesler matrix

Definition[Tesler]

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, we say that a matrix $A=\left(a_{i, j}\right) \in \operatorname{Mat}_{n}(\mathbb{Z})$ is a Tesler matrix of hook sum α if :

- A is an upper triangular matrix with non-negative entries.
- (Hook sum condition) For all $1 \leq k \leq n$ we have

$$
\left(a_{k, k}+a_{k, k+1}+\ldots+a_{k, n}\right)-\left(a_{1, k}+a_{2, k}+\ldots+a_{k-1, k}\right)=\alpha_{k} .
$$

Example

$\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$

$$
\alpha_{1}=1+1+0+0=2
$$

Tester matrix

Definition[Tesler]

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, we say that a matrix $A=\left(a_{i, j}\right) \in \operatorname{Mat}_{n}(\mathbb{Z})$ is a Tester matrix of hook sum α if :

- A is an upper triangular matrix with non-negative entries.
- (Hook sum condition) For all $1 \leq k \leq n$ we have

$$
\left(a_{k, k}+a_{k, k+1}+\ldots+a_{k, n}\right)-\left(a_{1, k}+a_{2, k}+\ldots+a_{k-1, k}\right)=\alpha_{k} .
$$

Example

$\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$

$$
\begin{aligned}
& \alpha_{1}=1+1+0+0=2 \\
& \alpha_{2}=2+3+0-1=4
\end{aligned}
$$

Tesler matrix

Definition[Tesler]

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, we say that a matrix $A=\left(a_{i, j}\right) \in \operatorname{Mat}_{n}(\mathbb{Z})$ is a Tesler matrix of hook sum α if :

- A is an upper triangular matrix with non-negative entries.
- (Hook sum condition) For all $1 \leq k \leq n$ we have

$$
\left(a_{k, k}+a_{k, k+1}+\ldots+a_{k, n}\right)-\left(a_{1, k}+a_{2, k}+\ldots+a_{k-1, k}\right)=\alpha_{k}
$$

Example

$\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$

$$
\begin{aligned}
& \alpha_{1}=1+1+0+0=2 \\
& \alpha_{2}=2+3+0-1=4 \\
& \alpha_{3}=6+1-3-0=4
\end{aligned}
$$

Tesler matrix

Definition[Tesler]

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, we say that a matrix $A=\left(a_{i, j}\right) \in \operatorname{Mat}_{n}(\mathbb{Z})$ is a Tesler matrix of hook sum α if :

- A is an upper triangular matrix with non-negative entries.
- (Hook sum condition) For all $1 \leq k \leq n$ we have

$$
\left(a_{k, k}+a_{k, k+1}+\ldots+a_{k, n}\right)-\left(a_{1, k}+a_{2, k}+\ldots+a_{k-1, k}\right)=\alpha_{k}
$$

Example

$\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$

$$
\begin{aligned}
& \alpha_{1}=1+1+0+0=2 \\
& \alpha_{2}=2+3+0-1=4 \\
& \alpha_{3}=6+1-3-0=4 \\
& \alpha_{4}=2-1-0-0=1
\end{aligned}
$$

Tesler polytope

Definition[Mészáros, Morales and Rhoades]

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ and $\mathbb{U}(n)_{\geq 0}$ be the set of $\mathrm{n} \times \mathrm{n}$ upper triangular matrices with non-negative real entries. Then the Tesler polytope of hook sum α is

$$
\operatorname{Tes}_{n}(\alpha)=\left\{A \in \mathbb{U}(n)_{\geq 0}: \text { k-th hook sum }=\alpha_{k} \text { for } 1 \leq k \leq n\right\}
$$

Tesler polytope

Definition[Mészáros, Morales and Rhoades]

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ and $\mathbb{U}(n)_{\geq 0}$ be the set of $\mathrm{n} \times \mathrm{n}$ upper triangular matrices with non-negative real entries. Then the Tesler polytope of hook sum α is

$$
\operatorname{Tes}_{n}(\alpha)=\left\{A \in \mathbb{U}(n)_{\geq 0}: \text { k-th hook sum }=\alpha_{k} \text { for } 1 \leq k \leq n\right\}
$$

Example

$$
n=3, \alpha=(1,2,3) \text { then }
$$

$$
\operatorname{Tes}_{3}(1,2,3)=\left\{\left.A=\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
0 & x_{4} & x_{5} \\
0 & 0 & x_{6}
\end{array}\right] \right\rvert\, x_{1}+x_{2}+x_{3}=\alpha_{1}, x_{4}+x_{5}-x_{2}=\right.
$$

$$
\left.\alpha_{2}, x_{6}-x_{3}-x_{5}=\alpha_{3}, x_{i} \geq 0,1 \leq i \leq 6\right\}
$$

