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Tropical arithmetic

We work over the tropical semiring (R ∪ {∞},⊕,�).
Tropical operations are defined as follows:

a⊕ b = min{a, b} and a� b = a + b.

They are associative and commutative.

Identity elements: a⊕∞ = a and a� 0 = a.

Multiplication is distributive with respect to addition.



Tropical polynomials

Let x1, x2, . . . , xn be variables representing elements in the tropical
semiring. A monomial is any product of variables:

x i11 � x i22 � · · · � x inn .

A polynomial is a finite linear combinations of monomials:

f (x1, x2, . . . , xn) = ai � x i11 x
i2
2 · · · x

in
n ⊕ aj � x j11 x

j2
2 · · · x

jn
n ⊕ · · · .

We allow negative exponents.

Remark
Polynomials “translate” to piecewise-linear concave functions:

f (x) = min{ai +i1x1+i2x2+· · ·+inxn, aj +j1x1+j2x2 · · · jnxn, · · · }.



Tropical hypersurfaces

Given a polynomial f , we define the hypersurface T (f ) of f as the
set of points x ∈ Rn at which the minimum is attained at least
twice.

Example:
f = 3x3 ⊕ 1x2y ⊕ 1xy2 ⊕ 3y3 ⊕ 1x2 ⊕ xy ⊕ 1y2 ⊕ 1x ⊕ 1y ⊕ 3



Tropical hypersurfaces

Theorem (Structure theorem)

The tropical hypersurface T (f ) is the support of a pure rational
polyhedral complex of dimension n − 1.

The closure of the connected components of the complement of a
tropical hypersurface T (f ) are called regions of T (f ). They are
convex polyhedra.



Tropical and classical hypersurfaces

Let K be an algebraically closed field with nontrivial valuation (for
example K = C{{t}}). Let f be an Laurent polynomial

f =
∑

u=(u1,...,un)∈Zn

cux
u1
1 · · · x

un
n ,with cu ∈ K .

We define its tropicalization trop(f ) as

trop(f ) = min
u∈Zn

{
val(cu) +

∑
i≤n

ui xi

}
.

Theorem (Kapranov’s theorem)

The following sets coincide:

1. {w ∈ Rn
∣∣ the min in trop(f )(w) is attained at least twice};

2. the closure of {(val(y1), . . . , val(yn)) | (y1, . . . , yn) ∈ V (f )}.



Newton polytopes
Given a tropical polynomial f =

⊕
v∈Zn avx

v , we define the Newton
polytope Newt(f ) as the polytope

Newt(f ) = conv(v : av 6=∞).

Example: f = 3x3⊕1x2y⊕1xy2⊕3y3⊕1x2⊕xy⊕1y2⊕1x⊕1y⊕3



Newton polytopes

We consider the convex hull in Rn+1 of the points (v , av ). The
projection of the lower faces on Newt(f ) induces a subdivision of
the Newton polytope.

Example: f = 3x3⊕1x2y⊕1xy2⊕3y3⊕1x2⊕xy⊕1y2⊕1x⊕1y⊕3
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Newton polytopes and tropical hypersurfaces

Tropical hypersurfaces are dual to the regular subdivision of their
Newton polytopes induced by the coefficients.

Example: f = 3x3⊕1x2y⊕1xy2⊕3y3⊕1x2⊕xy⊕1y2⊕1x⊕1y⊕3



Smooth tropical hypersurfaces

A tropical hypersurface is smooth if the regular subdivision induced
by its coefficients is a unimodular triangulation, i.e., cells in the
subdivision are simplices of minimal volume 1

n! .

Examples:

Unimodular Not unimodular



Regions of a tropical quartic surface

Let 4∆3 be the 4-th dilatation of the standard simplex,

4∆3 = conv
(

(0, 0, 0), (4, 0, 0), (0, 4, 0), (0, 0, 4)
)

The point p = (1, 1, 1) is the unique interior lattice point of 4∆3.



Let T (f ) be a smooth tropical hypersurface of degree 4 in R3. Its
Newton polytope Newt(f ) is contained in 4∆3. If Newt(f ) contains
p in its relative interior, the hypersurface cuts one bounded region
out.

Definition
A 3-dimensional polytope P is a K3 polytope if it arises as the
closure of the bounded region in the complement of a smooth
tropical surface of degree 4.



Example

Consider the tropical quartic surface defined by the polynomial:

f = 5(x4 ⊕ y4 ⊕ z4)⊕ 3(x3y ⊕ x3z ⊕ xy3 ⊕ y3z ⊕ xz3 ⊕ yz3)

⊕2(x2y2⊕ x2z2⊕ y2z2)⊕0(x2yz⊕ xy2z⊕ xyz2)⊕3(x3⊕ y3⊕ z3)

⊕ 0(x2y ⊕ x2z ⊕ xy2 ⊕ y2z ⊕ xz2 ⊕ yz2)⊕ 2(x2 ⊕ y2 ⊕ z2)

⊕ 0(xy ⊕ xz ⊕ yz)⊕ 3(x ⊕ y ⊕ z)⊕ (−9xyz)⊕ 5.

The Newton polytope Newt(f ) is 4∆3.



Let’s look at the K3 polytope defined by T (f )

This is the smooth tropical quartic surface T (f ):



Let’s look at the K3 polytope defined by T (f )

This is the K3 polytope:

Its f -vector is (64, 96, 34).



The hunt for K3 polytopes

Smooth tropical quartic surfaces are dual to regular unimodular tri-
angulations of their Newton polytopes. We switch our attention to
these objects.

