Gram's relation for cone valuations

Sebastian Manecke
Goethe Universität Frankfurt
joint work with Spencer Backman and Raman Sanyal July 31, 2018

Gram's relation for cone valuations

A fundamental theorem of Euclidean geometry:

Theorem

For a polygon with n vertices, it holds

$$
\sum_{i=1}^{n} \beta_{i}-n \pi+2 \pi=0 \sum_{i=1}^{n} \beta_{i}-\sum_{i=1}^{n} \gamma_{i}+2 \pi=0
$$

Cone angles

A cone angle α assigns to each polyhedral cone C in \mathbb{R}^{d} a real number, such that

- α is a valuation $\left(\alpha\left(C \cup C^{\prime}\right)=\alpha(C)+\alpha\left(C^{\prime}\right)-\alpha\left(C \cap C^{\prime}\right)\right.$ whenever $C \cup C^{\prime}$ is convex),
- α is simple $(\alpha(C)=0$, whenever $\operatorname{dim} C<d)$,
- α is normalized $\left(\alpha\left(\mathbb{R}^{d}\right)=1\right)$.

Example

- Take $\nu(C):=\frac{\operatorname{vol}\left(C \cap B_{d}\right)}{\text { vol } B_{d}}$ and this gives the usual angle.

Main Theorem

Theorem (1)

Let $P \subseteq \mathbb{R}^{d}$ be a polytope and α be a cone angle. For $i=0, \ldots, d-1$, let

$$
\widehat{\alpha}_{i}(P):=\sum_{\substack{F \subseteq P, \operatorname{dim} F=i}} \alpha(\widehat{A}(F, P)),
$$

where $\widehat{A}(F, P)$ is the interior cone at F. Then the only linear relation among these numbers is the Gram-relation:

$$
\sum_{i=0}^{d-1}(-1)^{i} \widehat{\alpha}_{i}(P)=(-1)^{d+1}
$$

Interior angles

Let F be a face of a polytope P. Define the interior cone $\widehat{A}(F, P)$ by the following procedure: $\widehat{A}(F, P)=\operatorname{cone}(P-q)+\operatorname{cone}(P-q)^{\perp}$.

- Move the origin to a point in the relative interior of F.
- Take the conical hull of P.
- (Minkowski-) add the dual of the affine hull (to make the cone full dimensional if P is not full-dimensional).

Example

- $\widehat{\alpha}_{0}(P)=\alpha\left(C_{1}\right)+\alpha\left(C_{2}\right)+\alpha\left(C_{3}\right)+\alpha\left(C_{4}\right)+\alpha\left(C_{5}\right)$
- $\widehat{\alpha}_{1}(P)=\alpha\left(D_{1}\right)+\alpha\left(D_{2}\right)+\alpha\left(D_{3}\right)+\alpha\left(D_{4}\right)+\alpha\left(D_{5}\right)$ and $\widehat{\alpha}_{0}(P)-\widehat{\alpha}_{1}(P)=-1$. If $\alpha=\nu$, we recover the original statement after multiplying with 2π.

Exterior angles

Similarly, we define exterior cones $\breve{A}(F, P)$ by taking the normal cone and adding the orthogonal complement:

$$
\check{A}(F, P):=N_{F} P+\left(N_{F} P\right)^{\perp} .
$$

Exterior angles

Theorem (1b)
Let $P \subseteq \mathbb{R}^{d}$ be a polytope and α be a cone angle. For $i=0, \ldots, d-1$, let

$$
\check{\alpha}_{i}(P):=\sum_{\substack{F \subseteq P, \operatorname{dim} \digamma F_{i}}} \alpha(\check{A}(F, P)) .
$$

Then the only linear relation among these numbers is:

$$
\breve{\alpha}_{0}(P)=1 .
$$

Partial proof of 1b

The normal cones of the vertices of a polytope form the normal fan. This is a complete fan. Thus:

$$
\widehat{\alpha}_{0}(P)=\sum_{v \in \operatorname{vert}(\mathrm{P})} \alpha(\check{A}(v, P))=\sum_{v \in \operatorname{vert}(\mathrm{P})} \alpha\left(N_{v} P\right)=\alpha\left(\mathbb{R}^{d}\right)=1 .
$$

Zonotopes

To prove, that there is only one linear relation, we need to find a set of polytopes, whose $\widehat{\alpha}_{i}$'s (resp. $\breve{\alpha}_{i}$'s) span the single hyperplane defined by the Gram-relation (resp. $\check{\alpha}_{0}(P)=1$).