Tesler polytope

Definition[Mészáros, Morales and Rhoades]

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ and $\mathbb{U}(n)_{\geq 0}$ be the set of $\mathrm{n} \times \mathrm{n}$ upper triangular matrices with non-negative real entries. Then the Tesler polytope of hook sum α is

$$
\operatorname{Tes}_{n}(\alpha)=\left\{A \in \mathbb{U}(n)_{\geq 0}: \text { k-th hook sum }=\alpha_{k} \text { for } 1 \leq k \leq n\right\}
$$

Example

$n=3, \alpha=(1,2,3)$ then
$\operatorname{Tes}_{3}(1,2,3)=\left\{\left.\boldsymbol{A}=\left[\begin{array}{ccc}x_{1} & x_{2} & x_{3} \\ 0 & x_{4} & x_{5} \\ 0 & 0 & x_{6}\end{array}\right] \right\rvert\, x_{1}+x_{2}+x_{3}=\alpha_{1}, x_{4}+x_{5}-x_{2}=\right.$ $\left.\alpha_{2}, x_{6}-x_{3}-x_{5}=\alpha_{3}, x_{i} \geq 0,1 \leq i \leq 6\right\}$

The integer points inside the $\operatorname{Tes}_{n}(\alpha)$ are exactly the Tesler matrices of hook sum α 12

Properties of Tesler polytopes

(1) Unimodular in the hook sum subspace.
(2) Simple
(3) When $\alpha \in \mathbb{Z}_{>0}^{n}$, the face poset of $\operatorname{Tes}_{n}(\alpha) \cong$ Face poset of $\Delta_{1} \times \Delta_{2} \times \ldots \times \Delta_{n-1}$

Combinatorially Isomorphic polyhedra

Combinatorially Isomorphic polyhedra

- The cone of feasible direction at a vertex of P is

$$
\text { fcone }_{v}(P)=\left\{u \in \mathbb{R}^{n} \mid v+\delta u \in P \text { for sufficiently small } \delta\right\} .
$$

Combinatorially Isomorphic polyhedra

- The cone of feasible direction at a vertex of P is

$$
\text { fcone }_{v}(P)=\left\{u \in \mathbb{R}^{n} \quad \mid v+\delta u \in P \text { for sufficiently small } \delta\right\} .
$$

- Two polyhedra P_{1} and P_{2} are combinatorially isomorphic if they have the same cone of feasible directions at each corresponding vertices.

Combinatorially Isomorphic polyhedra

- The cone of feasible direction at a vertex of P is

$$
\text { fcone }_{v}(P)=\left\{u \in \mathbb{R}^{n} \quad \mid v+\delta u \in P \text { for sufficiently small } \delta\right\} .
$$

- Two polyhedra P_{1} and P_{2} are combinatorially isomorphic if they have the same cone of feasible directions at each corresponding vertices.

Combinatorially Isomorphic polyhedra

- The cone of feasible direction at a vertex of P is

$$
\text { fcone }_{v}(P)=\left\{u \in \mathbb{R}^{n} \quad \mid v+\delta u \in P \text { for sufficiently small } \delta\right\} .
$$

- Two polyhedra P_{1} and P_{2} are combinatorially isomorphic if they have the same cone of feasible directions at each corresponding vertices.

- (Castillo-Liu) For two simple polytopes $P=\operatorname{Conv}\left(v_{1}, \ldots, v_{m}\right)$ and $Q=\operatorname{Conv}\left(w_{1}, \ldots, w_{m}\right)$, we say Q is combinatorially isomorphic to P (Q is a deformation of P) if there exists $a_{i, j} \in \mathbb{R}_{>0}\left(\mathbb{R}_{\geq 0}\right)$ satisfying $v_{i}-v_{j}=a_{i, j}\left(w_{i}-w_{j}\right)$ for each adjacent pair of vertices v_{i}, v_{j} of P and the corresponding vertices w_{i}, w_{j} of Q.
- P_{1} is a deformation of P_{2} if $\Sigma_{P_{2}}$ is a refinement of $\Sigma_{P_{1}}$.

