Transversal Valuated Matroids and Stiefel Presentations

Jorge Alberto Olarte

August 1, 2018

joint work with Alex Fink

Let \mathbb{K} be a field. The *(rational) Stiefel map* π : $\mathbb{K}^{d \times n} \dashrightarrow \operatorname{Gr}_{\mathbb{K}}(n, d)$ sends a rank d matrix A to its row span in $\operatorname{Gr}_{\mathbb{K}}(d, n)$.

Let \mathbb{K} be a field. The *(rational) Stiefel map* π : $\mathbb{K}^{d \times n} \dashrightarrow \operatorname{Gr}_{\mathbb{K}}(n, d)$ sends a rank d matrix A to its row span in $\operatorname{Gr}_{\mathbb{K}}(d, n)$.

Question

Given a d dimensional subspace $L \in Gr_{\mathbb{K}}(n, d)$, what is its preimage under the Stiefel map, $\pi^{-1}(L)$?

Let \mathbb{K} be a field. The *(rational) Stiefel map* π : $\mathbb{K}^{d \times n} \dashrightarrow \operatorname{Gr}_{\mathbb{K}}(n, d)$ sends a rank d matrix A to its row span in $\operatorname{Gr}_{\mathbb{K}}(d, n)$.

Question

Given a d dimensional subspace $L \in Gr_{\mathbb{K}}(n, d)$, what is its preimage under the Stiefel map, $\pi^{-1}(L)$?

Answer

Any matrix A such that its rows are d linearly independent vectors in L. The space of all such matrices is $GL(d, \mathbb{K})$.

A matroid of *n* elements and rank *d* is a non empty set of bases $M \subseteq {\binom{[n]}{d}}$ such that for any $B_1, B_2 \in M$ and $i \in B_1 \setminus B_2$ there exists $j \in B_2$ such that $B_1 \cup \{j\} \setminus \{i\} \in M$.

Definition

Let A_1, \ldots, A_d be subsets of [n]. A *transversal* is a subset $B \in {\binom{[n]}{d}}$ such that there is a bijection $\phi : B \to [d]$ such that $i \in A_{\phi(i)}$ for every $i \in B$. The set of transversals, if not empty, is a matroid. Any matroid that arrises this way is called a *transversal matroid*. The multiset $\{\!\!\{A_1, \ldots, A_d\}\!\!\}$ is called a *presentation* of the matroid.

イロト イ団ト イヨト イヨト

The Plücker embedding ι : $\operatorname{Gr}_{\mathbb{K}}(n,d) \hookrightarrow \mathbb{P}^{\binom{n}{d}-1}$ sends an element $L \in \operatorname{Gr}_{\mathbb{K}}(n,d)$ to the maximal minors of A where A is such that $\pi(A) = L$.

The image of the Plücker embedding is the projective variety given by the following equations in $\mathbb{P}^{\binom{n}{d}-1}$: for any $S \in \binom{[n]}{d-1}$ and $T \in \binom{[n]}{d+1}$,

$$\sum_{i\in T\setminus S} (-1)^i X_{S\cup\{i\}} X_{T\setminus\{i\}} = 0$$

A point $x \in \mathbb{R}^n$ is in L if and only if for any $T \subseteq [n]$ with |T| = d + 1 it satisfies:

$$\sum_{i\in T} (-1)^i x_i \iota(L)_{T\setminus\{i\}} = 0$$

A D F A A F F A

Recall the tropical semiring $(\mathbb{T}, \oplus, \odot) = (\mathbb{R} \cup \{\infty\}, \min, +)$ where $\mathbb{R} \cup \infty$ has the topology of (0, 1]. The *k*-dimensional tropical projective space \mathbb{TP}^k is the space $\mathbb{T}^{k+1} \setminus \{(\infty, \ldots, \infty)\}$ quotiented by the equivalence relation \sim given by $(a_0, \ldots, a_d) \sim (a_0 + \lambda, \ldots, a_d + \lambda)$ for any $\lambda \in \mathbb{T} \setminus \{\infty\}$.

Definition

A valuated matroid \mathcal{V} is a point in $\mathbb{TP}^{\binom{n}{d}-1}$ that satisfies the tropical Plücker relations: for any $S \in \binom{[n]}{d-1}$ and $T \in \binom{[n]}{d+1}$, the minimum in

$$\min_{i\in T\setminus S} \mathcal{V}_{S\cup\{i\}} + \mathcal{V}_{T\setminus\{i\}}$$

is achieved twice. The space of valuated matroids in $\mathbb{TP}^{\binom{n}{d}-1}$ is called the *Dressian* Dr(n, d).

