THE KINGMAN COALESCENT AS A DENSITY ON A SPACE OF TREES

Lena Walter Freie Universität Berlin July 31st, 2018 joint work with Christian Haase

CONTENTS

THE KINGMAN *n*-COALESCENT

- **2** Space of Trees
- 3 A Density

CONNECTION TO TROPICAL GEOMETRY

CONTENTS

D THE KINGMAN *n*-COALESCENT

Space of Trees

B A Density

O Connection to Tropical Geometry

Further Directions

《口》《聞》《臣》《臣》

population genetic model:

population genetic model: Wright-Fisher 30's

population genetic model: Wright-Fisher 30's

fixed population size

population genetic model: Wright-Fisher 30's

- ${\scriptstyle \bullet} \,$ fixed population size
- non-overlapping generations

population genetic model: Wright-Fisher 30's

- fixed population size
- non-overlapping generations
- no recombination

population genetic model: Wright-Fisher 30's

 \rightarrow sample *n* individuals from a population of *N*

population genetic model: Wright-Fisher 30's

 \rightarrow sample *n* individuals from a population of *N* \rightarrow trace ancestry backwards in time

population genetic model: Wright-Fisher 30's

 \rightarrow sample *n* individuals from a population of *N* \rightarrow trace ancestry backwards in time

population genetic model: Wright-Fisher 30's

population genetic model: Wright-Fisher 30's

ightarrow sample *n* individuals from a population of *N* ightarrow trace ancestry backwards in time

population genetic model: Wright-Fisher 30's

 \rightarrow sample *n* individuals from a population of *N* \rightarrow trace ancestry backwards in time

MRCA (Most Recent Common Ancestor)?

MRCA (Most Recent Common Ancestor)?

Consider two lineages:

MRCA (Most Recent Common Ancestor)?

Consider two lineages: $P(c. 1 \text{ generation ago}) = \frac{1}{N}$

MRCA (Most Recent Common Ancestor)?

Consider two lineages: $P(c. 1 \text{ generation ago}) = \frac{1}{N}$ $P(c. 2 \text{ generations ago}) = (1 - \frac{1}{N}) \frac{1}{N}$

MRCA (Most Recent Common Ancestor)?

Consider two lineages: $P(c. 1 \text{ generation ago}) = \frac{1}{N}$ $P(c. 2 \text{ generations ago}) = (1 - \frac{1}{N}) \frac{1}{N}$

 $P(c. t generations ago) = (1 - \frac{1}{N})^{t-1} \frac{1}{N}$

MRCA (Most Recent Common Ancestor)?

Consider two lineages: $P(c. 1 \text{ generation ago}) = \frac{1}{N}$ $P(c. 2 \text{ generations ago}) = (1 - \frac{1}{N}) \frac{1}{N}$

 $P(c. t generations ago) = (1 - \frac{1}{N})^{t-1} \frac{1}{N}$

ightarrow geometric distribution

MRCA (Most Recent Common Ancestor)?

Consider two lineages: $P(c. 1 \text{ generation ago}) = \frac{1}{N}$ $P(c. 2 \text{ generations ago}) = (1 - \frac{1}{N}) \frac{1}{N}$

 $P(c. t generations ago) = (1 - \frac{1}{N})^{t-1} \frac{1}{N}$

ightarrow geometric distribution

Theorem [Kingman '82]

For $N \to \infty$ this will converge to the Kingman *n*-coalescent.

 \rightarrow consider their genealogy as a binary rooted equidistant *n*-tree

Discrete: Choosing pairs to coalesce

ightarrow consider their genealogy as a binary rooted equidistant *n*-tree

Discrete: Choosing pairs to coalesce

 \rightarrow consider their genealogy as a binary rooted equidistant *n*-tree T_j = time during which there are exactly *j* lineages in the sample

Discrete: Choosing pairs to coalesce

 \rightarrow consider their genealogy as a binary rooted equidistant *n*-tree T_j = time during which there are exactly *j* lineages in the sample

Discrete: Choosing pairs to coalesce Continuous: Exponentially distributed waiting times $T_{j} \sim \text{Exp}\binom{j}{2}$

CONTENTS

THE KINGMAN *n*-COALESCENT

- **2** Space of Trees
- **B** A Density
- O Connection to Tropical Geometry
- **FURTHER DIRECTIONS**

Coarse combinatorial types of binary rooted equidistant 4-trees

Coarse combinatorial types of binary rooted equidistant 4-trees

Fine combinatorial types of binary rooted equidistant 4-trees

ㅁㅏ 《鄙ㅏ 《ㄹㅏ 《ㄹㅏ

\rightarrow Parametrization?

