Fixed Subpolytopes of the Permutahedron

Andrés R. Vindas Meléndez

Department of Mathematics
University of Kentucky

Summer Workshop on Lattice Polytopes
Osaka, Japan
30-July-2018

People

Federico Ardila (San Francisco State Univ.)

Anna Schindler (North Seattle College)

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1247392.

The Permutahedron

Definition

The n-permutahedron is the polytope in \mathbb{R}^{n} whose vertices are the n ! permutations of $[n]:=\{1, \ldots, n\}$:

$$
\Pi_{n}:=\operatorname{conv}\left\{(\pi(1), \pi(2), \ldots, \pi(n)): \pi \in \mathfrak{S}_{n}\right\}
$$

The Permutahedron

The permutahedron Π_{n} can be described in the following three ways:
(1) (Inequalities) It is the set of points $x \in \mathbb{R}^{n}$ satisfying
a) $x_{1}+x_{2}+\cdots+x_{n}=1+2+\cdots+n$, and
b) for any proper subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, n\}$,

$$
x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{k}} \geq 1+2+\cdots+k .
$$

(2) (Vertices) It is the convex hull of the points $(\pi(1), \ldots, \pi(n))$ as π ranges over the permutations of [n].
(3) (Minkowski sum) It is the Minkowski sum

$$
\sum_{1 \leq j<k \leq n}\left[e_{k}, e_{j}\right]+\sum_{1 \leq k \leq n} e_{k}
$$

The n-permutahedron is $(n-1)$-dimensional and every permutation of [n] is indeed a vertex.

Notation

- We identify each permutation $\pi \in \mathfrak{S}_{n}$ with the point $(\pi(1), \ldots, \pi(n))$ in \mathbb{R}^{n}. When we write permutations in cycle notation, we do not use commas to separate the entries of each cycle.
- For example, the permutation 246513 in \mathfrak{S}_{6} is identified with the point $(2,4,6,5,1,3) \in \mathbb{R}^{6}$, and write it as (1245)(36) in cycle notation.
- We assume that σ has m cycles of lengths $I_{1} \geq \cdots \geq I_{m}$. We may assume without losing generality that $\sigma=$
$\left(\begin{array}{llll}1 & 2 & \cdots & l_{1}\end{array}\right)\left(l_{1}+1 \quad l_{1}+2 \cdots l_{1}+l_{2}\right) \cdots\left(l_{1}+\cdots+l_{m-1}+1 \cdots n-1 \quad n\right)$.
- We let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of \mathbb{R}^{n}, and $e_{S}:=e_{s_{1}}+\cdots+e_{s_{k}}$ for $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq[n]$.
- We define the cycle type of a permutation σ to be the partition of n consisting of the lengths $I_{1} \geq \cdots \geq I_{m}$ of the cycles of σ.

Fixed Subpolytopes of the Permutahedron

We consider Π_{n} under an action of the symmetric group \mathfrak{S}_{n}, where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Pi_{n}, \quad \sigma \cdot x=\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, x_{\sigma^{-1}(n)}\right)$.

Definition

The subpolytope of the permutahedron Π_{n} fixed by a permutation σ of $[n]$ is

$$
\Pi_{n}^{\sigma}=\left\{x \in \Pi_{n}: \sigma \cdot x=x\right\} .
$$

Fixed Subpolytopes of the Permutahedron

Theorem (Stapledon 2011)

Let \mathcal{P}^{g} denote the set of lattice points of \mathcal{P} that are fixed by g, i.e., $\mathcal{P}^{g}=\{x \in \mathcal{P}: g \cdot x=x\}$. Then

$$
\mathcal{P}^{g}=\operatorname{conv}\left\{\frac{1}{|g|} \sum_{i=1}^{|g|} g^{i} \cdot v: v \text { is a vertex of } \mathcal{P}\right\}
$$

is a rational polytope.

Fixed Subpolytopes of the Permutahedron

Let's look at the subpolytope of Π_{3} fixed by (12).

Example

(1) (12) induces a reflection.

Fixed Subpolytopes of the Permutahedron

Let's look at the subpolytope of Π_{3} fixed by (12).

Example

- (12) induces a reflection.
- $\Pi_{3}{ }^{(12)}$ satisfies $x_{1}=x_{2}$.
- $\Pi_{3}{ }^{(12)}$ is a 1-dimensional rational polytope.

Fixed Subpolytopes of the Permutahedron

Let's look at the subpolytope of Π_{3} fixed by (12).

