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LECTURE HALL PARTITIONS

Let s = (s1,%,...,5n) be a sequence such that s; € Z>1 for all i.
The s-lecture hall partitions are the set
L ::{AeZ” : ogﬁgﬁg---gﬁ}.
51 So Sn
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INVERSION SEQUENCES AND STATISTICS

Given s, the set of s-inversion sequences is defined
|$7$) = {e S Zgl 0<e < S,'}.

The ascent set of an inversion sequence e is

Asc(e):{ie{O,l,...,n—l} C & e,-+1}
Si Si+1

where sp = 1 and ey = 0 by convention, and asc(e) = | Asc(e).
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INVERSION SEQUENCES AND STATISTICS

Given s, the set of s-inversion sequences is defined
|$7$) = {e S Zgl 0<e < S,'}.

The ascent set of an inversion sequence e is

Asc(e):{ie{O,l,...,n—l} C & e,-+1}
Si Si+1

where sp = 1 and ey = 0 by convention, and asc(e) = | Asc(e).

Let s = (2,5,7). Then e = (1,1,4) € 1®®" Asc(e) = {0,2} and
asc(e) = 2.
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LECTURE HALL SIMPLICES

Given s = (s1,%,...,Sn), the s-lecture hall simplex is the lattice
simplex given by

P(ns)::{/\eR”:o<)‘1<)‘2<--~<”<1}
S1 So Sn

or alternatively
P = conv{(0,...,0,0),(0,...,0,5, 541, -, Sn_1,50)}

forall1<i<n
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LECTURE HALL SIMPLEX PROPERTIES

° h*(Pg,s),z) = Z 225(€) called the s-Eulerian polynomials
ecl®
(Savage-Schuster [6]). Moreover, these polynomials are

real-rooted and hence unimodal (Savage-Visontai [7]).
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ecl®
(Savage-Schuster [6]). Moreover, these polynomials are

real-rooted and hence unimodal (Savage-Visontai [7]).

° P(:) have the integer-decomposition property (monotone s
Hibi-O.-Tsuchiya [3], generality Brandén-Solus [2])
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LECTURE HALL SIMPLEX PROPERTIES

° h*(Pg,s),z) = Z 225(€) called the s-Eulerian polynomials
ecl®
(Savage-Schuster [6]). Moreover, these polynomials are

real-rooted and hence unimodal (Savage-Visontai [7]).

° P(:) have the integer-decomposition property (monotone s
Hibi-O.-Tsuchiya [3], generality Brandén-Solus [2])
@ Some partial reflexive/Gorenstein results (Hibi-O.-Tsuchiya

[31)-
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(GORENSTEIN AND LEVEL ALGEBRAS— ABSTRACTLY

Let R = @,.; Ri be a finitely generated Z-graded, d-dimensional
k-algebra. Suppose that R is local and Cohen-Macaulay.
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(GORENSTEIN AND LEVEL ALGEBRAS— ABSTRACTLY

Let R = @,.; Ri be a finitely generated Z-graded, d-dimensional
k-algebra. Suppose that R is local and Cohen-Macaulay.

GORENSTEIN:
We say that R is Gorenstein if the canonical module wg is

generated by a single element.
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(GORENSTEIN AND LEVEL ALGEBRAS— ABSTRACTLY

Let R = @,.; Ri be a finitely generated Z-graded, d-dimensional
k-algebra. Suppose that R is local and Cohen-Macaulay.

GORENSTEIN:
We say that R is Gorenstein if the canonical module wg is
generated by a single element.

LEVEL:

We say that R is level if the canonical module wg is generated by
elements of the same degree, that is wr has minimal generating
set {01,...,0)} such that deg(o1) = deg(o2) = - - - = deg(0;).

Equivalently, R is level if for any h.s.o.p. 61,...,04 of R, all the
elements of soc(R/(01,...,04)) are of the same degree.
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(GORENSTEIN AND LEVEL ALGEBRAS— ABSTRACTLY

Let R = @,.; Ri be a finitely generated Z-graded, d-dimensional
k-algebra. Suppose that R is local and Cohen-Macaulay.