\rightarrow Parametrization • global

→ Parametrization● global

DEFINITION

$$\mathsf{MUM}_n \coloneqq \{ d \in \mathbb{R}_{\geq 0}^{\binom{n}{2}} : \forall i, j, k : \max\{d_{ij}, d_{ik}, d_{jk}\}$$

is attained at least twice}

Metrics that are UltraMetrics

→ Parametrization
 ● global
 ● local

DEFINITION

$$\mathsf{MUM}_n := \{ d \in \mathbb{R}_{\geq 0}^{\binom{n}{2}} : \forall i, j, k : \max\{d_{ij}, d_{ik}, d_{jk}\}$$

is attained at least twice}

Metrics that are UltraMetrics

- ightarrow Parametrization
 - global: coordinates d_{ab}, d_{ac}, d_{bc}

- ightarrow Parametrization
 - global: coordinates d_{ab}, d_{ac}, d_{bc}

a b c b a c c a b

 \rightarrow Parametrization

• global: coordinates d_{ab}, d_{ac}, d_{bc}

 \rightarrow Parametrization

global: coordinates
 d_{ab}, d_{ac}, d_{bc}
 → one cone for each
 combinatorial type

- ightarrow Parametrization
 - global: coordinates
 d_{ab}, d_{ac}, d_{bc}
 → one cone for each
 combinatorial type

- ightarrow Parametrization
 - global: coordinates
 d_{ab}, d_{ac}, d_{bc}
 → one cone for each
 combinatorial type

- ightarrow Parametrization
 - global: coordinates
 d_{ab}, d_{ac}, d_{bc}
 → one cone for each
 combinatorial type

- ightarrow Parametrization
 - global: coordinates
 d_{ab}, d_{ac}, d_{bc}
 → one cone for each
 combinatorial type
 - local: coordinates *T*₂, *T*₃

CONTENTS

THE KINGMAN *n*-COALESCENT

Space of Trees

3 A Density

O Connection to Tropical Geometry

FURTHER DIRECTIONS

A DENSITY

PROPOSITION [HAASE, W.]

The Kingman n-coalescent is given by the continuous density

$$\rho_n(T_2,\ldots,T_n)=\prod_{j=2}^n \binom{j}{2}\exp\left(-\binom{j}{2}T_j\right).$$

CONTENTS

THE KINGMAN *n*-COALESCENT

- Space of Trees
- **O A DENSITY**

CONNECTION TO TROPICAL GEOMETRY

FURTHER DIRECTIONS

Connection to Tropical Geometry

DEFINITION

$$\mathsf{MUM}_n \coloneqq \{ d \in \mathbb{R}_{\geq 0} \binom{n}{2} : \forall i, j, k : \max\{d_{ij}, d_{ik}, d_{jk}\}$$

is attained at least twice}

Metrics that are Ultrametrics

CONNECTION TO TROPICAL GEOMETRY

DEFINITION

$$\mathsf{DUM}_n \coloneqq \{ d \in \mathbb{R}^{\binom{n}{2}} : \forall i, j, k : \max\{d_{ij}, d_{ik}, d_{jk}\}$$

is attained at least twice}

Dissimilarity maps that are UltraMetrics

CONNECTION TO TROPICAL GEOMETRY

DEFINITION

$$\mathsf{DUM}_n := \{ d \in \mathbb{R}^{\binom{n}{2}} : \forall i, j, k : \max\{d_{ij}, d_{ik}, d_{jk}\}$$

is attained at least twice}

Dissimilarity maps that are UltraMetrics

DEFINITION

A dissimilarity map on [n] is a map $\delta : [n] \times [n] \to \mathbb{R}$ such that $\delta(i, i) = 0$ for all $i \in [n]$, and $\delta(i, j) = \delta(j, i)$ for all $i, j \in [n]$.

CONNECTION TO TROPICAL GEOMETRY

DEFINITION

$$\mathsf{DUM}_n := \{ d \in \mathbb{R}^{\binom{n}{2}} : \forall i, j, k : \max\{d_{ij}, d_{ik}, d_{jk}\}$$

is attained at least twice}

Dissimilarity maps that are UltraMetrics

DEFINITION

A dissimilarity map on [n] is a map $\delta : [n] \times [n] \to \mathbb{R}$ such that $\delta(i, i) = 0$ for all $i \in [n]$, and $\delta(i, j) = \delta(j, i)$ for all $i, j \in [n]$.

