# Toric Fano varieties associated to graph cubeahedra 

## Yusuke Suyama (Osaka University)

Algebraic and Geometric Combinatorics on Lattice Polytopes
August 2, 2018

## Table of Contents

(9) Toric varieties and fans
(2) Graph cubeahedra
(3) Toric Fano varieties
(4) Main results

## 1. Toric varieties and fans

## Definition

An $n$-dimensional toric variety is a normal algebraic variety $X$ over $\mathbb{C}$ containing $\left(\mathbb{C}^{*}\right)^{n}$ as an open dense subset, s.t. the natural action $\left(\mathbb{C}^{*}\right)^{n} \curvearrowright\left(\mathbb{C}^{*}\right)^{n}$ extends to an action on $X$.

## Examples

$\left(\mathbb{C}^{*}\right)^{n}, \mathbb{C}^{n}, \mathbb{P}^{n}$ are toric varieties.

## Definition

Two toric varieties $X$ and $X^{\prime}$ are said to be isomorphic if there exists an isomorphism $f: X \rightarrow X^{\prime}$ satisfying the following conditions:

- $f$ induces an isomorphism of algebraic tori $f^{\prime}:\left(\mathbb{C}^{*}\right)^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{n}$.
- $f$ is equivariant with respect to $f^{\prime}$, i.e., $f(t x)=f^{\prime}(t) f(x)$ for any $t \in\left(\mathbb{C}^{*}\right)^{n}$ and $x \in X$.


## Definition

A rational strongly convex polyhedral cone is a cone $\sigma \subset \mathbb{R}^{n}$ generated by finitely many vectors in $\mathbb{Z}^{n}$ which does not contain any non-zero linear subspace of $\mathbb{R}^{n}$. A fan in $\mathbb{R}^{n}$ is a non-empty finite set $\Delta$ of such cones satisfying the following conditions:

- If $\sigma \in \Delta$, then each face of $\sigma$ is in $\Delta$.
- If $\sigma, \tau \in \Delta$, then $\sigma \cap \tau$ is a face of each.


## Definition

Two fans $\Delta$ and $\Delta^{\prime}$ in $\mathbb{R}^{n}$ are said to be isomorphic if there exists an automorphism of $\mathbb{Z}^{n}$ that induces a bijection $\Delta \rightarrow \Delta^{\prime}$.

## Theorem

\{fans in $\left.\mathbb{R}^{n}\right\} /($ isom.) $\stackrel{1: 1}{\longleftrightarrow}\{n$-dimensional toric varieties $\} /($ isom.), $\Delta \mapsto X(\Delta)$.

We construct a toric variety $X(\Delta)$ from a fan $\Delta$.

## Step 1 (affine toric varieties)

For each $\sigma \in \Delta$, we construct an affine toric variety $U_{\sigma}$.

- $\sigma^{v}=\left\{u \in \mathbb{R}^{n} \mid\langle u, v\rangle \geq 0 \forall v \in \sigma\right\}$ : the dual of $\sigma$.
- $\sigma^{\vee} \cap \mathbb{Z}^{n}$ is a commutative monoid.
- The monoid ring $\mathbb{C}\left[\sigma^{\vee} \cap \mathbb{Z}^{n}\right]$ is a finitely generated integral domain over $\mathbb{C}$. So we put $U_{\sigma}=\operatorname{Spec} \mathbb{C}\left[\sigma^{\vee} \cap \mathbb{Z}^{n}\right]$.


## Step 2 (gluing)

Let $\tau$ be a face of $\sigma$ and let $\tau \rightarrow \sigma$ be the inclusion.
$\bullet \sim$ a monoid homomorphism $\sigma^{\vee} \cap \mathbb{Z}^{n} \rightarrow \tau^{\vee} \cap \mathbb{Z}^{n}$.

- $\sim$ an open immersion $U_{\tau} \rightarrow U_{\sigma}$.
- Gluing $\left\{U_{\sigma} \mid \sigma \in \Delta\right\}$, we obtain the toric variety $X(\Delta)$.


