Cayley sums and Minkowski sums of 2-convex-normal lattice polytopes

Akiyoshi Tsuchiya (Osaka University)

Algebraic and Geometric Combinatorics on Lattice Polytopes, Osaka University

Two Questions and one Theorem

Let $\mathcal{P} \subset \mathbb{R}^{d}$ and $\mathcal{Q} \subset \mathbb{R}^{d}$ be lattice polytopes.

Two Questions and one Theorem

Let $\mathcal{P} \subset \mathbb{R}^{d}$ and $\mathcal{Q} \subset \mathbb{R}^{d}$ be lattice polytopes.
Question (Oda)
When does the equation

$$
\begin{equation*}
\mathcal{P} \cap \mathbb{Z}^{d}+\mathcal{Q} \cap \mathbb{Z}^{d}=(\mathcal{P}+\mathcal{Q}) \cap \mathbb{Z}^{d} \tag{1}
\end{equation*}
$$

hold?

Two Questions and one Theorem

Let $\mathcal{P} \subset \mathbb{R}^{d}$ and $\mathcal{Q} \subset \mathbb{R}^{d}$ be lattice polytopes.
Question (Oda)
When does the equation

$$
\begin{equation*}
\mathcal{P} \cap \mathbb{Z}^{d}+\mathcal{Q} \cap \mathbb{Z}^{d}=(\mathcal{P}+\mathcal{Q}) \cap \mathbb{Z}^{d} \tag{1}
\end{equation*}
$$

hold?
Question
When is the Minkowski sum $\mathcal{P}+\mathcal{Q}$ IDP?

Two Questions and one Theorem

Let $\mathcal{P} \subset \mathbb{R}^{d}$ and $\mathcal{Q} \subset \mathbb{R}^{d}$ be lattice polytopes.
Question (Oda)
When does the equation

$$
\begin{equation*}
\mathcal{P} \cap \mathbb{Z}^{d}+\mathcal{Q} \cap \mathbb{Z}^{d}=(\mathcal{P}+\mathcal{Q}) \cap \mathbb{Z}^{d} \tag{1}
\end{equation*}
$$

hold?
Question
When is the Minkowski sum $\mathcal{P}+\mathcal{Q}$ IDP?
Theorem
If the Cayley sum $\mathcal{P} * \mathcal{Q}(\operatorname{Cayley}(\mathcal{P}, \mathcal{Q}))$ is IDP, then the equation (1) holds and the Minkowski sum $\mathcal{P}+\mathcal{Q}$ is IDP.

IDP polytope

Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope.
Let $n \mathcal{P}=\{n \mathbf{x}: \mathbf{x} \in \mathcal{P}\}$ be the nth dilated polytope of \mathcal{P}.
Definition
We say that \mathcal{P} possesses the integer decomposition property (IDP) if for any positive integer n, the following equality holds:

$$
(n-1) \mathcal{P} \cap \mathbb{Z}^{d}+\mathcal{P} \cap \mathbb{Z}^{d}=n \mathcal{P} \cap \mathbb{Z}^{d},
$$

namely

$$
n \mathcal{P} \cap \mathbb{Z}^{d}=\underbrace{\left(\mathcal{P} \cap \mathbb{Z}^{d}\right)+\cdots+\left(\mathcal{P} \cap \mathbb{Z}^{d}\right.}_{n}),
$$

Then we call \mathcal{P} IDP.

Minkowski sum and Cayley sum

Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be lattice polytopes.
Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m-1} \in \mathbb{R}^{m-1}$ be the unit standard basis for \mathbb{R}^{m-1}. Let $\mathbf{0}$ be the origin of \mathbb{R}^{m-1}.

Definition

The Minkowski sum of $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m}$ is

$$
\mathcal{P}_{1}+\cdots+\mathcal{P}_{m}:=\left\{\mathbf{x}_{1}+\cdots+\mathbf{x}_{m}: \mathbf{x}_{i} \in \mathcal{P}_{i}\right\} .
$$

Definition

The Cayley sum of $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m}$ is

$$
\mathcal{P}_{1} * \cdots * \mathcal{P}_{m}:=\operatorname{conv}\left(\left\{\mathbf{e}_{1}\right\} \times \mathcal{P}_{1}, \ldots,\left\{\mathbf{e}_{m-1}\right\} \times \mathcal{P}_{m-1},\{\mathbf{0}\} \times \mathcal{P}_{m}\right) .
$$

IDP for Cayley and Minkowski sum

Theorem (T)

Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be lattice polytopes.
If $\mathcal{P}_{1} * \cdots * \mathcal{P}_{m}$ is IDP, then for any subset
$\left(i_{1}, \ldots, i_{k}\right) \subset[m]:=\{1, \ldots, m\}, \mathcal{P}_{i_{1}}+\cdots+\mathcal{P}_{i_{k}}$ is IDP.
Question
When is $\mathcal{P}_{1} * \cdots * \mathcal{P}_{m}$ IDP?