Theorem [Speyer (2008)]

Let \mathcal{V} be a valuated matroid and let $x \in \mathbb{R}^n$. The set

$$M_x = \operatorname{argmin}_{B \in \binom{[n]}{d}} \left(\mathcal{V}_B - \sum_{i \in B} x_i
ight)$$

is a matroid.

Note that if $x \sim y$ then $M_x = M_y$. Recall that an element *i* of a matroid is called a *loop* if it is not contained in any basis. It is called a *coloop* if it is contained in every basis.

Definition

Let \mathcal{V} be a valuated matroid. The *tropical linear space* $L \subseteq \mathbb{TP}^{n-1}$ associated to \mathcal{V} is the closure of

$$\{x \in \mathbb{R}^n \mid M_x \text{ has no loops}\} / \sim$$

Let e_1, \ldots, e_n be the cannonical basis of \mathbb{R}^n and for $B \subseteq [n]$ let

$$e_B = \sum_{i \in B} e_i$$

Definition

The matroid polytope P_M of a matroid M is the convex hull of $\{e_B \mid B \in M\}$.

Let e_1, \ldots, e_n be the cannonical basis of \mathbb{R}^n and for $B \subseteq [n]$ let

$$e_B = \sum_{i \in B} e_i$$

Definition

The matroid polytope P_M of a matroid M is the convex hull of $\{e_B \mid B \in M\}$.

A valuated matroid \mathcal{V} , induces a regular subdivision of conv $(\{e_B \mid \mathcal{V}_B < \infty\})$ into matroid polytopes P_M . L is a polyhedral complex with cells

$$L_M = \{x \in L \mid M_x = M\}$$

Each L_M is orthogonal to P_M .

Example 1

Consider $\mathcal{V} = [0:0:0:0:1] \in Dr(2,4)$.

The subdivision of the hypersimplex and the tropical linear space L induced by \mathcal{V} .

Jorge	Alberto	Olarte
-------	---------	--------

・ロト ・回ト ・ヨト ・

Tropical Stiefel map

Given a matrix $A \in \mathbb{T}^{d \times n}$ and a subset $\{b_1, \ldots, b_d\} \in {[n] \choose d}$ the corresponding tropical maximal minor is

$$\min_{\sigma\in\mathcal{S}_d}\left(\sum_{i=1}^d A_{b_i,b_{\sigma(i)}}\right)$$

Definition

The tropical Stiefel map π : $\mathbb{T}^{d \times n} \dashrightarrow Dr(d, n)$ maps A to its tropical maximal minors, whenever A does not have all of its tropical maximal minors equal to ∞ .

As opposed to the classical case, $\pi(\mathbb{T}_{tr}^{d \times n}) \subsetneq Dr(d, n)$. The tropical linear space corresponding to $\mathcal{V} \in Dr(2, 6)$ where $\mathcal{V}_{12} = \mathcal{V}_{34} = \mathcal{V}_{56} = \infty$ and zero elsewhere is not in the Stiefel image.

A trasnversal valuated matroid \mathcal{V} is a valuated matroid such that $M_x(\mathcal{V})$ is transversal whenever $M_x(\mathcal{V})$ is coloop free.

Theorem, [Fink, Rincon (2015)]

Let $\mathcal{V} \in Dr(d, n)$. If there exists a matrix A such that $\pi(A) = \mathcal{V}$, then \mathcal{V} is a transversal valuated matroid.

A trasnversal valuated matroid \mathcal{V} is a valuated matroid such that $M_x(\mathcal{V})$ is transversal whenever $M_x(\mathcal{V})$ is coloop free.

Theorem, [Fink, Rincon (2015)]

Let $\mathcal{V} \in Dr(d, n)$. If there exists a matrix A such that $\pi(A) = \mathcal{V}$, then \mathcal{V} is a transversal valuated matroid.

The converse is also true:

Theorem, [Fink, O. (2018+)]

Let \mathcal{V} be a transversal valuated matroid. Then there exists a matrix A such that $\pi(A) = \mathcal{V}$.

