Universität Rostock

A McMullen's formula for Ehrhart coefficients

Maren Ring
 Universität Rostock

Lattice
Let V be a Euclidean space and $L \subset V$ be a lattice.
A fundamental domain T of L is a bounded subset $T \subseteq V$, such that

- $\bigcup(T+x)=\operatorname{span}(L)$,
$x \in L$
- $(T+x) \cap(T+y)=\varnothing$ for $x, y \in L$ with $x \neq y$ and
- every intersection of T with an affine subspace is Lebesgue measurable.

Traditio et Innovatio

The relative volume

The relative volume $\operatorname{vol}_{L}(A)$ of a set A with respect to a lattice L is given by

$$
\operatorname{vol}_{L}(A)=\frac{\operatorname{absvol}_{\operatorname{span}(L)}(A)}{\operatorname{absvol}_{\operatorname{span}(L)}(T)}
$$

for any fundamental domain T of L.

The Ehrhart polynomial

Let L be a lattice and P a d-dimensionale lattice polytope. Then

$$
\operatorname{Ehr}_{P}(k):=|k P \cap L|=e_{d} k^{d}+e_{d-1} k^{d-1}+\ldots+e_{1} k+e_{0}
$$

(Ehrhart 1962)
Coefficients?
$e_{d}=\operatorname{vol}(P), \quad e_{d-1}=\frac{1}{2} \sum_{f \in F_{d-1}} \operatorname{vol}(f), \quad e_{0}=1$
2-dimensional:
$E \operatorname{Ehr}_{P}(k)=\left|k P \cap \mathbb{Z}^{2}\right|=\operatorname{vol}(P) k^{2}+\frac{1}{2} \sum_{f \in F_{1}} \operatorname{vol}(f) k+1$
(Pick 1899)

The Ehrhart polynomial
$\operatorname{Ehr}_{P}(k)=e_{d} k^{d}+e_{d-1} k^{d-1}+\ldots+e_{1} k+e_{0}$
(Ehrhart 1962)
Coefficients?
All positive?
Sadly no...

Reeve tetrahedra
$T_{N}=\operatorname{conv}((0,0,0),(1,0,0),(0,1,0),(1,1, N))$

The Ehrhart polynomial
$E \operatorname{Ehr}_{P}(k)=e_{d} k^{d}+e_{d-1} k^{d-1}+\ldots+e_{1} k+e_{0}$
(Ehrhart 1962)
Coefficients?
$e_{d}=\operatorname{vol}(P), \quad e_{d-1}=\frac{1}{2} \sum_{f \in F_{d-1}} \operatorname{vol}(f), \quad e_{0}=1$
Generalizations?
McMullen's formulas!

McMullen's formulas aka local fromulas for Ehrhart coefficients

Functions μ exist, that assign a (rational) number to every cone, such that the following equalities for the Ehrhart coefficients hold:

$$
e_{i}=\sum_{f \in F_{i}} \mu\left(N_{f}\right) \operatorname{vol}(f) \quad \text { for all } i \in\{1, \ldots, d\}
$$

(McMullen1983)
$N_{f}=$ normal cone of the face f, i.e. the cone over the outer normal vectors of the facets meeting in f

Universität Rostock

Locality

Known Constructions

Robert Morelli (1993), Pick's theorem and the Todd class of a toric variety, Adv. Math. 100, 183-231.

James E. Pommersheim and Hugh Thomas (2004), Cycles representing the Todd class of a toric variety, J. Amer. Math. Soc. 17, 983-994.

Nicole Berline and Michèle Vergne (2007), Local Euler McLaurin formula for polytopes, Mosc. Math. J., Volume 7, Number 3, 355-386.

Idea

$$
|P \cap L|=\operatorname{vol} \underbrace{\left(\bigcup_{x \in|P \cap L|}(x+T)\right)}_{:=\text {cellcomplex of } \mathrm{P}}
$$

for any fundamental domain T of L.

Construction

> Define a tiling of space into regions corresponding to normal cones, which are periodic w.r.t. the sublattice in the affine hull of the face.

Construction

Construction

An error is made near the boundary when taking

$$
\begin{aligned}
& e_{d}=\mu\left(N_{S}\right) \operatorname{vol}(S)=1 \cdot \operatorname{vol}(S) \\
& e_{i}=\sum_{f \in F_{i}} \mu\left(N_{f}\right) \operatorname{vol}(f)
\end{aligned}
$$

Substract correction volumes for faces of the normal cone.

$$
\begin{aligned}
& \mu\left(N_{S}\right)=1, \quad \mu\left(N_{f_{1}}\right)=2-\frac{3}{2} \mu\left(N_{S}\right), \\
& \mu\left(N_{V_{2}}\right)=\frac{7}{4}-\frac{7}{8} \mu\left(N_{S}\right)-
\end{aligned}
$$

Construction

An error is made near the boundary when taking

$$
\begin{aligned}
& e_{d}=\mu\left(N_{S}\right) \operatorname{vol}(S)=1 \cdot \operatorname{vol}(S) \\
& e_{i}=\sum_{f \in F_{i}} \mu\left(N_{f}\right) \operatorname{vol}(f)
\end{aligned}
$$

Substract correction volumes for faces of the normal cone.

$$
\begin{aligned}
& \mu\left(N_{S}\right)=1, \quad \mu\left(N_{f_{1}}\right)=2-\frac{3}{2} \mu\left(N_{S}\right), \\
& \mu\left(N_{v_{2}}\right)=\frac{7}{4}-\frac{7}{8} \mu\left(N_{S}\right)--\frac{1}{2} \mu\left(N_{f_{1}}\right)-\frac{1}{2} \mu\left(N_{f_{3}}\right)
\end{aligned}
$$

formula

After constructing the regions for each cone, we can compute inductively

$$
\begin{equation*}
\mu(\{0\}):=1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu(C):=v_{C}-\sum_{K<C} w_{K}^{C} \cdot \mu(K), \tag{2}
\end{equation*}
$$

for pointed rational cones $C \subseteq V$ with $\operatorname{dim}(C) \geq 1$, where v_{c} is the volume of the cellcomplex intersected with the region and w_{C}^{K} is the correction term.

Symmetry

Let \mathcal{G} be a subgroup of the lattice preserving symmetries of P.
Define a \mathcal{G}-invariant scalar product:

$$
\langle x, y\rangle_{\mathcal{G}}:=x^{t} G y
$$

for all $x, y \in \mathbb{R}^{d}$, given by the Gram matrix

$$
G:=\frac{1}{|\mathcal{G}|} \sum_{A \in \mathcal{G}} A^{t} A
$$

Symmetry

For a given scalar product $\langle\cdot, \cdot\rangle$ and lattice L, the Dirichlet-Voronoi cell is defined as

$$
D V(\langle,\rangle, L)=\{x \in \operatorname{span}(L) \mid\langle x, x\rangle \leq\langle x-p, x-p\rangle \forall p \in L\} .
$$

Trick: An invariant scalar product defines an invariant Dirichlet-Voronoi cell and thus equal values $\mu\left(N_{f}\right)$ for all faces f in the same orbit w.r.t. \mathcal{G}.

Universität Rostock

Symmetry

Face f	S	f_{1}	f_{2}	f_{3}	v_{1}	v_{2}	v_{3}
$\mu\left(N_{f}\right)$	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{4}$

Universität

Thank you for your attention!