GORENSTEIN:
We say that R is Gorenstein if the canonical module wg is
generated by a single element.

LEVEL:

We say that R is level if the canonical module wg is generated by
elements of the same degree, that is wr has minimal generating
set {01,...,0)} such that deg(o1) = deg(o2) = - - - = deg(0;).

Equivalently, R is level if for any h.s.o.p. 61,...,04 of R, all the
elements of soc(R/(01,...,04)) are of the same degree.
(M an R-module

soc(M):={ue M : Ryu=0}

where R, is the unique maximal ideal of R)
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(GORENSTEIN AND LEVEL ALGEBRAS— POLYTOPES

For a lattice polytope P C R”, k[P] = k[x* - t] C k[xi, ..., xF, t]
for all x - t € cone(P) N Z"+1 where
cone(P) = spang_ {(p,1) : p€ P} C R
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(GORENSTEIN AND LEVEL ALGEBRAS— POLYTOPES

For a lattice polytope P C R”, k[P] = k[x* - t] C k[xi, ..., xF, t]
for all x - t € cone(P) N Z"+1 where

cone(P) = spang_ {(p,1) : p€ P} C R

GORENSTEIN:

k[P] is Gorenstein <

@ There exists some ¢ € R"*1 such that
¢ + (cone(P) N Z"*1) = cone(P)° N Z"*1.
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k[P] is Gorenstein <
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e h*(P,z) is a palindromic polynomial.
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(GORENSTEIN AND LEVEL ALGEBRAS— POLYTOPES

For a lattice polytope P C R”, k[P] = k[x* - t] C k[xi, ..., xF, t]
for all x - t € cone(P) N Z"+1 where
cone(P) = spang_ {(p,1) : p€ P} C R"L.
GORENSTEIN:
k[P] is Gorenstein <

@ There exists some ¢ € R"*! such that

¢ + (cone(P) N Z"*1) = cone(P)° N Z"*1.

@ m- P is reflexive for some m € Z>1.

e h*(P,z) is a palindromic polynomial.
LEVEL:
k[P] is level < there is a finite collection c1, ..., ¢; € Z"™! where

j
Z ¢ + (cone(P) N Z"1) = cone(P)° Nz
i=1

such that all ¢1,,, = -+ ¢, ;-
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RECALLING INVERSION SEQUENCES AND STATISTICS

Recall:

Given s, the set of s-inversion sequences is defined

1) = {eeZl) : 0< e < s},

The ascent set of an inversion sequence e is

Al @) = {fG{O,l,...,n—1} 8 ei+1}
Si Sit1

where sp = 1 and ey = 0 by convention, and asc(e) = | Asc(e).
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RECALLING INVERSION SEQUENCES AND STATISTICS

Recall:

Given s, the set of s-inversion sequences is defined
1) = {eeZl) : 0< e < s},

The ascent set of an inversion sequence e is

Al @) = {fG{O,l,...,n—1} 8 ei+1}
Si Sit1

where sp = 1 and ey = 0 by convention, and asc(e) = | Asc(e).

We define Iff,)( ={ec 1 asc(e) = k}.
Given e, e’ ¢ IE,S) st. e=(e1,e,...,e,) and € = (e, €, ...,6€)),
then e + e’ = (e1 + €] mod s1, e+ €, mod s, ..., e, + €], mod sp).
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LEVEL LECTURE HALL POLYTOPES

Theorem (Kohl-O., 2017+, [5])

Let s = (s1,%,...,5n) and let r = max{asc(e) : e € l(:)}. Then
Pg,s) is level if and only if for any e € Igs,)( with 1 < k < r there

exists some e’ € Iﬂ such that (e + €’) € IE,S,)(H.
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LEVEL LECTURE HALL POLYTOPES

Theorem (Kohl-O., 2017+, [5])