Definition

A zonotope Z is the Minkowski-sum of line segments z_{1}, \ldots, z_{n} : $Z=z_{1}+\cdots+z_{n} \in \mathbb{R}^{d}$.

Example

Zonotopes II

To every zonotope Z with face lattice $\mathcal{F}(Z)$ we can associate the lattice of non-empty faces

$$
\mathcal{F}_{+}(Z):=\mathcal{F}(Z) \backslash\{\varnothing\}
$$

and the lattice of flats $\mathcal{L}(Z)$:

$$
\mathcal{L}(Z):=\left(\left\{\operatorname{aff}(F-q): F \in \mathcal{F}_{+}(Z), q \in F\right\}, L_{1} \preceq L_{2}: \Longleftrightarrow L_{1} \subseteq L_{2}\right)
$$

Example

This gives a map $L: \mathcal{F}_{+}(Z) \rightarrow \mathcal{L}(Z), L(F)=\operatorname{aff}(F-q)$ for some $q \in F$.

Incidence Algebra

The incidence algebra $\mathcal{I}(\mathcal{P})$ of a poset $\mathcal{P}=(\mathcal{P}, \preceq)$ is the vector space of all functions $h: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{R}$, such that $h(a, c)=0$ whenever $a \npreceq c$ and with multiplication

$$
(g * h)(a, c)=\sum_{a \leq b \leq c} g(a, b) h(b, c)
$$

for $g, h \in \mathcal{I}(\mathcal{P})$.

Example

- $\delta_{\mathcal{P}}(a, b)=1$ if $a=b, \delta_{\mathcal{P}}(a, b)=0$ otherwise, is the unit of the multiplication.
- $\zeta_{\mathcal{P}}(a, b)=1$ for $a \preceq b$.
- $\zeta_{\mathcal{P}}$ always has an inverse: $\mu_{\mathcal{P}}=\zeta_{\mathcal{P}}^{-1}$.

Example

For a cone angle α both $\widehat{\alpha}$, $\check{\alpha}$ are in $\mathcal{I}\left(\mathcal{F}_{+}(P)\right)$.
Let F, F^{\prime} be two non-empty faces. Define $\widehat{\alpha}\left(F, F^{\prime}\right)=\alpha\left(\widehat{A}\left(F, F^{\prime}\right)\right)$ and $\check{\alpha}\left(F, F^{\prime}\right)=\alpha\left(\check{A}\left(F, F^{\prime}\right)\right)$.

Main Theorem II

Theorem (2)

For any cone angle α and any d-zonotope Z, we have

$$
\begin{aligned}
& \widehat{\alpha}_{i}(Z)=\left|w_{i}^{\mathrm{co}}(\mathcal{L}(Z))\right|, \\
& \check{\alpha}_{i}(Z)=W_{i}^{\mathrm{co}}(\mathcal{L}(Z)),
\end{aligned}
$$

where $w_{i}^{\mathrm{co}}, w_{i}^{\mathrm{co}}$ are the Co-Whitney numbers of first and second kind defined by:

$$
\begin{aligned}
w_{i}^{\mathrm{co}} & =\sum_{M \in \mathcal{L}(Z)_{i}} \mu_{\mathcal{L}(Z)}\left(M, \mathbb{R}^{d}\right), \\
W_{i}^{\mathrm{co}} & =\sum_{M \in \mathcal{L}(Z)_{i}} \zeta_{\mathcal{L}(Z)}(\{0\}, M)=\sum_{M \in \mathcal{L}(Z)_{i}} 1 .
\end{aligned}
$$

Proof of Theorem 1.

Find d zonotopes where you can calculate the Co-Whitney numbers easily (uniform matroids). Then do linear algebra to show that the Co-Whitney numbers span the single hyperplane defined by the Gram-relation (resp. $\check{\alpha}_{0}(P)=1$).

How to prove theorem 2?

Thus $\sum_{F \in L^{-1}(M)} \check{\alpha}(F, Z)=1$ and summing over all M with rk $M=i$ gives $\check{\alpha}_{i}(Z)=W_{i}^{c o}(\mathcal{L}(Z))$.

How to prove theorem 2 ?

You can prove the other half of Theorem 2 directly using the valuation property and the theory of hyperplane arrangements.

It also follows from the fact, that $L: \mathcal{F}_{+}(Z) \rightarrow \mathcal{L}(Z)$ induces two adjoint maps L^{*} and L_{*} :

You can then show that $L^{*}(\widehat{\alpha})=\left|\mu_{\mathcal{L}(Z)}\right|$ and $L^{*}(\breve{\alpha})=\zeta_{\mathcal{L}(Z)}$ for any cone angle α.

Thank you for your attention. Questions?