Theorem [Ardila Klivans '06⁻

 $\mathsf{DUM}_n/\mathbb{R}1 = \mathsf{trop}(\mathsf{matroid}(K_n)) = \mathcal{B}(K_n)$

complete graph K_4

complete graph K_4

 $E = \{1, 2, 3, 4, 5, 6\}$

complete graph K_4

 $E = \{1, 2, 3, 4, 5, 6\}$

NZNZ NZZZ NZZZ

complete graph K_4

 $E = \{1, 2, 3, 4, 5, 6\}$

Bases of the graphical matroid $M(K_4) = (E, B)$

$$B = \{\{2,4,5\},\{1,3,6\},\{2,4,6\},\\ \{1,3,5\},\{2,3,4\},\{1,2,4\},\\ \{1,3,4\},\{1,2,3\},\{3,4,6\},\\ \{2,3,5\},\{1,4,5\},\{1,5,6\},\\ \{4,5,6\},\{2,5,6\},\{3,5,6\}\}$$

• assign weights $\omega \in \mathbb{R}^{\binom{n}{2}}$ to the edges

- assign weights $\omega \in \mathbb{R}^{\binom{n}{2}}$ to the edges
- for a basis $B = \{b_1, \dots, b_r\}$ the weight of the basis is given by $\omega_B = \omega_{b_1} + \ldots + \omega_{b_r}$

- assign weights $\omega \in \mathbb{R}^{\binom{n}{2}}$ to the edges
- for a basis $B = \{b_1, \dots, b_r\}$ the weight of the basis is given by $\omega_B = \omega_{b_1} + \ldots + \omega_{b_r}$
- $\bullet
 ightarrow M_\omega =$ collection of bases of M having minimum $\omega-$ weight

$$\mathsf{Bergman} \, \mathsf{fan} \\ \mathcal{B}(\mathcal{K}_n) \coloneqq \left\{ \omega \in \mathbb{R}^{\binom{n}{2}} \mid M_\omega \, \, \mathsf{has} \, \, \mathsf{no} \, \, \mathsf{loops} \right\}$$

- assign weights $\omega \in \mathbb{R}^{\binom{n}{2}}$ to the edges
- for a basis $B = \{b_1, \dots, b_r\}$ the weight of the basis is given by $\omega_B = \omega_{b_1} + \ldots + \omega_{b_r}$
- ullet \to M_ω = collection of bases of M having minimum ω -weight

$$\mathsf{Bergman} \, \mathsf{fan} \\ \mathcal{B}(\mathcal{K}_n) \coloneqq \left\{ \omega \in \mathbb{R}^{\binom{n}{2}} \mid \mathit{M}_\omega \, \, \mathsf{has no \ loops} \right\}$$

- assign weights $\omega \in \mathbb{R}^{\binom{n}{2}}$ to the edges
- for a basis $B = \{b_1, \dots, b_r\}$ the weight of the basis is given by $\omega_B = \omega_{b_1} + \ldots + \omega_{b_r}$
- $\bullet
 ightarrow M_\omega =$ collection of bases of M having minimum $\omega-$ weight

Theorem [Ardila Klivans '06]

A dissimilarity map is an ultrametric if and only if the corresponding weight vector on the edges of K_n is in the Bergman fan $\mathcal{B}(K_n)$.

Theorem [Ardila Klivans '06]

A dissimilarity map is an ultrametric if and only if the corresponding weight vector on the edges of K_n is in the Bergman fan $\mathcal{B}(K_n)$.

DEFINITION

$$\begin{split} \mathsf{DTM}_n &\coloneqq \{ \, d \in \mathbb{R}^{\binom{n}{2}} : \forall i, j, k, l : \\ \max \{ d_{ij} + d_{kl}, d_{ik} + d_{jl}, d_{il} + d_{jk} \} \\ \text{ is attained at least twice} \end{split}$$

Dissimilarity maps that are TreeMetrics

DEFINITION

$$\mathsf{DTM}_n := \{ d \in \mathbb{R}^{\binom{n}{2}} : \forall i, j, k, l : \\ \max\{d_{ij} + d_{kl}, d_{ik} + d_{jl}, d_{il} + d_{jk} \} \\ \text{ is attained at least twice} \}$$

Dissimilarity maps that are TreeMetrics

DEFINITION

$$\mathsf{DTM}_n := \{ d \in \mathbb{R}^{\binom{n}{2}} : \forall i, j, k, l : \\ \max\{d_{ij} + d_{kl}, d_{ik} + d_{jl}, d_{il} + d_{jk} \} \\ \text{ is attained at least twice} \}$$

Dissimilarity maps that are \top reeMetrics

CONTENTS

D THE KINGMAN *n*-COALESCENT

- O Space of Trees
- **3** A Density

O Connection to Tropical Geometry

FURTHER DIRECTIONS

- fan with density in $\mathbb{R}^{\binom{\mathbb{N}}{2}}$?
- fan for species trees?
- Include mutations?
- consider non-binary trees?

Thank you for your attention!