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Tropical arithmetic

We work over the tropical semiring (R U {o0}, &, ®).
Tropical operations are defined as follows:

a®b=min{a,b} and a®© b=a+b.

They are associative and commutative.
Identity elements: a@ oo =aand a® 0 = a.

Multiplication is distributive with respect to addition.



Tropical polynomials
Let x1, X2, ..., X, be variables representing elements in the tropical
semiring. A monomial is any product of variables:
X{l @X; ©®---@xin.
A polynomial is a finite linear combinations of monomials:
f(XlaXZa“-aXn):aiQX{1X£2"'X,I:,”@%’@X{le"'xf;"@"'

We allow negative exponents.

Remark
Polynomials “translate” to piecewise-linear concave functions:

f(X) = min{a,-+i1x1+i2xz+- o+ inXp, aj+j1x1 +JoXo + jnXn, + - }



Tropical hypersurfaces

Given a polynomial f, we define the hypersurface T(f) of f as the
set of points x € R" at which the minimum is attained at least
twice.

Example:
f=3x301x%y o lxy? 03y 01X’ oxy d 1y’ @ 1lx e 1ly® 3




Tropical hypersurfaces

Theorem (Structure theorem)

The tropical hypersurface T(f) is the support of a pure rational
polyhedral complex of dimension n — 1.

The closure of the connected components of the complement of a
tropical hypersurface T(f) are called regions of T(f). They are
convex polyhedra.



Tropical and classical hypersurfaces

Let K be an algebraically closed field with nontrivial valuation (for
example K = C{{t}}). Let f be an Laurent polynomial

f= Z cuxqt - xam with ¢, € K.

u=(u1,...,un)EZ"

We define its tropicalization trop(f) as

trop(f) = min {val(cu) + Z uj x,-}.

uezZn .
i<n

Theorem (Kapranov's theorem)

The following sets coincide:
1. {w € R" | the min in trop(f)(w) is attained at least twice},
2. the closure of {(val(y1),...,val(yn))|(y1,---,yn) € V(f)}.



Newton polytopes
Given a tropical polynomial f = @ ;. avx", we define the Newton
polytope Newt(f) as the polytope

Newt(f) = conv(v : a, # 00).
Example: f =3x3@1x2y D 1xy? @3y 0 1x°oxy 1y’ ®lx®d1ly®3
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Newton polytopes

We consider the convex hull in R™1 of the points (v,a,). The
projection of the lower faces on Newt(f) induces a subdivision of
the Newton polytope.

Example: f = 3x3@1x2y @ 1xy? @3y 1x°dxy 1y’ @lx®d1ly®3




Newton polytopes

We consider the convex hull in R™1 of the points (v,a,). The
projection of the lower faces on Newt(f) induces a subdivision of
the Newton polytope.

Example: f = 3x3@1x2y @ 1xy? @3y 1x°dxy 1y’ @lx®d1ly®3




Newton polytopes and tropical hypersurfaces

Tropical hypersurfaces are dual to the regular subdivision of their
Newton polytopes induced by the coefficients.

Example: f =3x3@1x2y D 1xy? @3y 0 1x°oxy 1y’ ®lx®d1ly®3




Smooth tropical hypersurfaces

A tropical hypersurface is smooth if the regular subdivision induced
by its coefficients is a unimodular triangulation, i.e., cells in the
subdivision are simplices of minimal volume #

Examples:

Unimodular Not unimodular



Regions of a tropical quartic surface

Let 4A3 be the 4-th dilatation of the standard simplex,
40z — conv((o, 0,0), (4,0,0), (0, 4,0), (0,0, 4))

The point p = (1,1, 1) is the unique interior lattice point of 4As.




Let T(f) be a smooth tropical hypersurface of degree 4 in R3. Its
Newton polytope Newt(f) is contained in 4A3. If Newt(f) contains
p in its relative interior, the hypersurface cuts one bounded region
out.

Definition

A 3-dimensional polytope P is a K3 polytope if it arises as the
closure of the bounded region in the complement of a smooth
tropical surface of degree 4.



Example

Consider the tropical quartic surface defined by the polynomial:

f=s(x*oy*ozYo3(xyaxlzaox®oyzox oy
D22 o X2 D y*Z2)D0(XPyz @ xy?z® xyz?) B3(P @y 9 2%)
DOX°y DX’z xy? @y z @ x22 @ y2?) @ 2(x2 @ y? @ 2?)
SO0(xy Dxz®yz)®3(x Dy ®z)d(—9xyz) B 5.

The Newton polytope Newt(f) is 4A3.



Let's look at the K3 polytope defined by T (f)

This is the smooth tropical quartic surface T(f):




Let's look at the K3 polytope defined by T(f)

This is the K3 polytope:

Its f-vector is (64,96, 34).



The hunt for K3 polytopes

Smooth tropical quartic surfaces are dual to regular unimodular tri-
angulations of their Newton polytopes. We switch our attention to
these objects.

From now on we will only talk about Newton polytopes P contained

in 4A3 containing p = (1,1,1) in their relative interior. They are
canonical polytopes.



The hunt for K3 polytopes

Warning: computing the secondary fan of 4A3; does not seem fea-
sible.

> 2A3 has 10 lattice points and 15 regular triangulations,

» 3Aj3 has 20 lattice points and 21125102 regular

triangulations.

Triangulations of 3A3 were computed by Jordan, Joswig and Kastner
with MPTOPCOM.



Central triangulations

We define the central part of a triangulation T as the subset of T
given by the simplices of 7 containing p. If 7 coincides with its
central part, then we say that 7 is central.