Theorem

Theorem (-,Liu)

For any $\alpha \in \mathbb{Z}_{>0}^{n}, \operatorname{Tes}_{n}(\alpha)$ is combinatorially isomorphic to $\operatorname{Tes}_{n}(1, \ldots, 1)$. Furthermore, when some coordianates of α are zero, $\operatorname{Tes}_{n}(\alpha)$ is a deformation of $\operatorname{Tes}_{n}(1, \ldots, 1)$.

Theorem

> Theorem (-,Liu)
> For any $\alpha \in \mathbb{Z}_{>0}^{n}, \operatorname{Tes}_{n}(\alpha)$ is combinatorially isomorphic to $\operatorname{Tes}_{n}(1, \ldots, 1)$. Furthermore, when some coordianates of α are zero, $\operatorname{Tes}_{n}(\alpha)$ is a deformation of $\operatorname{Tes}_{n}(1, \ldots, 1)$.

Has an application on alpha positivity of Tesler polytopes!

Mcmullen's formula

Theorem (Mcmullen's formula)
Let P be a d-dimensional polytope. Then there exists a funtion α such that the following is true :

$$
\left|P \cap \mathbb{Z}^{n}\right|=\sum_{F: \text { face of } P} \alpha(F, P) \mathrm{Vol}_{\operatorname{dim} F}(F)
$$

Where $\alpha(F, P)$ only depends on the normal cone of P at F.

Mcmullen's formula

Theorem (Mcmullen's formula)

Let P be a d-dimensional polytope. Then there exists a funtion α such that the following is true :

$$
\left|P \cap \mathbb{Z}^{n}\right|=\sum_{F: \text { face of } P} \alpha(F, P) \operatorname{Vol}_{\operatorname{dim} F}(F)
$$

Where $\alpha(F, P)$ only depends on the normal cone of P at F.

Corollary

Let P be a polytope and $E_{P}=e_{d} t^{d}+\ldots+e_{1} t+1$ be it's Ehrhart polynomial. Then, $e_{i}=\sum_{F: i \text {-th dimensional face of } P} \alpha(F, P) \operatorname{Vol}_{i}(F)$.

Mcmullen's formula

Theorem (Mcmullen's formula)

Let P be a d-dimensional polytope. Then there exists a funtion α such that the following is true :

$$
\left|P \cap \mathbb{Z}^{n}\right|=\sum_{F: \text { face of } P} \alpha(F, P) \operatorname{Vol}_{\text {dimF }}(F)
$$

Where $\alpha(F, P)$ only depends on the normal cone of P at F.

Corollary

Let P be a polytope and $E_{P}=e_{d} t^{d}+\ldots+e_{1} t+1$ be it's Ehrhart polynomial. Then, $e_{i}=\sum_{F: i \text {-th dimensional face of } P} \alpha(F, P) \operatorname{Vol}_{i}(F)$.

But α is not unique!

- Berline-Vergne alpha (BV-alpha).
- Ring-Schürmann mu (RS-mu).

Reduction theorem

Theorem (Castillo-L, Reduction Theorem)

Suppose Ψ is a function on indicator functions of rational cones C in V such that

- Ψ is a valuation(linear transformation) on the algebra of rational cones in V
- If a cone C contains a line, then $\Psi([C])=0$.

Let P and Q be two polytopes in V such that Q is a deformation of P. Then for any fixed k, if we set $\alpha(F, P)=\Psi([$ ncone $(F, P) / \operatorname{lin}(F)])$ and $\alpha(F, P)>0$ for every k-dimensional face F of P, then $\alpha(G, Q)>0$ for every k-dimensional face G of Q.

Reduction theorem

Theorem (Castillo-L, Reduction Theorem)

Suppose Ψ is a function on indicator functions of rational cones C in V such that

- Ψ is a valuation(linear transformation) on the algebra of rational cones in V
- If a cone C contains a line, then $\Psi([C])=0$.

Let P and Q be two polytopes in V such that Q is a deformation of P. Then for any fixed k, if we set $\alpha(F, P)=\Psi([$ ncone $(F, P) / \operatorname{lin}(F)])$ and $\alpha(F, P)>0$ for every k-dimensional face F of P, then $\alpha(G, Q)>0$ for every k-dimensional face G of Q.

BV-alpha satisfies the above condition.

Reduction theorem

Theorem (Castillo-L, Reduction Theorem)

Suppose Ψ is a function on indicator functions of rational cones C in V such that

- Ψ is a valuation(linear transformation) on the algebra of rational cones in V
- If a cone C contains a line, then $\Psi([C])=0$.