From now on we will only talk about Newton polytopes P contained
in 4∆3 containing p = (1, 1, 1) in their relative interior. They are
canonical polytopes.



The hunt for K3 polytopes

Warning: computing the secondary fan of 4∆3 does not seem fea-
sible.

I 2∆3 has 10 lattice points and 15 regular triangulations,

I 3∆3 has 20 lattice points and 21 125 102 regular
triangulations.

Triangulations of 3∆3 were computed by Jordan, Joswig and Kastner
with MPTOPCOM.



Central triangulations

We define the central part of a triangulation T as the subset of T
given by the simplices of T containing p. If T coincides with its
central part, then we say that T is central.

The K3 polytope is uniquely determined by the central part of the
triangulation T .

It is enough to consider central triangulations!



Central triangulations

We define the central part of a triangulation T as the subset of T
given by the simplices of T containing p. If T coincides with its
central part, then we say that T is central.

The K3 polytope is uniquely determined by the central part of the
triangulation T .

It is enough to consider central triangulations!



Central traingulations of canonical polytopes

How can we construct central triangulations of a canonical polytope?

{T central triangulation of P} ↔ {T triangulation of ∂P}

We are interested in polytopes P which admit at least one unimod-
ular central triangulation.

A polytope P is reflexive if Ap − c = 1, where Ax ≥ c are the
equations defining P.
If P is reflexive,

{T central unimod triang of P} ↔ {T is a unimod triang of ∂P}

A three dimensional canonical lattice polytope P is reflexive if and
only if every central fine triangulation of P is unimodular. We need
to consider reflexive polytopes!
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Theorem (Balletti-P-Sturmfels)

Up to symmetry there are 15139 possible reflexive polytopes
contained in 4∆3.
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Theorem (Balletti-P-Sturmfels)

The reflexive polytopes of volume ≤ 30 in the theorem above admit
a total of 36 297 333 regular unimodular central triangulations.
Every K3 polytope with ≤ 30 vertices arises from one of these.
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f -vectors of K3 polytopes

Theorem (Balletti-P-Sturmfels)

Let P be a K3 polytope obtained from a polytope P. Then P is a
simple polytope. The entries of its f -vector are

v = vol(P), e =
3vol(P)

2
, f = |P ∩ Z2| − 1.

f -vect # of P f -vect # of P f -vect # of P
(4, 6, 4) 9 (22, 33, 13) 1248 (40, 60, 22) 27
(6, 9, 5) 102 (24, 36, 14) 922 (42, 63, 23) 18

(8, 12, 6) 412 (26, 39, 15) 628 (44, 66, 24) 7
(10, 15, 7) 959 (28, 42, 16) 465 (46, 69, 25) 9
(12, 18, 8) 1642 (30, 45, 17) 295 (48, 72, 26) 2
(14, 21, 9) 2083 (32, 48, 18) 203 (50, 75, 27) 2

(16, 24, 10) 2194 (34, 51, 19) 128 (54, 81, 29) 1
(18, 27, 11) 1997 (36, 54, 20) 85 (56, 84, 30) 1
(20, 30, 12) 1646 (38, 57, 21) 53 (64, 96, 34) 1



Moduli space of quartic surfaces

A quartic surface is the variety in P3 defined by a homogeneous
polynomial of degree 4 in C[x , y , z ,w ],

f (x , y , z ,w) =
∑

i+j+k≤4
cijkx

iy jzkw4−i−j−k .

The 35 coefficients cijk parameterize all the quartic surfaces. So
we consider the 34-dimesional projective space HS4,3 = P(HS4,3) of
quartic surfaces. This gives us a “moduli space of quartic surfaces”.

More precisely, the special linear group SL(4) acts on HS4,3, and
on the associated polynomial ring C[HS4,3], generated by cijk . The
moduli space of quartic surfaces in P3 is the projective variety de-
termined by Proj

(
C[HS4,3]SL(4)

)
.
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Stable elements

In the context of Geometric Invariant Theory, we want to restric
to a “nicer” set inside the moduli space. This is the set of stable
elements.

More precisely, f is stable if the orbit O(f )SL(4) is closed and the
stabilizer stab(f ) is finite.

Determining whether an element is stable is connected to the study
of its singular locus.

Theorem (Shah ’81)

If the singular locus of a quartic surface contains at most rational
double points, then the surface is stable.
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Arnold’s classification ’72
Ak : x2 + y2 + zk+1

Dk : x2 + y2z + zk−1

Pictures from Greuel-Lossen-Shustin “Introduction to Singularities
and Deformation”.



Arnold’s classification ’72

E6: x2 + y3 + z4, E7: x2 + y3 + yz3, and E8: x2 + y3 + z5

Pictures from Greuel-Lossen-Shustin “Introduction to Singularities
and Deformation”.



A combinatorial criterion

Theorem (Mumford ’77)

A point f in HS4,3 is stable if and only if, for every choice of
coordinates, and for all planes H through p, each open halfspace of
H contains a monomial of f .

A reflexive lattice polytope P contained in 4∆3 is called minimal if
it does not properly contain any reflexive polytope.

There are precisely 115 minimal reflexive polytopes in 4∆3.
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Stability

Theorem (Balletti-P-Sturmfels)

Let f ∈ C[x , y , z ,w ] be a generic homogeneous quartic surface
whose Newton polytope arises from a smooth tropical surface.
Then the quartic surface V (f ) in P3 is stable.

I We show the stability of surfaces having a minimal polytope
as Newton polytope by studying their singular locus.

I We use Mumford’s criterion to conclude that also generic
surfaces with Newton polytope containing a minimal one are
stable.
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Thank you!
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