Cayley sums and Minkowski sums of 2-convex-normal lattice polytopes

Akiyoshi Tsuchiya (Osaka University)

Algebraic and Geometric Combinatorics on Lattice Polytopes, Osaka University

0 0 0 0 0

Let $\mathcal{P} \subset \mathbb{R}^d$ and $\mathcal{Q} \subset \mathbb{R}^d$ be lattice polytopes.

0 0 0 0 0

Let $\mathcal{P} \subset \mathbb{R}^d$ and $\mathcal{Q} \subset \mathbb{R}^d$ be lattice polytopes. Question (Oda) When does the equation

$$\mathcal{P}\cap\mathbb{Z}^d+\mathcal{Q}\cap\mathbb{Z}^d=(\mathcal{P}+\mathcal{Q})\cap\mathbb{Z}^d$$

(1)

hold?

Let $\mathcal{P} \subset \mathbb{R}^d$ and $\mathcal{Q} \subset \mathbb{R}^d$ be lattice polytopes. Question (Oda) When does the equation

$$\mathcal{P}\cap\mathbb{Z}^d+\mathcal{Q}\cap\mathbb{Z}^d=(\mathcal{P}+\mathcal{Q})\cap\mathbb{Z}^d$$

hold?

Question When is the Minkowski sum P + Q IDP? (1)

Let $\mathcal{P} \subset \mathbb{R}^d$ and $\mathcal{Q} \subset \mathbb{R}^d$ be lattice polytopes. Question (Oda) When does the equation

$$\mathcal{P}\cap\mathbb{Z}^d+\mathcal{Q}\cap\mathbb{Z}^d=(\mathcal{P}+\mathcal{Q})\cap\mathbb{Z}^d$$

hold?

Question When is the Minkowski sum P + Q IDP?

Theorem

If the Cayley sum $\mathcal{P} * \mathcal{Q}$ (Cayley(\mathcal{P}, \mathcal{Q})) is IDP, then the equation (1) holds and the Minkowski sum $\mathcal{P} + \mathcal{Q}$ is IDP.

0 0 0

(1)

IDP polytope

Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope. Let $n\mathcal{P} = \{n\mathbf{x} : \mathbf{x} \in \mathcal{P}\}$ be the *n*th dilated polytope of \mathcal{P} .

Definition

We say that \mathcal{P} possesses the integer decomposition property (IDP) if for any positive integer n, the following equality holds:

$$(n-1)\mathcal{P}\cap\mathbb{Z}^d+\mathcal{P}\cap\mathbb{Z}^d=n\mathcal{P}\cap\mathbb{Z}^d,$$

namely

$$n\mathcal{P}\cap\mathbb{Z}^d = \underbrace{(\mathcal{P}\cap\mathbb{Z}^d)+\cdots+(\mathcal{P}\cap\mathbb{Z}^d)}_{\checkmark},$$

Then we call \mathcal{P} IDP.

0 0 0 0

Minkowski sum and Cayley sum

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be lattice polytopes. Let $\mathbf{e}_1, \ldots, \mathbf{e}_{m-1} \in \mathbb{R}^{m-1}$ be the unit standard basis for \mathbb{R}^{m-1} . Let $\mathbf{0}$ be the origin of \mathbb{R}^{m-1} .

Definition

The Minkowski sum of $\mathcal{P}_1, \ldots, \mathcal{P}_m$ is

$$\mathcal{P}_1 + \cdots + \mathcal{P}_m := \{\mathbf{x}_1 + \cdots + \mathbf{x}_m : \mathbf{x}_i \in \mathcal{P}_i\}.$$

Definition The Cayley sum of $\mathcal{P}_1, \ldots, \mathcal{P}_m$ is

 $\overline{\mathcal{P}_1 \ast \cdots \ast \mathcal{P}_m :=} \operatorname{conv}(\{\mathbf{e}_1\} \times \mathcal{P}_1, \dots, \{\mathbf{e}_{m-1}\} \times \mathcal{P}_{m-1}, \{\mathbf{0}\} \times \mathcal{P}_m).$

0 0 0 0 0

IDP for Cayley and Minkowski sum

Theorem (T) Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be lattice polytopes. If $\mathcal{P}_1 * \cdots * \mathcal{P}_m$ is IDP, then for any subset $(i_1, \ldots, i_k) \subset [m] := \{1, \ldots, m\}, \mathcal{P}_{i_1} + \cdots + \mathcal{P}_{i_k}$ is IDP.