## Example

$$
\begin{aligned}
& \sigma=\mathbb{R}_{\geq 0}\left(2 e_{1}-e_{2}\right)+\mathbb{R}_{\geq 0} e_{2} \subset \mathbb{R}^{2} \\
& \leadsto \sigma^{\vee}=\mathbb{R}_{\geq 0} e_{1}+\mathbb{R}_{\geq 0}\left(e_{1}+2 e_{2}\right) \\
& \leadsto \sigma^{\vee} \cap \mathbb{Z}^{2}=\mathbb{Z}_{\geq 0} e_{1}+\mathbb{Z}_{\geq 0}\left(e_{1}+e_{2}\right)+\mathbb{Z}_{\geq 0}\left(e_{1}+2 e_{2}\right) \text {. }
\end{aligned}
$$

$\mathbb{C}\left[\sigma^{\vee} \cap \mathbb{Z}^{2}\right]=\mathbb{C}\left[X, X Y, X Y^{2}\right]=\mathbb{C}[U, V, W] /\left(U W-V^{2}\right)$. Therefore $U_{\sigma}=\operatorname{Spec} \mathbb{C}[U, V, W] /\left(U W-V^{2}\right)$.

## Examples ( $n=2$ )


$\mathbb{P}^{2}$

$\mathbb{P}^{1} \times \mathbb{P}^{1}$


Hirzebruch surface $F_{1}$
$\Delta:$ a fan in $\mathbb{R}^{n}$.

## Definition

- $\Delta$ is nonsingular $\Leftrightarrow$ every cone of $\Delta$ is generated by a part of a basis for $\mathbb{Z}^{n}$.
- $\Delta$ is complete $\Leftrightarrow \bigcup_{\sigma \in \Delta} \sigma=\mathbb{R}^{n}$.


## Fact

- $X(\Delta)$ is nonsingular $\Leftrightarrow \Delta$ is nonsingular.
- $X(\Delta)$ is complete $\Leftrightarrow \Delta$ is complete.


## 2. Graph cubeahedra

Let $G$ be a finite simple graph, that is, a finite graph with no loops and no multiple edges.

- $V(G)=\{1, \ldots, n\}$ : the node set.
- $E(G)$ : the edge set.


## Definition

For $I \subset V(G)$, we define the induced subgraph $G \mid$, by

$$
V\left(\left.G\right|_{I}\right)=I, \quad E\left(\left.G\right|_{I}\right)=\{\{v, w\} \in E(G) \mid v, w \in I\} .
$$

Let $\square^{n}$ be an $n$-cube whose facets are labeled by $1, \ldots, n$ and $\overline{1}, \ldots, \bar{n}$, where the two facets labeled by $i$ and $\bar{i}$ are on opposite sides.
Then every face of $\square^{n}$ is labeled by a subset $I \subset\{1, \ldots, n, \overline{1}, \ldots, \bar{n}\}$ such that $I \cap\{1, \ldots, n\}$ and $\{i \in\{1, \ldots, n\} \mid \bar{i} \in I\}$ are disjoint. The face corresponding to $I$ is the intersection of the facets labeled by the elements of $l$.


## Let $I_{G}=\{I \subset V(G)|I \neq \emptyset, G|$, is connected $\}$. We call $I_{G}$ the

 graphical building set of $G$.
## Example

Let $P_{3}$ be a path with three nodes.


Then $I_{P_{3}}=\{\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,2,3\}\}$.

## Definition (Devadoss-Heath-Vipismakul, 2011)

The graph cubeahedron $\square_{G}$ is obtained from $\square^{n}$ by truncating the faces labeled by the elements of $I_{G}$ in increasing order of dimension.

## Example

Let $P_{n}$ be a path with $n$ nodes. Then

$$
\begin{aligned}
& I_{P_{2}}=\{\{1\},\{2\},\{1,2\}\}, \\
& I_{P_{3}}=\{\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,2,3\}\}
\end{aligned}
$$

and we have the graph cubeahedra $\square \rho_{2}$ and $\square \rho_{3}$ in the following figures:


We have a one-to-one correspondence

$$
\begin{aligned}
\mathcal{I}_{G} \cup\{\{\overline{1}\}, \ldots,\{\bar{n}\}\} & \stackrel{1: 1}{\longleftrightarrow}\left\{\text { facets of } \square_{G}\right\}, \\
I & \mapsto
\end{aligned} F_{l} .
$$

