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→ trace ancestry backwards
in time

MRCA (Most Recent
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The Kingman n-coalescent

MRCA (Most Recent Common
Ancestor)?

Consider two lineages:

P(c. 1 generation ago) = 1
N

P(c. 2 generations ago) =
(
1− 1

N

)
1
N

...
P(c. t generations ago) =(
1− 1

N

)t−1 1
N

→ geometric distribution

Theorem[Kingman ’82]

For N →∞ this will converge to the Kingman n-coalescent.
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The Kingman n-coalescent

→ consider their genealogy as a binary rooted equidistant n-tree

Tj = time during which there are exactly j lineages in the sample

Continuous: Exponentially distributed waiting times Tj ∼ Exp
(j
2

)
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Space of Trees

→ Parametrization

global

local

Definition

MUMn := {d ∈ R(n2)
≥0 : ∀i , j , k : max {dij , dik , djk}

is attained at least twice}

Metrics that are UltraMetrics
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A Density

Proposition [Haase, W.]

The Kingman n-coalescent is given by the continuous density

ρn(T2, . . . ,Tn) =
n∏

j=2

(
j

2

)
exp

(
−
(
j

2

)
Tj

)
.
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Connection to Tropical Geometry

Definition

MUMn := {d ∈ R≥0
(n2) : ∀i , j , k : max {dij , dik , djk}

is attained at least twice}

Metrics that are Ultrametrics
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Connection to Tropical Geometry

Definition

DUMn := {d ∈ R(n2) : ∀i , j , k : max {dij , dik , djk}
is attained at least twice}

Dissimilarity maps that are UltraMetrics

Definition

A dissimilarity map on [n] is a map δ : [n]× [n]→ R such that
δ(i , i) = 0 for all i ∈ [n], and δ(i , j) = δ(j , i) for all i , j ∈ [n].

Theorem [Ardila Klivans ’06]

DUMn/R1 = trop(matroid(Kn)) = B(Kn)
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The Bergman fan of a graphical matroid

complete graph K4

E = {1, 2, 3, 4, 5, 6}

Bases of the graphical matroid
M(K4) = (E ,B)

B = {{2, 4, 5}, {1, 3, 6}, {2, 4, 6},
{1, 3, 5}, {2, 3, 4}, {1, 2, 4},
{1, 3, 4}, {1, 2, 3}, {3, 4, 6},
{2, 3, 5}, {1, 4, 5}, {1, 5, 6},
{4, 5, 6}, {2, 5, 6}, {3, 5, 6}}
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The Bergman fan of a graphical matroid

Definition
Bergman fan

B(Kn) :=
{
ω ∈ R(n

2) | Mω has no loops
}

assign weights ω ∈ R(n2) to the edges

for a basis B = {b1, . . . , br} the weight of the basis is given by
ωB = ωb1 + . . .+ ωbr

→ Mω = collection of bases of M having minimum ω−weight

Theorem [Ardila Klivans ’06]

A dissimilarity map is an ultrametric if and only if the corresponding
weight vector on the edges of Kn is in the Bergman fan B(Kn).
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Space of Trees

Definition

DTMn := {d ∈ R(n
2) : ∀i , j , k , l :

max {dij + dkl , dik + djl , dil + djk}
is attained at least twice}

Dissimilarity maps that are TreeMetrics

Theorem [Speyer Sturmfels ’03]

DTMn/R1 = trop(Gr(2, n))
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Further Directions

fan with density in R(N2) ?

fan for species trees?

include mutations?

consider non-binary trees?
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Thank you for your attention!

Lena Walter (FU Berlin/BMS) The Kingman Coalescent as a Density on a Space of Trees6th of July, 2018 38 / 38


	The Kingman n-coalescent
	Space of Trees
	A Density
	Connection to Tropical Geometry
	Further Directions