Question When is $\mathcal{P}_1 * \cdots * \mathcal{P}_m$ IDP?

IDP for dilated polytope and Minkowski sum

Theorem (Bruns-Gubeladze-Trung, 1997) Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope. Then for any positive integer $n \geq \dim(\mathcal{P}) - 1$, $n\mathcal{P}$ is IDP.

Theorem (Higashitani, 16)

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be lattice polytopes. For each *i*, let n_i be a positive integer with $n_i \geq \dim(\mathcal{P}_i)$. Then $n_1\mathcal{P}_1 + \cdots + n_m\mathcal{P}_m$ is IDP.

Question

If for each i, $n_i \ge \dim(\mathcal{P}_i)$, then is $n_1\mathcal{P}_1 * \cdots * n_m\mathcal{P}_m$ IDP? Or does there exist positive integer k_1, \ldots, k_m such that if for each i, $n_i \ge k_i$, then $n_1\mathcal{P}_1 * \cdots * n_m\mathcal{P}_m$ IDP?

IDP for dilated polytope and Minkowski sum

Theorem (Bruns-Gubeladze-Trung, 1997) Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope. Then for any positive integer $n \geq \dim(\mathcal{P}) - 1$, $n\mathcal{P}$ is IDP.

Theorem (Higashitani, 16)

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be lattice polytopes. For each *i*, let n_i be a positive integer with $n_i \geq \dim(\mathcal{P}_i)$. Then $n_1\mathcal{P}_1 + \cdots + n_m\mathcal{P}_m$ is IDP.

Question

If for each i, $n_i \ge \dim(\mathcal{P}_i)$, then is $n_1\mathcal{P}_1 * \cdots * n_m\mathcal{P}_m$ IDP? Or does there exist positive integer k_1, \ldots, k_m such that if for each i, $n_i \ge k_i$, then $n_1\mathcal{P}_1 * \cdots * n_m\mathcal{P}_m$ IDP? Answer: No.

IDP for a tuple of lattice polytopes

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be lattice polytopes.

Definition

We say that the tuple $(\mathcal{P}_1, \ldots, \mathcal{P}_m)$ is IDP if for any subset $(i_1, \ldots, i_k) \subset [m]$, it follows that

$$(\mathcal{P}_{i_1} + \dots + \mathcal{P}_{i_k}) \cap \mathbb{Z}^d = (\mathcal{P}_{i_1} \cap \mathbb{Z}^d) + \dots + (\mathcal{P}_{i_k} \cap \mathbb{Z}^d).$$

Note: When m = 2, this notion was introduced by C. Haase and J. Hofmann.

Theorem (T)

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be lattice polytopes. If $\mathcal{P}_1 * \cdots * \mathcal{P}_m$ is IDP, then for any subset $(i_1, \ldots, i_k) \subset [m]$. $\mathcal{P}_{i_1} + \cdots + \mathcal{P}_{i_k}$ is IDP.

0 0 0 0 0

Theorem (T)

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be lattice polytopes. If $\mathcal{P}_1 * \cdots * \mathcal{P}_m$ is IDP, then for any subset $(i_1, \ldots, i_k) \subset [m]$. $\mathcal{P}_{i_1} + \cdots + \mathcal{P}_{i_k}$ is IDP. Moreover, $(\mathcal{P}_1, \ldots, \mathcal{P}_k)$ is IDP.