## Theorem (Devadoss-Heath-Vipismakul, 2011)

Let $G$ be a finite simple graph. Then the two facets $F_{l}$ and $F_{J}$ of the graph cubeahedron $\square_{G}$ intersect iff one of the following holds:

- $I, J \in I_{G}$ and we have either $I \subset J$ or $J \subset I$ or $I \cup J \notin I_{G}$.
- One of $I$ and $J$, say $I$, is in $I_{G}$ and $J=\{\bar{j}\} \quad \exists j \in\{1, \ldots, n\} \backslash I$.
- $I=\{\bar{i}\}$ and $J=\{\bar{j}\}$ for some $i, j \in\{1, \ldots, n\}$.

Furthermore, $\square_{G}$ is a flag polytope.

We can realize $\square_{G}$ as a smooth polytope (or a Delzant polytope) such that for any $I \in I_{G} \cup\{\{\overline{1}\}, \ldots,\{\bar{n}\}\}$, the outward-pointing primitive normal vector $e_{l}$ of $F_{l}$ is

$$
e_{l}= \begin{cases}\sum_{i \in l} e_{i} & \left(I \in \mathcal{I}_{G}\right), \\ -e_{i} & (I=\{\bar{i}\}, i \in\{1, \ldots, n\}) .\end{cases}
$$

## Example $\left(G=P_{2}\right)$



We describe the fan $\Delta_{\square_{G}}$ of $\square_{G}$ explicitly. Let

$$
\mathcal{N}^{\square}(G)=\left\{N \subset \mathcal{I}_{G} \cup\{\{\overline{1}\}, \ldots,\{\bar{n}\}\} \mid F_{I} \cap F_{J} \neq \emptyset \text { for any } I, J \in N\right\} .
$$

For $N \in \mathcal{N}^{\square}(G)$, we denote by $\sigma_{N}$ the $|N|$-dimensional cone $\sum_{l \in N} \mathbb{R}_{\geq 0} e_{l}$ in $\mathbb{R}^{n}$. Then $\Delta_{\square_{G}}=\left\{\sigma_{N} \mid N \in \mathcal{N}^{\square}(G)\right\}$.

## Example

The fan $\Delta_{\square P_{2}}$ of $\square_{P_{2}}$ is illustrated in the right figure and thus the associated toric variety is $\mathbb{P}^{1} \times \mathbb{P}^{1}$ blown-up at one point.


## 3. Toric Fano varieties

$X$ : a nonsingular projective algebraic variety.

## Definition

- $X$ is Fano $\Leftrightarrow$ the anticanonical divisor $-K_{X}$ is ample.
- $X$ is weak Fano $\Leftrightarrow-K_{X}$ is nef and big.
- A divisor $D$ is nef $\Leftrightarrow(D . C) \geq 0$ for any curve $C \subset X$.
- $D$ is big $\Leftrightarrow$ the litaka dimension $\kappa(X, D)$ is equal to $\operatorname{dim} X$.


## Theorem

There are a finite number of isomorphism classes of toric (weak) Fano varieties in any given dimension.

| dimension | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| \# of toric Fano varieties | 1 | 5 | 18 | 124 | 866 | 7622 |
| \# of toric weak Fano varieties | 1 | 16 | $?$ | $?$ | $?$ | $?$ |

Let $\Delta(r)$ be the set of $r$-dimensional cones in $\Delta$ for $0 \leq r \leq n$.

## Proposition

$$
\begin{aligned}
\Delta(n-1) & \stackrel{1: 1}{\longleftrightarrow}\{\text { torus-invariant curves on } X(\Delta)\}, \\
\tau & \mapsto V(\tau) .
\end{aligned}
$$

## Proposition

Let $X(\Delta)$ be an $n$-dimensional nonsingular projective toric variety.

- $X(\Delta)$ is Fano $\Leftrightarrow\left(-K_{X(\Delta)} . V(\tau)\right)>0 \quad \forall \tau \in \Delta(n-1)$.
- $X(\Delta)$ is weak Fano $\Leftrightarrow\left(-K_{X(\Delta)} . V(\tau)\right) \geq 0 \quad \forall \tau \in \Delta(n-1)$.

Let $\Delta$ be a nonsingular complete fan in $\mathbb{R}^{n}$.