IDP for dilated polytope and Minkowski sum

Theorem (Bruns-Gubeladze-Trung, 1997)
Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope.
Then for any positive integer $n \geq \operatorname{dim}(\mathcal{P})-1, n \mathcal{P}$ is IDP.
Theorem (Higashitani, 16)
Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be lattice polytopes.
For each i, let n_{i} be a positive integer with $n_{i} \geq \operatorname{dim}\left(\mathcal{P}_{i}\right)$.
Then $n_{1} \mathcal{P}_{1}+\cdots+n_{m} \mathcal{P}_{m}$ is IDP.

Question

If for each $i, n_{i} \geq \operatorname{dim}\left(\mathcal{P}_{i}\right)$, then is $n_{1} \mathcal{P}_{1} * \cdots * n_{m} \mathcal{P}_{m}$ IDP?
Or does there exist positive integer k_{1}, \ldots, k_{m} such that if for each i, $n_{i} \geq k_{i}$, then $n_{1} \mathcal{P}_{1} * \cdots * n_{m} \mathcal{P}_{m}$ IDP?

IDP for dilated polytope and Minkowski sum

Theorem (Bruns-Gubeladze-Trung, 1997)
Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope.
Then for any positive integer $n \geq \operatorname{dim}(\mathcal{P})-1, n \mathcal{P}$ is IDP.
Theorem (Higashitani, 16)
Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be lattice polytopes.
For each i, let n_{i} be a positive integer with $n_{i} \geq \operatorname{dim}\left(\mathcal{P}_{i}\right)$.
Then $n_{1} \mathcal{P}_{1}+\cdots+n_{m} \mathcal{P}_{m}$ is IDP.

Question

If for each $i, n_{i} \geq \operatorname{dim}\left(\mathcal{P}_{i}\right)$, then is $n_{1} \mathcal{P}_{1} * \cdots * n_{m} \mathcal{P}_{m}$ IDP?
Or does there exist positive integer k_{1}, \ldots, k_{m} such that if for each i, $n_{i} \geq k_{i}$, then $n_{1} \mathcal{P}_{1} * \cdots * n_{m} \mathcal{P}_{m}$ IDP?
Answer: No.

IDP for a tuple of lattice polytopes

Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be lattice polytopes.
Definition
We say that the tuple $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{m}\right)$ is IDP if for any subset
$\left(i_{1}, \ldots, i_{k}\right) \subset[m]$, it follows that

$$
\left(\mathcal{P}_{i_{1}}+\cdots+\mathcal{P}_{i_{k}}\right) \cap \mathbb{Z}^{d}=\left(\mathcal{P}_{i_{1}} \cap \mathbb{Z}^{d}\right)+\cdots+\left(\mathcal{P}_{i_{k}} \cap \mathbb{Z}^{d}\right)
$$

Note: When $m=2$, this notion was introduced by C. Haase and J. Hofmann.

See the first theorem again

Theorem (T)
Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be lattice polytopes. If $\mathcal{P}_{1} * \cdots * \mathcal{P}_{m}$ is IDP, then for any subset $\left(i_{1}, \ldots, i_{k}\right) \subset[m]$. $\mathcal{P}_{i_{1}}+\cdots+\mathcal{P}_{i_{k}}$ is IDP.

See the first theorem again

Theorem (T)
Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be lattice polytopes. If $\mathcal{P}_{1} * \cdots * \mathcal{P}_{m}$ is IDP, then for any subset $\left(i_{1}, \ldots, i_{k}\right) \subset[m]$. $\mathcal{P}_{i_{1}}+\cdots+\mathcal{P}_{i_{k}}$ is IDP.
Moreover, $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right)$ is IDP.