Let s = (s1,%,...,5n) and let r = max{asc(e) : e € l(:)}. Then
PE,S) is level if and only if for any e € IEf,)( with 1 < k < r there

exists some €' € I(sz such that (e + €’) € 15)

n n,k+1-
Proof ldea:
Consider k[PE,s)]/(vo, Vi,...,Vp) where vp = (0,...,0,1) and
vi=1(0,...,0,s/,Si41,...,5,) for all /.
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LEVEL LECTURE HALL POLYTOPES

Proof Idea (Cont.):

The remaining lattice points are those in the half-open fundemental
parallelpiped, which are in bijection with inversion sequences with
there height in the cone given by the number of ascents.
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LEVEL LECTURE HALL POLYTOPES

Proof Idea (Cont.):

The remaining lattice points are those in the half-open fundemental
parallelpiped, which are in bijection with inversion sequences with
there height in the cone given by the number of ascents.

One justification:
P(S) Z Zasc

ecl®
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LEVEL LECTURE HALL POLYTOPES

Proof Idea (Cont.):

The remaining lattice points are those in the half-open fundemental
parallelpiped, which are in bijection with inversion sequences with
there height in the cone given by the number of ascents.

One justification:
P(S Z Zasc

eelf,s)

It is left to show that addition of inversion sequences is equivalent
to addition of lattice points in the parallelpiped up to equivalence
class.
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LEVEL LECTURE HALL POLYTOPES

Proof Idea (Cont.):

The remaining lattice points are those in the half-open fundemental
parallelpiped, which are in bijection with inversion sequences with
there height in the cone given by the number of ascents.

One justification:
P(S Z Zasc

eelf,s)
It is left to show that addition of inversion sequences is equivalent
to addition of lattice points in the parallelpiped up to equivalence
class.
The condition on inversion sequences in the theorem is now
precisely the necessary condition for soc(k[Pgs)]/(vo, Vi,...,Vp)) to
contain elements of a single degree.

McCabe Olsen Level algebras and lecture hall polytopes



CONSEQUENCES

Corollary

Pgsl’sz)

For any s = (s1, ), is level **
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CONSEQUENCES

Corollary

For any s = (s1, ), Pgsl’sz) is level **

**|t is already known that all lattice polygons are level
(Higashitani-Yanagawa [4]), but one can use the theorem to proves
this.
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Corollary

For any s = (s1, %), Pgsl’sz) is level **

**|t is already known that all lattice polygons are level
(Higashitani-Yanagawa [4]), but one can use the theorem to proves

this.
Corollary
Suppose that s = (s1,...,54) and t = (t1,...,te) are sequence

such that Pfjs) and Pg) are level polytopes. Then

McCabe Olsen Level algebras and lecture hall polytopes



CONSEQUENCES

Corollary

For any s = (s1, %), Pgsl’sz) is level **

**|t is already known that all lattice polygons are level
(Higashitani-Yanagawa [4]), but one can use the theorem to proves

this.
Corollary
Suppose that s = (s1,...,54) and t = (t1,...,te) are sequence

such that Pfjs) and Pg) are level polytopes. Then

° Pgljrsl) is level;
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Corollary

For any s = (s1, %), Pgsl’sz) is level **

**|t is already known that all lattice polygons are level
(Higashitani-Yanagawa [4]), but one can use the theorem to proves

this.
Corollary
Suppose that s = (s1,...,54) and t = (t1,...,te) are sequence

such that Pfjs) and Pg) are level polytopes. Then

° Pgljrsl) is level;

o P s fevel:
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CONSEQUENCES

Corollary

For any s = (s1, %), Pgsl’sz) is level **

**|t is already known that all lattice polygons are level
(Higashitani-Yanagawa [4]), but one can use the theorem to proves

this.
Corollary
Suppose that s = (s1,...,54) and t = (t1,...,te) are sequence

such that Pfjs) and Pg) are level polytopes. Then

° Pgljrsl) is level;

o P s fevel:

P(s,l,t)

dtetd is level
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CONSEQUENCES

Corollary

For any s = (s1, %), Pgsl’sz) is level **

**|t is already known that all lattice polygons are level
(Higashitani-Yanagawa [4]), but one can use the theorem to proves

this.
Corollary
Suppose that s = (s1,...,54) and t = (t1,...,te) are sequence

such that Pfjs) and Pg) are level polytopes. Then

° Pgljrsl) is level;

o P s fevel:

P(s,l,t)

dtetd is level

We can use these to create an infinite family of lecture hall
simplies which are level of arbitrarily high dimension.
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(GORENSTEIN LECTURE HALL POLYTOPES

Theorem (Kohl-O., 2017+, [5])

Let s = (s1,%,...,5,) € Z%,. Then PE,S) is Gorenstein if and only
if there exists a ¢ € "1 satisfying

¢jsj—1 = ¢-18j + ged(sj-1, )

for j > 1 and
Chy1Sn =1+ ¢y

with ¢ = 1.
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(GORENSTEIN LECTURE HALL POLYTOPES

Theorem (Kohl-O., 2017+, [5])

Let s = (s1,%,...,5n) be a sequence such that there exists some
1 < i < n such that ged(s;j—1,s;) = 1 and define

s = (?1, e ?,,) = (Sny Sn—1,.-.,51). Then P(:) is Gorenstein if
and only if there exists ¢, d € 7." satisfying

¢jsj-1 = ¢-15; + ged(sj-1, 57)

and

A5t = dia 5 +ged(§1, 5)

for j > 1 with ¢ = d; = 1.
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(GORENSTEIN LECTURE HALL POLYTOPES

Theorem (Kohl-O., 2017+, [5])

Let s = (s1,%,...,5n) be a sequence such that there exists some
1 < i < n such that ged(s;j—1,s;) = 1 and define

s = (?1, e ?,,) = (Sny Sn—1,.-.,51). Then P(:) is Gorenstein if
and only if there exists ¢, d € 7." satisfying

¢jsj-1 = ¢-15; + ged(sj-1, 57)

and

451 =di 15 +gcd(571, §)
for j > 1 with ¢ = d; = 1.

Proof uses ideas from Beck-Braun-Képpe-Savage-Zafeirakopoulos
[1] result on Gorenstein lecture hall cones.

McCabe Olsen Level algebras and lecture hall polytopes



SOME REMAINING QUESTIONS

Conjecture (Kohl-0.)

Let s = (s1,%,...,5y) € Z%,. Suppose that there exists a
c € Z"t! satisfying

Gsj-1 = G185 + ged(sj-1, )

for j > 1. Then Pﬁf) is level.
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SOME REMAINING QUESTIONS

Conjecture (Kohl-0.)

Let s = (s1,%,...,5y) € Z%,. Suppose that there exists a
c € Z"t! satisfying

¢jsj-1 = ¢j-15; + ged(sj-1, 57)

for j > 1. Then Pﬁf) is level.

Questions:

o If P is a polytope with the IDP such that at least one vertex
cone of P is a Gorenstein cone, is P a level polytope?
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SOME REMAINING QUESTIONS

Conjecture (Kohl-0.)
Let s = (s1,52,..-,51) € Z%,. Suppose that there exists a
c € Z"t! satisfying

¢jsj-1 = ¢j-15; + ged(sj-1, 57)

for j > 1. Then Pﬁf) is level.

Questions:
o If P is a polytope with the IDP such that at least one vertex
cone of P is a Gorenstein cone, is P a level polytope?
@ Will the levelness proof method adapt nicely to other families
of lattice polytopes? (i.e. can we do something similar to
other simplies with “combinatorially nice" parallelpipeds?)
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SOME REMAINING QUESTIONS

Conjecture (Kohl-0.)
Let s = (s1,52,--.,5n) € Z%,. Suppose that there exists a
c € Z"t! satisfying

¢jsj-1 = ¢j-15; + ged(sj-1, 57)

for j > 1. Then Pﬁf) is level.

Questions:

o If P is a polytope with the IDP such that at least one vertex
cone of P is a Gorenstein cone, is P a level polytope?

@ Will the levelness proof method adapt nicely to other families
of lattice polytopes? (i.e. can we do something similar to
other simplies with “combinatorially nice" parallelpipeds?)

@ Are there reasonably nice conditions for when P & Q is a level
polytope?
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