Let P and Q be two polytopes in V such that Q is a deformation of P. Then for any fixed k, if we set $\alpha(F, P)=\Psi([\operatorname{ncone}(F, P) / \operatorname{lin}(F)])$ and $\alpha(F, P)>0$ for every k-dimensional face F of P, then $\alpha(G, Q)>0$ for every k-dimensional face G of Q.

BV-alpha satisfies the above condition.

Corollary

If Q is a deformation of P and P is $B V$-alpha positive, then Q is also $B V$-alpha positive.

For fixed n, If $\operatorname{Tes}_{n}(1, \ldots, 1)$ is $B V$-alpha positive, then $\operatorname{Tes}_{n}(\alpha)$ is BV -alpha positive for any $\alpha \in \mathbb{Z}_{\geq 0}^{n}$.

For fixed n, If $\operatorname{Tes}_{n}(1, \ldots, 1)$ is $B V$-alpha positive, then $\operatorname{Tes}_{n}(\alpha)$ is BV -alpha positive for any $\alpha \in \mathbb{Z}_{\geq 0}^{n}$.
Conjecture (Morales) : $\operatorname{Tes}_{n}(1, \ldots, 1)$ is Ehrhart positive.

Projections of Tesler Polytopes

Theorem

Let $\mathbb{U}(n)$ be the set of $n \times n$ upper triangular matrices with non-negative entries and $\left(x_{i, j}\right) \in \mathbb{U}(n)$. Then for any
$\left(j_{1}, j_{2}, \ldots, j_{n-1}\right) \in[n] \times[n-1] \times[n-1] \times \ldots \times[2]$, A map $\phi: \mathbb{U}(n) \longrightarrow \mathbb{U}(n)$ defined by

$$
\phi\left(\left(x_{i, j}\right)\right)=\left(y_{i, j}\right) \text { Where } \quad y_{i, j}= \begin{cases}x_{i, j} & \text { if } j \neq j_{i} \\ 0 & \text { if } j=j_{i}\end{cases}
$$

Defines a unimodular transformation between the hook sum space and $\mathbb{R}^{\binom{n}{2} \text {. }}$

Projections of Tesler Polytopes

Theorem

Let $\mathbb{U}(n)$ be the set of $n x n$ upper triangular matrices with non-negative entries and $\left(x_{i, j}\right) \in \mathbb{U}(n)$. Then for any
$\left(j_{1}, j_{2}, \ldots, j_{n-1}\right) \in[n] \times[n-1] \times[n-1] \times \ldots \times[2]$,
A map $\phi: \mathbb{U}(n) \longrightarrow \mathbb{U}(n)$ defined by

$$
\phi\left(\left(x_{i, j}\right)\right)=\left(y_{i, j}\right) \text { Where } \quad y_{i, j}= \begin{cases}x_{i, j} & \text { if } j \neq j_{i} \\ 0 & \text { if } j=j_{i}\end{cases}
$$

Defines a unimodular transformation between the hook sum space and $\mathbb{R}^{\binom{n}{2} \text {. }}$
$\left[\begin{array}{ccccc}d_{1} & x_{1,1} & x_{1,2} & \cdots & x_{1, n-1} \\ & d_{2} & x_{2,2} & \cdots & x_{2, n-1} \\ & & \ddots & \cdots & \vdots \\ & & & d_{n-1} & x_{n-1, n-1} \\ & & & & d_{n}\end{array}\right] \longrightarrow\left[\begin{array}{cccc}x_{1,1} & x_{1,2} & \cdots & x_{1, n-1} \\ & x_{2,2} & \cdots & x_{2, n-1} \\ & & \ddots & \vdots \\ & & & x_{n-1, n-1}\end{array}\right]$

Projection examples

BV-alpha positivity of some faces of the Tesler polytope

- BV-alpha for codim=2 face F. Let
$C=\operatorname{fcone}(F, P) / \operatorname{lin}(F)=\operatorname{Cone}\left(u_{1}, u_{2}\right)$ where u_{1} and u_{2} form a basis for the orthogonal projection of \mathbb{Z}^{n} to $\mathbb{R}^{n} / \operatorname{lin}(F)$. Then,

$$
\alpha(F, P)=\frac{1}{4}+\frac{1}{12}\left(\frac{\left\langle u_{1}, u_{2}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle}+\frac{\left\langle u_{1}, u_{2}\right\rangle}{\left\langle u_{2}, u_{2}\right\rangle}\right)
$$