Question

Let \mathcal{V} be a transversal valuated matroid. What is $\pi^{-1}(\mathcal{V})$?

Definition

A Stiefel presentation is a multiset of d points in L whose representatives form the rows of a matrix $A \in \pi^{-1}(\mathcal{V})$.

A D F A A F F A

Question

Let \mathcal{V} be a transversal valuated matroid. What is $\pi^{-1}(\mathcal{V})$?

Definition

A Stiefel presentation is a multiset of d points in L whose representatives form the rows of a matrix $A \in \pi^{-1}(\mathcal{V})$.

Presentations of $\mathcal{V} = [0:0:0:0:1]$ $\begin{pmatrix} * & 0 & 0 & 0 \\ 0 & 0 & * & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & * & 0 & 0 \\ 0 & 0 & * & 1 \end{pmatrix}$ $\begin{pmatrix} * & 0 & 0 & 0 \\ 0 & 0 & 1 & * \end{pmatrix}$ $\begin{pmatrix} 0 & * & 0 & 0 \\ 0 & 0 & 1 & * \end{pmatrix}$ (0:0:0:0] (0:0:0:1:1]

• • • • • • • • • • •

Recall the following basic definitions from matroid theory:

Definition

Let *M* be a matroid on *n* elements of rank *d*. For a subset $F \subset [n]$:

• The rank of F is
$$rk(F) := \max_{B \in M} (|B \cap F|)$$

- The corank of F is cork(F) = d rk(F).
- F is called a *flat* if for every $i \in [n] \setminus F$ we have that $\mathsf{rk}(F \cup \{i\}) = \mathsf{rk}(F) + 1$
- F is called *cyclic* if for every $i \in F$ we have that $rk(F \setminus \{i\}) = rk(F)$

The set of cyclic flats form a lattice CF(M) with respect to inclusion.

A D F A A F F A

Presentations of transversal matroids

F

Definition

Let τ_M be the function implicitly defined on $\mathcal{CF}(M)$ by the following equation

$$\sum_{\subseteq F' \in \mathcal{CF}} \tau_{\mathcal{M}}(F') = \operatorname{cork}(F)$$

Theorem, [Mason (1970)]

Let *M* be a transversal matroid. The multiset $\{\!\{[n] \setminus F_1, \ldots, [n] \setminus F_d\}\!\}$, where $F_i \in C\mathcal{F}$ and each $[n] \setminus F_i$ appears with multiplicity $\tau_M(F_i)$, is the unique maximal presentation of *M*. Any presentation $\{\!\{[n] \setminus A_1, \ldots, [n] \setminus A_d\}\!\}$ satisfy:

- Each A_i is flat.
- **2** $A_i \supseteq F_i$ for each $i \in [d]$ (up to relabelling).
- For each subset of indexes $I \subset [d]$ we have

$$\operatorname{cork}\left(\bigcap_{i\in I}A_i\right)\geq |I|$$

Let \mathcal{V} be a transversal valuated matroid and L its tropical linear space. The multiset $\mathcal{A}(\mathcal{V})$ of *distinguished apexes* of \mathcal{V} consists of points $x \in L$ such that x appears with multiplicity $\tau_{M_x(\mathcal{V})}(F)$ where $F \subseteq [n]$ are the coordinates of x equal to ∞ .

Proposition

The function $P_M \to \tau_M(\emptyset)$ is a simple valuation on matroid polytopes.

Proposition

If \mathcal{V} is of rank d, then $|\mathcal{A}(\mathcal{V})| = d$

The following is a generalization of Mason's theorem for transversal valuated matroids.

Theorem, [Fink, O. (2018+)]

Let $\ensuremath{\mathcal{V}}$ be a transversal valuated matroid. Then:

- $\mathcal{A}(\mathcal{V})$ is a Stiefel presentation.
- The space of all Stiefel presentations of V consists of fans centered at each of the distinguished apexes.
- The fan over $x \in \mathcal{A}(\mathcal{V})$ only depends on $M_x(\mathcal{V})$.

Example 2

Let $\mathcal{V} \in Dr(3,5)$ where $\mathcal{V}_{123} = 1$, $\mathcal{V}_{145} = \infty$ and 0 elsewhere. The three distinguished apexes are $x_1 = (0:0:0:0)$, $x_2 = (1:1:1:0:0)$ and $x_3 = (\infty:0:0:\infty:\infty)$.