Theorem (T)

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be lattice polytopes. If $\mathcal{P}_1 * \cdots * \mathcal{P}_m$ is IDP, then for any subset $(i_1, \ldots, i_k) \subset [m]$. $\mathcal{P}_{i_1} + \cdots + \mathcal{P}_{i_k}$ is IDP. Moreover, $(\mathcal{P}_1, \ldots, \mathcal{P}_k)$ is IDP.

Question

If for each i, $n_i \ge \dim(\mathcal{P}_i)$ and if $(n_1\mathcal{P}_1, \ldots, n_m\mathcal{P}_m)$ is IDP, then is $n_1\mathcal{P}_1 \ast \cdots \ast n_m\mathcal{P}_m$ IDP?

Theorem (T)

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be lattice polytopes. If $\mathcal{P}_1 * \cdots * \mathcal{P}_m$ is IDP, then for any subset $(i_1, \ldots, i_k) \subset [m]$. $\mathcal{P}_{i_1} + \cdots + \mathcal{P}_{i_k}$ is IDP. Moreover, $(\mathcal{P}_1, \ldots, \mathcal{P}_k)$ is IDP.

Question

If for each i, $n_i \ge \dim(\mathcal{P}_i)$ and if $(n_1\mathcal{P}_1, \ldots, n_m\mathcal{P}_m)$ is IDP, then is $n_1\mathcal{P}_1 \ast \cdots \ast n_m\mathcal{P}_m$ IDP?

Answer: Yes.

I give a more general result.

2-convex-normal polytope

Definition A lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ is called 2-convex-normal if

 $2\mathcal{P} = \mathcal{P} \cap \mathbb{Z}^d + \mathcal{P}.$

In this case, \mathcal{P} is IDP. When is \mathcal{P} 2-convex-normal?

2-convex-normal polytope

Definition A lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ is called 2-convex-normal if

 $2\mathcal{P} = \mathcal{P} \cap \mathbb{Z}^d + \mathcal{P}.$

In this case, \mathcal{P} is IDP. When is \mathcal{P} 2-convex-normal? **Theorem (Gubeladze, 12)** Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope and set $t = \dim \mathcal{P}$. If every edge of \mathcal{P} has lattice length $\geq 2t(t+1)$, then P is 2-convex-normal.

Rewrite Higashitani's result

Proposition Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope. Then for any positive integer $n \geq \dim(\mathcal{P}), n\mathcal{P}$ is 2-convex-normal.

Theorem (Higashitani, 16) Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be 2-convex-normal lattice polytopes. Then $\mathcal{P}_1 + \cdots + \mathcal{P}_m$ is IDP.

IDP for Cayley sums of 2-convex-normal polytopes

Theorem (T)

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be 2-convex-normal lattice polytopes. Then the Cayley sum $\mathcal{P}_1 * \cdots * \mathcal{P}_m$ is IDP if (and only if) the tuple $(\mathcal{P}_1, \ldots, \mathcal{P}_m)$ is IDP.

Corollary

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^N$ be lattice polytopes. For each *i*, let n_i be a positive integer with $n_i \geq \dim(\mathcal{P}_i)$. Then the Cayley sum $n_1\mathcal{P}_1 * \cdots * n_m\mathcal{P}_m$ is IDP if (and only if) the tuple $(n_1\mathcal{P}_1, \ldots, n_m\mathcal{P}_m)$ is IDP.

Level polytope

Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope. Let $\operatorname{int}(\mathcal{P})$ denote the relative interior of \mathcal{P} . Set $r = \min\{n \in \mathbb{Z} : \operatorname{int}(n\mathcal{P}) \cap \mathbb{Z}^d \neq \emptyset\}.$

Definition

We say that \mathcal{P} is level of index r if for any positive integer n > r

$$\operatorname{int}(n\mathcal{P}) \cap \mathbb{Z}^d = \operatorname{int}(r\mathcal{P}) \cap \mathbb{Z}^d + (n-r)\mathcal{P} \cap \mathbb{Z}^d$$

In particular, if $\overline{|\operatorname{int}(r\mathcal{P}) \cap \mathbb{Z}^d|} = 1$, then we call \mathcal{P} Gorenstein.