See the first theorem again

Theorem (T)
Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be lattice polytopes. If $\mathcal{P}_{1} * \cdots * \mathcal{P}_{m}$ is IDP, then for any subset $\left(i_{1}, \ldots, i_{k}\right) \subset[m]$. $\mathcal{P}_{i_{1}}+\cdots+\mathcal{P}_{i_{k}}$ is IDP.
Moreover, $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right)$ is IDP.
Question
If for each $i, n_{i} \geq \operatorname{dim}\left(\mathcal{P}_{i}\right)$ and if $\left(n_{1} \mathcal{P}_{1}, \ldots, n_{m} \mathcal{P}_{m}\right)$ is IDP, then is $n_{1} \mathcal{P}_{1} * \cdots * n_{m} \mathcal{P}_{m}$ IDP?

See the first theorem again

Theorem (T)
Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be lattice polytopes. If $\mathcal{P}_{1} * \cdots * \mathcal{P}_{m}$ is IDP, then for any subset $\left(i_{1}, \ldots, i_{k}\right) \subset[m]$. $\mathcal{P}_{i_{1}}+\cdots+\mathcal{P}_{i_{k}}$ is IDP.
Moreover, $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}\right)$ is IDP.
Question
If for each $i, n_{i} \geq \operatorname{dim}\left(\mathcal{P}_{i}\right)$ and if $\left(n_{1} \mathcal{P}_{1}, \ldots, n_{m} \mathcal{P}_{m}\right)$ is IDP, then is $n_{1} \mathcal{P}_{1} * \cdots * n_{m} \mathcal{P}_{m}$ IDP?

Answer: Yes.
I give a more general result.

2-convex-normal polytope

Definition

A lattice polytope $\mathcal{P} \subset \mathbb{R}^{d}$ is called 2-convex-normal if

$$
2 \mathcal{P}=\mathcal{P} \cap \mathbb{Z}^{d}+\mathcal{P} .
$$

In this case, \mathcal{P} is IDP.
When is $\mathcal{P} 2$-convex-normal?

2-convex-normal polytope

Definition
A lattice polytope $\mathcal{P} \subset \mathbb{R}^{d}$ is called 2-convex-normal if

$$
2 \mathcal{P}=\mathcal{P} \cap \mathbb{Z}^{d}+\mathcal{P}
$$

In this case, \mathcal{P} is IDP.
When is $\mathcal{P} 2$-convex-normal?
Theorem (Gubeladze, 12)
Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope and set $t=\operatorname{dim} \mathcal{P}$. If every edge of \mathcal{P} has lattice length $\geq 2 t(t+1)$, then P is 2 -convex-normal.

Rewrite Higashitani's result

Proposition

Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope. Then for any positive integer $n \geq \operatorname{dim}(\mathcal{P}), n \mathcal{P}$ is 2 -convex-normal.

Theorem (Higashitani, 16)
Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be 2-convex-normal lattice polytopes. Then $\mathcal{P}_{1}+\cdots+\mathcal{P}_{m}$ is IDP.

IDP for Cayley sums of 2-convex-normal polytopes

Theorem (T)

Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be 2-convex-normal lattice polytopes. Then the Cayley sum $\mathcal{P}_{1} * \cdots * \mathcal{P}_{m}$ is IDP if (and only if) the tuple $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{m}\right)$ is IDP.

Corollary

Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{N}$ be lattice polytopes.
For each i, let n_{i} be a positive integer with $n_{i} \geq \operatorname{dim}\left(\mathcal{P}_{i}\right)$. Then the Cayley sum $n_{1} \mathcal{P}_{1} * \cdots * n_{m} \mathcal{P}_{m}$ is IDP if (and only if) the tuple $\left(n_{1} \mathcal{P}_{1}, \ldots, n_{m} \mathcal{P}_{m}\right)$ is IDP.

Level polytope

Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope.
Let $\operatorname{int}(\mathcal{P})$ denote the relative interior of \mathcal{P}.
Set $r=\min \left\{n \in \mathbb{Z}: \operatorname{int}(n \mathcal{P}) \cap \mathbb{Z}^{d} \neq \emptyset\right\}$.