## Proposition

Let $\tau=\mathbb{R}_{\geq 0} v_{1}+\cdots+\mathbb{R}_{\geq 0} v_{n-1} \in \Delta(n-1)$, where $v_{1}, \ldots, v_{n-1}$ are primitive vectors in $\mathbb{Z}^{n}$, and let $v$ and $v^{\prime}$ be the distinct primitive vectors in $\mathbb{Z}^{n}$ s.t. $\tau+\mathbb{R}_{\geq 0} v, \tau+\mathbb{R}_{\geq 0} v^{\prime} \in \Delta(n)$. Then:

- $\exists a_{1}, \ldots, a_{n-1} \in \mathbb{Z}$ s.t. $v+v^{\prime}+a_{1} v_{1}+\cdots+a_{n-1} v_{n-1}=0$.
- $\left(-K_{X(\Delta)} \cdot V(\tau)\right)=2+a_{1}+\cdots+a_{n-1}$.


## 4. Main results

Let $G$ be a finite simple graph.

## Theorem 1 (S)

$X\left(\Delta_{\square_{G}}\right)$ is Fano $\Leftrightarrow$ each connected component of $G$ has $\leq 2$ nodes.

- $G=P_{1} \Rightarrow X\left(\Delta_{\square_{G}}\right)=\mathbb{P}^{1}$.
- $G=P_{2} \Rightarrow X\left(\Delta_{\square_{G}}\right): \mathbb{P}^{1} \times \mathbb{P}^{1}$ blown-up at one point.

Hence if $X\left(\Delta_{\square_{G}}\right)$ is Fano, then it is a product of copies of $\mathbb{P}^{1}$ and $\mathbb{P}^{1} \times \mathbb{P}^{1}$ blown-up at one point.

Let $G$ be a finite simple graph.

## Theorem 2 (S)

The following are equivalent:

- $X\left(\Delta_{\square_{G}}\right)$ is weak Fano.
- $\forall I \subset V(G), G \mid$, is not isomorphic to any of the following:
(i) A cycle with $\geq 4$ nodes.
(ii) A diamond graph (the graph obtained by removing an edge from a complete graph with four nodes).
(iii) A claw (a star with three edges).


Figure: a diamond graph.

## Examples

- If $G$ is a path or a complete graph, then $X\left(\Delta_{\square_{G}}\right)$ is weak Fano.
- If $G$ is a graph obtained by connecting more than two graphs with one node, then $X\left(\Delta_{\square_{G}}\right)$ is not weak Fano.
- The toric variety associated to the graph cubeahedron of the graph below is weak Fano.


Figure: an example.

| dimension | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| \# of connected graphs | 1 | 1 | 2 | 6 | 21 | 112 |
| weak Fano | 1 | 1 | 2 | 3 | 6 | 11 |

Thank you for your attention!

## References

- M. Carr and S. L. Devadoss, Coxeter complexes and graph-associahedra, Topology Appl. 153 (2006), no. 12, 2155-2168.
- S. Choi, B. Park and S. Park, Pseudograph and its associated real toric manifold, J. Math. Soc. Japan 69 (2017), no. 2, 693-714.
- S. Choi and H. Park, A new graph invariant arises in toric topology, J. Math. Soc. Japan 67 (2015), no. 2, 699-720.
- C. De Concini and C. Procesi, Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), 459-494.
- S. L. Devadoss, T. Heath and W. Vipismakul, Deformations of bordered surfaces and convex polytopes, Notices Amer. Math. Soc. 58 (2011), no. 4, 530-541.


## References

- T. Manneville and V. Pilaud, Compatibility fans for graphical nested complexes, J. Combin. Theory Ser. A 150 (2017), 36-107.
- T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Ergeb. Math. Grenzgeb. (3) 15, Springer-Verlag, Berlin, 1988.
- B. Park, H. Park and S. Park, Graph cubeahedra and graph associahedra in toric topology, arXiv:1801.00296.
- H. Sato, Toward the classification of higher-dimensional toric Fano varieties, Tohoku Math. J. 52 (2000), no. 3, 383-413.
- Y. Suyama, Toric Fano varieties associated to graph cubeahedra, arXiv:1802.07059.