0 0 0 0 0

Levelness for Cayley and Minkowski sum

Theorem (T)

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be lattice polytopes. Assume that $\mathcal{P}_1 * \cdots * \mathcal{P}_m$ is level of index m. Then $\mathcal{P}_1 + \cdots + \mathcal{P}_m$ is level of index 1.

Question

When is $\mathcal{P}_1 * \cdots * \mathcal{P}_m$ level of index m?

Remark

 $\mathcal{P}_1 * \cdots * \mathcal{P}_m$ is Gorenstein of index m if and only if $\mathcal{P}_1 + \cdots + \mathcal{P}_m$ is Gorenstein of index 1 [Batyrev-Nill, 08]. However, this is not true for the level case.

Levelness for dilated polytope and Minkowski sum

Theorem (Bruns-Gubeladze-Trung, 1997) Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope. Then for any positive integer $n \geq \dim(\mathcal{P}) + 1$, $n\mathcal{P}$ is level of index 1.

Theorem (Higashitani, 16)

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be lattice polytopes. For each *i*, let n_i be a positive integer with $n_i \geq \dim(\mathcal{P}_i) + 1$ Then $n_1\mathcal{P}_1 + \cdots + n_m\mathcal{P}_m$ is level of index 1.

Question

If for each i, $n_i \ge \dim(\mathcal{P}_i) + 1$, then is $n_1 \mathcal{P}_1 * \cdots * n_m \mathcal{P}_m$ level of index m?

Levelness for dilated polytope and Minkowski sum

Theorem (Bruns-Gubeladze-Trung, 1997) Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope. Then for any positive integer $n \geq \dim(\mathcal{P}) + 1$, $n\mathcal{P}$ is level of index 1.

Theorem (Higashitani, 16)

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be lattice polytopes. For each *i*, let n_i be a positive integer with $n_i \geq \dim(\mathcal{P}_i) + 1$ Then $n_1\mathcal{P}_1 + \cdots + n_m\mathcal{P}_m$ is level of index 1.

Question

If for each i, $n_i \ge \dim(\mathcal{P}_i) + 1$, then is $n_1 \mathcal{P}_1 * \cdots * n_m \mathcal{P}_m$ level of index m?

Answer: Yes.

I give a more general result.

2-convex-level polytope

Definition

A lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ with interior lattice points is called 2-convex-level if

$$\operatorname{int}(2\mathcal{P}) = \mathcal{P} \cap \mathbb{Z}^d + \operatorname{int}(\mathcal{P}).$$

In this case, \mathcal{P} is level of index 1.

When is \mathcal{P} 2-convex-level?

Proposition

Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope. Then for any positive integer $n \geq \dim(\mathcal{P}) + 1$, $n\mathcal{P}$ is 2-convex-level.

Theorem (Higashitani)

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be 2-convex-level lattice polytopes. Then $\mathcal{P}_1 + \cdots + \mathcal{P}_m$ is level of index 1.

Levelness for Cayley sums of 2-convex-level polytopes

Theorem (T) Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^d$ be 2-convex-level lattice polytopes. Then the Cayley sum $\mathcal{P}_1 * \cdots * \mathcal{P}_m$ is level of index m.

Corollary

Let $\mathcal{P}_1, \ldots, \mathcal{P}_m \subset \mathbb{R}^N$ be lattice polytopes. For each *i*, let n_i be a positive integer with $n_i \geq \dim(\mathcal{P}_i) + 1$. Then the Cayley sum $n_1\mathcal{P}_1 * \cdots * n_m\mathcal{P}_m$ is level of index *m*.

THANK YOU VERY MUCH!!!