- BV-alpha for codim=3 face F. Let
$C=$ fcone $(F, P) / \operatorname{lin}(F)=\operatorname{Cone}\left(u_{1}, u_{2}, u_{3}\right)$. Where u_{1} and u_{2} form a basis for the orthogonal projection of \mathbb{Z}^{n} to $\mathbb{R}^{n} / \operatorname{lin}(F)$. Then,

$$
\alpha(F, P)=\frac{1}{8}+\frac{1}{24}\left(\frac{\left\langle u_{1}, u_{2}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle}+\frac{\left\langle u_{1}, u_{2}\right\rangle}{\left\langle u_{2}, u_{2}\right\rangle}+\frac{\left\langle u_{1}, u_{3}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle}+\frac{\left\langle u_{1}, u_{3}\right\rangle}{\left\langle u_{3}, u_{3}\right\rangle}+\frac{\left\langle u_{2}, u_{3}\right\rangle}{\left\langle u_{2}, u_{2}\right\rangle}+\frac{\left\langle u_{2}, u_{3}\right\rangle}{\left\langle u_{3}, u_{3}\right\rangle}\right) .
$$

- $\operatorname{codim}=4$ formula has way more than 1000 terms...

RS-mu positivity of some faces of the Tesler polyrope

Let F be a codimension 2 face of $\operatorname{Tes}_{3}(1,1,1)$.

$$
\mu(F)=1-(1-a-b) \mu\left(\operatorname{Tes}_{3}(1,1,1)\right)-\frac{1}{2} \mu(\text { Facet }) \times 2
$$

RS-mu positivity of some faces of the Tesler polyrope

Let F be a codimension 2 face of $\operatorname{Tess}_{3}(1,1,1)$.

$$
\begin{gathered}
\mu(F)=1-(1-a-b) \mu\left(\operatorname{Tes}_{3}(1,1,1)\right)-\frac{1}{2} \mu(\text { Facet }) \times 2 \\
\mu(F)=1-\left(1-\frac{1}{2}-b\right)-\frac{1}{2}
\end{gathered}
$$

RS-mu positivity of some faces of the Tesler polyrope

Let F be a codimension 2 face of $\operatorname{Tess}_{3}(1,1,1)$.

$$
\begin{gathered}
\mu(F)=1-(1-a-b) \mu\left(\operatorname{Tes}_{3}(1,1,1)\right)-\frac{1}{2} \mu(\text { Facet }) \times 2 \\
\mu(F)=1-\left(1-\frac{1}{2}-b\right)-\frac{1}{2} \\
\mu(F)=b
\end{gathered}
$$

Flow Polytopes and Tesler polytopes

Definition

For any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$, the flow polytope $\operatorname{Flow}_{n}(\alpha)$ of complete graph K_{n+1} with net flow α_{i} on vertex i for $i=1,2, \ldots, n$ and $-\sum_{i=1}^{n} \alpha_{i}$ on $n+1$ is the set of functions $f: E \rightarrow \mathbb{R}_{\geq 0}$ where E is the edge set of K_{n+1} such that $\sum_{j>s} f(k, j)-\sum_{i<k} f(i, k)=\alpha_{k}$.

Theorem (Mészáros, Morales, Rhoades.) for $\alpha \in \mathbb{Z}_{\geq 0}^{n}$, $\operatorname{Flow}_{n}(\alpha) \cong \operatorname{Tes}_{n}(\alpha)$.

Chambers

(1) Consider $A_{n}^{+}=\left\{e_{i}-e_{j} \mid 1 \leq i<j \leq n+1\right\}$

Chambers

(1) Consider $A_{n}^{+}=\left\{e_{i}-e_{j} \mid 1 \leq i<j \leq n+1\right\}$
(2) $B_{n}^{+}=\left\{e_{i}-e_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{e_{k} \mid 1 \leq k \leq n\right\}$

Chambers

(1) Consider $A_{n}^{+}=\left\{e_{i}-e_{j} \mid 1 \leq i<j \leq n+1\right\}$
(2) $B_{n}^{+}=\left\{e_{i}-e_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{e_{k} \mid 1 \leq k \leq n\right\}$
(3) Wall := Hyperplane generated by $\mathrm{n}-1$ elements of B_{n}^{+}