The K3 polytope is uniquely determined by the central part of the
triangulation 7T .



Central triangulations

We define the central part of a triangulation T as the subset of T
given by the simplices of 7 containing p. If 7 coincides with its
central part, then we say that 7 is central.

The K3 polytope is uniquely determined by the central part of the
triangulation 7T .

It is enough to consider central triangulations!
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How can we construct central triangulations of a canonical polytope?

{T central triangulation of P} <> {T triangulation of P}
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Central traingulations of canonical polytopes

How can we construct central triangulations of a canonical polytope?

{T central triangulation of P} <> {T triangulation of P}

We are interested in polytopes P which admit at least one unimod-
ular central triangulation.

A polytope P is reflexive if Ap — ¢ = 1, where Ax > c¢ are the
equations defining P.
If P is reflexive,

{T central unimod triang of P} <+ {7 is a unimod triang of OP}

A three dimensional canonical lattice polytope P is reflexive if and
only if every central fine triangulation of P is unimodular. We need
to consider reflexive polytopes!



Theorem (Balletti-P-Sturmfels)
Up to symmetry there are 15139 possible reflexive polytopes
contained in 4A3.
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Theorem (Balletti-P-Sturmfels)

The reflexive polytopes of volume < 30 in the theorem above admit
a total of 36297 333 regular unimodular central triangulations.
Every K3 polytope with < 30 vertices arises from one of these.
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f-vectors of K3 polytopes

Theorem (Balletti-P-Sturmfels)

Let P be a K3 polytope obtained from a polytope P. Then P is a
simple polytope. The entries of its f-vector are

3vol(P)

= vol(P =
v=vol(P), e==12,

f=|PNZ% -1

f-vect # of P f-vect # of P f-vect # of P
(4,6, 4) 9 (22,33, 13) | 1248 (40, 60, 22) 27
(6, 9, 5) 102 (24, 36, 14) 922 (42, 63, 23) 18
(8, 12, 6) 412 (26, 39, 15) 628 (44, 66, 24) 7
(10, 15, 7) 959 (28, 42, 16) 465 (46, 69, 25) 9

(12, 18, 8) 1642 (30, 45, 17) 295 (48, 72, 26) 2
(14, 21, 9) 2083 (32, 48, 18) 203 (50, 75, 27) 2
(16, 24, 10) | 2194 (34, 51, 19) 128 (54, 81, 29) 1
(18, 27, 11) | 1997 (36, 54, 20) 85 (56, 84, 30) 1
(20, 30, 12) | 1646 (38, 57, 21) 53 (64, 96, 34) 1




Moduli space of quartic surfaces

A quartic surface is the variety in P3 defined by a homogeneous
polynomial of degree 4 in C|x, y, z, w],
f(x,y,z,w) = Z cix'yl ZKwA Ik,
i+j+k<4
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Moduli space of quartic surfaces

A quartic surface is the variety in P3 defined by a homogeneous
polynomial of degree 4 in C|x, y, z, w],
f(x,y,z,w) = Z cix'yl ZKwA Ik,
i+j+k<4

The 35 coefficients cjjx parameterize all the quartic surfaces. So
we consider the 34-dimesional projective space HS4 3 = P(HS4 3) of
quartic surfaces. This gives us a “moduli space of quartic surfaces”.

More precisely, the special linear group SL(4) acts on HS4 3, and
on the associated polynomial ring C[HS4 3], generated by cjy. The
moduli space of quartic surfaces in P? is the projective variety de-
termined by Proj(C[HS,3]5"®*).
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to a “nicer” set inside the moduli space. This is the set of stable
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Stable elements

In the context of Geometric Invariant Theory, we want to restric
to a “nicer” set inside the moduli space. This is the set of stable
elements.

More precisely, f is stable if the orbit O(f)>“(*) is closed and the
stabilizer stab(f) is finite.

Determining whether an element is stable is connected to the study
of its singular locus.
Theorem (Shah '81)

If the singular locus of a quartic surface contains at most rational
double points, then the surface is stable.



Arnold’s classification '72
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Pictures from Greuel-Lossen-Shustin “Introduction to Singularities
and Deformation™.



Arnold’'s classification '72
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Pictures from Greuel-Lossen-Shustin “Introduction to Singularities
and Deformation”.



A combinatorial criterion

Theorem (Mumford '77)

A point f in HS4 3 is stable if and only if, for every choice of
coordinates, and for all planes H through p, each open halfspace of
H contains a monomial of f.




A combinatorial criterion

Theorem (Mumford '77)

A point f in HS4 3 is stable if and only if, for every choice of
coordinates, and for all planes H through p, each open halfspace of
H contains a monomial of f.

A reflexive lattice polytope P contained in 4A3 is called minimal if
it does not properly contain any reflexive polytope.

There are precisely 115 minimal reflexive polytopes in 4As.



Stability

Theorem (Balletti-P-Sturmfels)

Let f € C[x,y,z,w]| be a generic homogeneous quartic surface
whose Newton polytope arises from a smooth tropical surface.
Then the quartic surface V/(f) in P3 is stable.
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Stability

Theorem (Balletti-P-Sturmfels)

Let f € C[x,y,z,w]| be a generic homogeneous quartic surface
whose Newton polytope arises from a smooth tropical surface.
Then the quartic surface V/(f) in P3 is stable.

» We show the stability of surfaces having a minimal polytope
as Newton polytope by studying their singular locus.

> We use Mumford's criterion to conclude that also generic

surfaces with Newton polytope containing a minimal one are
stable.



Thank you!
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