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Lecture Hall Partitions

Definition

Let s = (s1, s2, . . . , sn) be a sequence such that si ∈ Z≥1 for all i .
The s-lecture hall partitions are the set

L
(s)
n :=

{
λ ∈ Zn : 0 ≤ λ1

s1
≤ λ2

s2
≤ · · · ≤ λn

sn

}
.

Example

Let s = (2, 5, 7). The partition (1, 4, 6) ∈ L
(2,5,7)
3 as

1

2
≤ 4

5
≤ 6

7
.

However, (1, 4, 5) 6∈ L
(2,5,7)
3 as

1

2
≤ 4

5
>

5

7
.
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Inversion sequences and statistics

Given s, the set of s-inversion sequences is defined

I
(s)
n := {e ∈ Zn

≥1 : 0 ≤ ei < si}.

The ascent set of an inversion sequence e is

Asc(e) =

{
i ∈ {0, 1, . . . , n − 1} :

ei
si
<

ei+1

si+1

}
where s0 = 1 and e0 = 0 by convention, and asc(e) = |Asc(e)|.

Example

Let s = (2, 5, 7). Then e = (1, 1, 4) ∈ I
(2,5,7)
3 , Asc(e) = {0, 2} and

asc(e) = 2.
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Lecture hall simplices

Definition

Given s = (s1, s2, . . . , sn), the s-lecture hall simplex is the lattice
simplex given by

P
(s)
n :=

{
λ ∈ Rn : 0 ≤ λ1

s1
≤ λ2

s2
≤ · · · ≤ λn

sn
≤ 1

}
or alternatively

P
(s)
n = conv{(0, . . . , 0, 0), (0, . . . , 0, si , si+1, . . . , sn−1, sn)}

for all 1 ≤ i ≤ n
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Lecture hall simplex properties

h∗(P
(s)
n , z) =

∑
e∈I(s)n

zasc(e) called the s-Eulerian polynomials

(Savage-Schuster [6]). Moreover, these polynomials are
real-rooted and hence unimodal (Savage-Visontai [7]).

P
(s)
n have the integer-decomposition property (monotone s

Hibi-O.-Tsuchiya [3], generality Brändén-Solus [2])

Some partial reflexive/Gorenstein results (Hibi-O.-Tsuchiya
[3]).
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Gorenstein and level algebras– Abstractly

Let R =
⊕

i∈ZRi be a finitely generated Z-graded, d-dimensional
k-algebra. Suppose that R is local and Cohen-Macaulay.

Gorenstein:
We say that R is Gorenstein if the canonical module ωR is
generated by a single element.

Level:
We say that R is level if the canonical module ωR is generated by
elements of the same degree, that is ωR has minimal generating
set {σ1, . . . , σj} such that deg(σ1) = deg(σ2) = · · · = deg(σj).

Equivalently, R is level if for any h.s.o.p. θ1, . . . , θd of R, all the
elements of soc(R/(θ1, . . . , θd)) are of the same degree.
(M an R-module

soc(M) := {u ∈ M : R+u = 0}

where R+ is the unique maximal ideal of R)
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Gorenstein and Level algebras– Polytopes

For a lattice polytope P ⊂ Rn, k[P] = k[xα · t] ⊂ k[x±1 , . . . , x
±
n , t]

for all xα · t ∈ cone(P) ∩ Zn+1 where
cone(P) = spanR≥0

{(p, 1) : p ∈ P} ⊂ Rn+1.

Gorenstein:
k[P] is Gorenstein ⇔

There exists some c ∈ Rn+1 such that
c + (cone(P) ∩ Zn+1) = cone(P)◦ ∩ Zn+1.

m · P is reflexive for some m ∈ Z≥1.

h∗(P, z) is a palindromic polynomial.

Level:
k[P] is level ⇔ there is a finite collection c1, . . . , cj ∈ Zn+1 where

j∑
i=1

ci + (cone(P) ∩ Zn+1) = cone(P)◦ ∩ Zn+1

such that all c1n+1 = · · · cjn+1 .
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Recalling inversion sequences and statistics

Recall:

Given s, the set of s-inversion sequences is defined

I
(s)
n := {e ∈ Zn

≥1 : 0 ≤ ei < si}.

The ascent set of an inversion sequence e is

Asc(e) =

{
i ∈ {0, 1, . . . , n − 1} :

ei
si
<

ei+1

si+1

}
where s0 = 1 and e0 = 0 by convention, and asc(e) = |Asc(e)|.

We define I
(s)
n,k = {e ∈ I

(s)
n : asc(e) = k}.

Given e, e ′ ∈ I
(s)
n s.t. e = (e1, e2, . . . , en) and e ′ = (e ′1, e

′
2, . . . , e

′
n),

then e + e ′ = (e1 + e ′1 mod s1, e2 + e ′2 mod s2, . . . , en + e ′n mod sn).
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Level lecture hall polytopes

Theorem (Kohl-O., 2017+, [5])

Let s = (s1, s2, . . . , sn) and let r = max{asc(e) : e ∈ I
(s)
n }. Then

P
(s)
n is level if and only if for any e ∈ I

(s)
n,k with 1 ≤ k < r there

exists some e ′ ∈ I
(s)
n,1 such that (e + e ′) ∈ I

(s)
n,k+1.