Chambers

(1) Consider $A_{n}^{+}=\left\{e_{i}-e_{j} \mid 1 \leq i<j \leq n+1\right\}$
(2) $B_{n}^{+}=\left\{e_{i}-e_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{e_{k} \mid 1 \leq k \leq n\right\}$
(3) Wall := Hyperplane generated by $\mathrm{n}-1$ elements of B_{n}^{+}
(1) Chamber $:=$ a connected component of Cone $\left(B_{n}^{+}\right)-\bigcup_{W}:$ Wall W

Flow polytopes in different chambers

$(3,2,1)$

Flow polytopes in different chambers

$(3,2,1)$

$(3,2,-1)$

Flow polytopes in different chambers

$(3,2,1)$

$(3,2,-2)$

$(3,2,-1)$

Flow polytopes in different chambers

$(3,2,1)$

$(3,2,-2)$

$(3,2,-3)$
$(3,2,-1)$

Some questions

(1) $\alpha\left(F, \operatorname{Tes}_{n}(1, \ldots, 1)\right)=\mu\left(F, \operatorname{Tes}_{n}(1, \ldots, 1)\right)$?
(2) If α_{1} and α_{2} is from the same chamber, $\operatorname{Flow}_{n}\left(\alpha_{1}\right)$ and $\operatorname{Flow}_{n}\left(\alpha_{2}\right)$ are combinatorially isomorphic?
(3) For fixed n, which of the chambers give polytopes that are deformations of $\operatorname{Tes}_{n}(1, \ldots, 1)$?

Vertices of the Tesler polytopes

For any $n \times n$ matrix $A=\left(a_{i, j}\right)$, define the support map $s(A)=\left(s_{i, j}\right)$ where
$s_{i, j}= \begin{cases}1, & \text { if } a_{i, j} \neq 0 \\ 0, & \text { if } a_{i, j}=0\end{cases}$

Theorem (Mészáros, Morales and Rhoades)

For $\alpha \in \mathbb{N}^{n}$,

- $\operatorname{Vert}\left(\operatorname{Tes}_{n}(\alpha)\right)=\{A$: A is a permutation Tesler matrix $\}$ Where permutation Tesler matrices are the nxn Tesler matrices with exactly one nonzero entry in each rows.
- Two vertices v and w of $\operatorname{Tes}_{n}(\alpha)$ are adjacent iff $s(v)$ can be obtained from $s(w)$ by moving 1 in a row to a different column in the same row.

Idea of the proof by example

$$
\begin{aligned}
& \alpha=(3,2,3,2,1) \\
& v=\left[\begin{array}{lllll}
0 & 3 & 0 & 0 & 0 \\
& 0 & 5 & 0 & 0 \\
& & 8 & 0 & 0 \\
& & & 0 & 2 \\
& & & & 3
\end{array}\right] \quad w=\left[\begin{array}{lllll}
0 & 0 & 0 & 3 & 0 \\
& 0 & 2 & 0 & 0 \\
& & 5 & 0 & 0 \\
& & & 0 & 5 \\
& & & & 6
\end{array}\right] \\
& w-v=\left[\begin{array}{ccccc}
0 & -3 & 0 & 3 & 0 \\
& 0 & -3 & 0 & 0 \\
& & -3 & 0 & 0 \\
& & & 0 & 3 \\
& & & & 3
\end{array}\right]=3\left[\begin{array}{ccccc}
0 & -1 & 0 & 1 & 0 \\
& 0 & -1 & 0 & 0 \\
& & -1 & 0 & 0 \\
& & & 0 & 1 \\
& & & & 1
\end{array}\right]
\end{aligned}
$$

In general, $w-v=p * M$ where p is some positive integer and M is a matrix consisting of $0,1,-1$'s (M is in fact an edge direction). Changing α only changes p but doesn't affect M.

References

國 Karola Mészáros，Alejandro H．Morales，Brendon Rhoades，The polytope of Tesler matrices．
围 Integer Points in Polyhedra by Alexander Barvinok．
E．Jommersheim and H．Thomas，Cycles representing the Todd class of a toric variety，J．Amer．Math．Soc． 17 （2004），no．4，983－994．MR 2083474
国 M．H．Ring and A．Schürmann，Local formulas for Ehrhart coefficients from lattice tiles，arXiv：1709．10390．

Federico Castillo and Fu Liu，Deformation Cones of nested Braid fans， arXiv：1710．01899．

目 Federico Castillo and Fu liu，Berline－Vergne valuation and generalized permutohedra，Discrete and Computational Geometry，to appear．

囯 Fu liu，On positivity of Ehrhart polynomials，arXiv：1711．09962．