Example

- (12) induces a reflection.
- $\Pi_{3}^{(12)}$ satisfies $x_{1}=x_{2}$
- $\Pi_{3}^{(12)}$ is a rational polytope
- $\operatorname{ehr}_{\Pi_{3}^{(12)}}(t)=$

$$
\begin{cases}t+1 & \text { if } t \text { is even } \\ t & \text { if } t \text { is odd }\end{cases}
$$

Fixed Subpolytopes of the Permutahedron

Examples of fixed subpolytopes of Π_{4}

Every fixed subpolytope of Π_{4} is either a point, a line segment, or a hexagon.

The Inequality Description

Proposition

For a permutation $\sigma \in \mathfrak{S}_{n}$, the fixed subpolytope Π_{n}^{σ} consists of the points $x \in \Pi_{n}$ satisfying $x_{j}=x_{k}$ for any j and k in the same cycle of σ.

Corollary

If a permutation σ of $[n]$ has m cycles then Π_{n}^{σ} has dimension $m-1$.

Towards a Vertex Description

For a point $w \in \mathbb{R}^{n}$, let \bar{w} be the average of the σ-orbit of w, that is,

$$
\bar{w}:=\frac{1}{|\sigma|} \sum_{i=1}^{|\sigma|} \sigma^{i} \cdot w,
$$

where $|\sigma|$ is the order of σ as an element of the symmetric group \mathfrak{S}_{n}.

Definition

Given $\sigma \in \mathfrak{S}_{n}$, we say a permutation $v=\left(v_{1}, \ldots, v_{n}\right)$ of $[n]$ is σ-standard if it satisfies the following property: for each cycle ($j_{1} j_{2} \cdots j_{r}$) of σ, $\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{r}}\right)$ is a sequence of consecutive integers in increasing order. We define the set of σ-vertices to be

$$
\operatorname{Vert}(\sigma):=\{\bar{w}: w \text { is a } \sigma \text {-standard permutation of }[n]\}
$$

Towards a Vertex Description

Lemma

For any $w \in \mathbb{R}^{n}$, the average of the σ-orbit of w is

$$
\bar{w}=\sum_{k=1}^{m} \frac{\sum_{j \in \sigma_{k}} w_{j}}{I_{k}} e_{\sigma_{k}} .
$$

Corollary

The set $\operatorname{Vert}(\sigma)$ of σ-vertices consists of the $m!$ points

$$
\overline{v_{\prec}}:=\sum_{k=1}^{m}\left(\frac{I_{k}+1}{2}+\sum_{j: \sigma_{j} \prec \sigma_{k}} I_{j}\right) e_{\sigma_{k}}
$$

as \prec ranges over the m ! possible linear orderings of $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$.

Towards a Vertex Description

For $\sigma=(1234)(567)(89)$, the σ-standard permutations in \mathfrak{S}_{9} are

$$
\begin{array}{ll}
(1,2,3,4,5,6,7,8,9), & (1,2,3,4,7,8,9,5,6), \\
(4,5,6,7,1,2,3,8,9), & (3,4,5,6,7,8,9,1,2), \\
(6,7,8,9,1,2,3,4,5), & (6,7,8,9,3,4,5,1,2),
\end{array}
$$

and the corresponding σ-vertices are
$\begin{array}{ll}\frac{1+2+3+4}{4} e_{1234}+\frac{5+6+7}{3} e_{567}+\frac{8+9}{2} e_{89}, & \frac{1+2+3+4}{4} e_{1234}+\frac{7+8+9}{3} e_{567}+\frac{5+6}{2} e_{8} \\ \frac{4+5+6+7}{4} e_{1234}+\frac{1+2+3}{3} e_{567}+\frac{8+9}{2} e_{89}, & \frac{3+4+5+6}{4} e_{1234}+\frac{7+8+9}{3} e_{567}+\frac{1+2}{2} e_{8} \\ \frac{6+7+8+9}{4} e_{1234}+\frac{1+2+3}{3} e_{567}+\frac{4+5}{2} e_{89}, & \frac{6+7+8+9}{4} e_{1234}+\frac{3+4+5}{3} e_{567}+\frac{1+2}{2} e_{8}\end{array}$

Towards a Zonotope Description

Definition

Let M_{σ} denote the Minkowski sum

$$
\begin{aligned}
M_{\sigma} & :=\sum_{1 \leq j<k \leq m}\left[I_{j} e_{\sigma_{k}}, I_{k} e_{\sigma_{j}}\right]+\sum_{k=1}^{m} \frac{I_{k}+1}{2} e_{\sigma_{k}} \\
& =\sum_{1 \leq j<k \leq m}\left[0, I_{k} e_{\sigma_{j}}-I_{j} e_{\sigma_{k}}\right]+\sum_{k=1}^{m}\left(\frac{I_{k}+1}{2}+\sum_{j<k} I_{j}\right) e_{\sigma_{k}} .
\end{aligned}
$$

Proposition

The zonotope M_{σ} is combinatorially equivalent to the standard permutahedron Π_{m}, where m is the number of cycles of σ.