Proof Idea:
Consider k[P

(s)
n ]/(v0, v1, . . . , vn) where v0 = (0, . . . , 0, 1) and

vi = (0, . . . , 0, si , si+1, . . . , sn) for all i .
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Level lecture hall polytopes

Proof Idea (Cont.):
The remaining lattice points are those in the half-open fundemental
parallelpiped, which are in bijection with inversion sequences with
there height in the cone given by the number of ascents.

One justification:

h∗(P
(s)
n ) =

∑
e∈I(s)n

zasc(e)

It is left to show that addition of inversion sequences is equivalent
to addition of lattice points in the parallelpiped up to equivalence
class.

The condition on inversion sequences in the theorem is now

precisely the necessary condition for soc(k[P
(s)
n ]/(v0, v1, . . . , vn)) to

contain elements of a single degree.
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Consequences

Corollary

For any s = (s1, s2), P
(s1,s2)
2 is level.**

**It is already known that all lattice polygons are level
(Higashitani-Yanagawa [4]), but one can use the theorem to proves
this.

Corollary

Suppose that s = (s1, . . . , sd) and t = (t1, . . . , te) are sequence

such that P
(s)
d and P

(t)
e are level polytopes. Then

P
(1,s)
d+1 is level;

P
(t,1)
e+1 is level;

P
(s,1,t)
d+e+1 is level

We can use these to create an infinite family of lecture hall
simplies which are level of arbitrarily high dimension.
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**It is already known that all lattice polygons are level
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this.
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Gorenstein lecture hall polytopes

Theorem (Kohl-O., 2017+, [5])

Let s = (s1, s2, . . . , sn) ∈ Zn
≥1. Then P

(s)
n is Gorenstein if and only

if there exists a c ∈ Zn+1 satisfying

cjsj−1 = cj−1sj + gcd(sj−1, sj)

for j > 1 and
cn+1sn = 1 + cn

with c1 = 1.
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Gorenstein lecture hall polytopes

Theorem (Kohl-O., 2017+, [5])

Let s = (s1, s2, . . . , sn) be a sequence such that there exists some
1 < i ≤ n such that gcd(si−1, si ) = 1 and define
←−
s = (←−s1 , . . . ,←−sn ) := (sn, sn−1, . . . , s1). Then P

(s)
n is Gorenstein if

and only if there exists c ,d ∈ Zn satisfying

cjsj−1 = cj−1sj + gcd(sj−1, sj)

and
dj
←−−sj−1 = dj−1

←−sj + gcd(←−−sj−1,
←−sj )

for j > 1 with c1 = d1 = 1.

Proof uses ideas from Beck-Braun-Köppe-Savage-Zafeirakopoulos
[1] result on Gorenstein lecture hall cones.
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Some remaining questions

Conjecture (Kohl-O.)

Let s = (s1, s2, . . . , sn) ∈ Zn
≥1. Suppose that there exists a

c ∈ Zn+1 satisfying

cjsj−1 = cj−1sj + gcd(sj−1, sj)

for j > 1. Then P
(s)
n is level.

Questions:

If P is a polytope with the IDP such that at least one vertex
cone of P is a Gorenstein cone, is P a level polytope?

Will the levelness proof method adapt nicely to other families
of lattice polytopes? (i.e. can we do something similar to
other simplies with “combinatorially nice” parallelpipeds?)

Are there reasonably nice conditions for when P ⊕Q is a level
polytope?
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Petter Brändén and Liam Solus.

(in preparation).

Takayuki Hibi, McCabe Olsen, and Akiyoshi Tsuchiya.

Gorenstein properties and integer decomposition properties of lecture hall
polytopes, 2016.

arXiv:1608.03934.

Akihiro Higashitani and Kohji Yanagawa.

Non-level semi-standard graded Cohen-Macaulay domain with h-vector
(h0, h1, h2).

J. Pure Appl. Algebra, 222(1):191–201, 2018.

Florian Kohl and McCabe Olsen.

Level algebras and lecture hall polytopes.

Arxiv e-prints, 2017.

arXiv:1710.10892.

McCabe Olsen Level algebras and lecture hall polytopes



Carla D. Savage and Michael J. Schuster.

Ehrhart series of lecture hall polytopes and Eulerian polynomials for
inversion sequences.

J. Combin. Theory Ser. A, 119(4):850–870, 2012.

Carla D. Savage and Mirkó Visontai.

The s-Eulerian polynomials have only real roots.

Trans. Amer. Math. Soc., 367(2):1441–1466, 2015.

McCabe Olsen Level algebras and lecture hall polytopes


	Introduction
	Lecture hall polytopes
	Gorenstein and level polytopes

	Level lecture hall polytopes
	Gorenstein classification
	Parting Remarks
	References