Definition

We say that \mathcal{P} is level of index r if for any positive integer $n>r$

$$
\operatorname{int}(n \mathcal{P}) \cap \mathbb{Z}^{d}=\operatorname{int}(r \mathcal{P}) \cap \mathbb{Z}^{d}+(n-r) \mathcal{P} \cap \mathbb{Z}^{d}
$$

In particular, if $\left|\operatorname{int}(r \mathcal{P}) \cap \mathbb{Z}^{d}\right|=1$, then we call \mathcal{P} Gorenstein.

Levelness for Cayley and Minkowski sum

Theorem (T)

Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be lattice polytopes.
Assume that $\mathcal{P}_{1} * \cdots * \mathcal{P}_{m}$ is level of index m.
Then $\mathcal{P}_{1}+\cdots+\mathcal{P}_{m}$ is level of index 1 .

Question

When is $\mathcal{P}_{1} * \cdots * \mathcal{P}_{m}$ level of index m ?

Remark

$\mathcal{P}_{1} * \cdots * \mathcal{P}_{m}$ is Gorenstein of index m if and only if $\mathcal{P}_{1}+\cdots+\mathcal{P}_{m}$ is Gorenstein of index 1 [Batyrev-Nill, 08]. However, this is not true for the level case.

Levelness for dilated polytope and Minkowski sum

Theorem (Bruns-Gubeladze-Trung, 1997)
Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope.
Then for any positive integer $n \geq \operatorname{dim}(\mathcal{P})+1, n \mathcal{P}$ is level of index 1 .
Theorem (Higashitani, 16)
Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be lattice polytopes.
For each i, let n_{i} be a positive integer with $n_{i} \geq \operatorname{dim}\left(\mathcal{P}_{i}\right)+1$
Then $n_{1} \mathcal{P}_{1}+\cdots+n_{m} \mathcal{P}_{m}$ is level of index 1 .
Question
If for each $i, n_{i} \geq \operatorname{dim}\left(\mathcal{P}_{i}\right)+1$, then is $n_{1} \mathcal{P}_{1} * \cdots * n_{m} \mathcal{P}_{m}$ level of index m ?

Levelness for dilated polytope and Minkowski sum

Theorem (Bruns-Gubeladze-Trung, 1997)
Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope.
Then for any positive integer $n \geq \operatorname{dim}(\mathcal{P})+1, n \mathcal{P}$ is level of index 1 .
Theorem (Higashitani, 16)
Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be lattice polytopes.
For each i, let n_{i} be a positive integer with $n_{i} \geq \operatorname{dim}\left(\mathcal{P}_{i}\right)+1$
Then $n_{1} \mathcal{P}_{1}+\cdots+n_{m} \mathcal{P}_{m}$ is level of index 1 .
Question
If for each $i, n_{i} \geq \operatorname{dim}\left(\mathcal{P}_{i}\right)+1$, then is $n_{1} \mathcal{P}_{1} * \cdots * n_{m} \mathcal{P}_{m}$ level of index m ?

Answer: Yes.
I give a more general result.

2-convex-level polytope

Definition

A lattice polytope $\mathcal{P} \subset \mathbb{R}^{d}$ with interior lattice points is called
2-convex-level if

$$
\operatorname{int}(2 \mathcal{P})=\mathcal{P} \cap \mathbb{Z}^{d}+\operatorname{int}(\mathcal{P})
$$

In this case, \mathcal{P} is level of index 1 .
When is $\mathcal{P} 2$-convex-level?

Proposition

Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope. Then for any positive integer $n \geq \operatorname{dim}(\mathcal{P})+1, n \mathcal{P}$ is 2 -convex-level.

Theorem (Higashitani)
Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be 2 -convex-level lattice polytopes.
Then $\mathcal{P}_{1}+\cdots+\mathcal{P}_{m}$ is level of index 1 .

Levelness for Cayley sums of 2-convex-level polytopes

Theorem (T)

Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{d}$ be 2 -convex-level lattice polytopes.
Then the Cayley sum $\mathcal{P}_{1} * \cdots * \mathcal{P}_{m}$ is level of index m.

Corollary

Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m} \subset \mathbb{R}^{N}$ be lattice polytopes.
For each i, let n_{i} be a positive integer with $n_{i} \geq \operatorname{dim}\left(\mathcal{P}_{i}\right)+1$. Then the Cayley sum $n_{1} \mathcal{P}_{1} * \cdots * n_{m} \mathcal{P}_{m}$ is level of index m.

THANK YOU VERY MUCH!!!