The Descriptions of the Fixed Subpolytope are Equivalent

Theorem

The fixed subpolytope Π_{n}^{σ} can be described in the following four ways:
(1) It is the set of points x in the permutahedron Π_{n} such that $\sigma \cdot x=x$.
(2) It is the set of points $x \in \mathbb{R}^{n}$ satisfying
(1) $x_{1}+x_{2}+\cdots+x_{n}=1+2+\cdots+n$,
(2) for any proper subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, n\}$,

$$
x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{k}} \leq 1+2+\cdots+k, \text { and }
$$

(3) for any i and j which are in the same cycle of $\sigma, x_{i}=x_{j}$.
(3) It is the convex hull of the set $\operatorname{Vert}(\sigma)$ of σ-vertices.
(9) It is the Minkowski sum M_{σ}.

Consequently, the fixed polytope Π_{n}^{σ} is a zonotope that is combinatorially isomorphic to the permutahedron Π_{m}. It is $(m-1)$-dimensional and every σ-vertex is indeed a vertex of Π_{n}^{σ}.

Fixed Subpolytopes of the Permutahedron

This theorem provides a vertex description for Π_{n}^{σ}, a refinement of Stapledon's description

Example

- Stapledon: $\Pi_{4}^{(12)}=$ conv $\left\{\frac{1}{2} \sum_{i=1}^{2} \sigma^{i} v: v\right.$ is a vertex of $\left.\Pi_{4}\right\}$

Fixed Subpolytopes of the Permutahedron

This theorem provides a vertex description for Π_{n}^{σ}, a refinement of Stapledon's description

Example

- Stapledon: $\Pi_{4}^{(12)}=$ conv $\left\{\frac{1}{2} \sum_{i=1}^{2} \sigma^{i} v: v\right.$ is a vertex of $\left.\Pi_{4}\right\}$
- But not all of these points are vertices of $\Pi_{4}^{(12)}$.
- It is enough to consider the vertices with consecutive, increasing integers in positions 1 and 2.
- The number of such vertices is the number of orderings of (12), (3), and (4): $3!=6$.

The volumes of the fixed subpolytopes of Π_{n}

Theorem

If σ is a permutation of $[n]$ whose cycles have lengths I_{1}, \ldots, I_{m}, then the normalized volume of the subpolytope of Π_{n} fixed by σ is

$$
\operatorname{Vol} \Pi_{n}^{\sigma}=n^{m-2} \operatorname{gcd}\left(I_{1}, \ldots, I_{m}\right)
$$

When $\sigma=$ id is the identity permutation, the fixed polytope is $\Pi_{n}^{\text {id }}=\Pi_{n}$, and we recover Stanley's result that $\operatorname{Vol} \Pi_{n}=n^{n-2}$.

Subpolytopes of Π_{n} Fixed by a subgroup of \mathfrak{S}_{n}

One might ask, more generally, for the subpolytope of Π_{n} fixed by a subgroup of H in \mathfrak{S}_{n}; that is,

$$
\Pi_{n}^{H}=\left\{x \in \Pi_{n}: \sigma \cdot x=x \text { for all } \sigma \in H\right\} .
$$

It turns out that this more general definition leads to the same family of subpolytopes of Π_{n}.

Lemma

For every subgroup H of \mathfrak{S}_{n} there is a permutation σ of \mathfrak{S}_{n} such that $\Pi_{n}^{H}=\Pi_{n}^{\sigma}$.

Lattice Point Enumeration

Some subtleties already arise in the simple case when Π_{n}^{σ} is a segment; that is, when σ has only two cycles of lengths I_{1} and I_{2}. For even t, we simply have

$$
\operatorname{ehr}_{\Pi_{n}^{\sigma}}(t)=\operatorname{gcd}\left(I_{1}, I_{2}\right) t+1
$$

However, for odd t we have

$$
\text { ehr }_{\Pi_{n}^{\sigma}}(t)= \begin{cases}\operatorname{gcd}\left(I_{1}, l_{2}\right) t+1 & \text { if } I_{1} \text { and } I_{2} \text { both odd } \\ \operatorname{gcd}\left(I_{1}, l_{2}\right) t & \text { if } I_{1} \text { and } I_{2} \text { have different parity, } \\ \operatorname{gcd}\left(I_{1}, l_{2}\right) t & \text { if } I_{1} \text { and } I_{2} \text { both even \& same 2-valuation } \\ 0 & \text { if } I_{1} \text { and } I_{2} \text { both even \& different 2-valuation }\end{cases}
$$

where the 2-valuation of a positive integer is the highest power of 2 dividing it.
In higher dimensions, additional obstacles arise.

The End

Gracias

Fixed Subpolytopes of Π_{n}
30-July-2018

