

Contents

- The Kingman n-COALESCENT
(2) SpACE OF TreES

B A DENSITY
© Connection to Tropical Geometry
© Further Directions

Contents

The Kingman n-Coalescent

The Kingman n-COALESCENT

population genetic model:

The Kingman n-Coalescent

population genetic model: Wright-Fisher 30's

The Kingman n-COALESCEnt

population genetic model: Wright-Fisher 30's

- fixed population size

The Kingman n-COALESCENT

population genetic model: Wright-Fisher 30's

- fixed population size
- non-overlapping generations

The Kingman n-COALESCEnt

population genetic model: Wright-Fisher 30's

- fixed population size
- non-overlapping generations
- no recombination

The Kingman n-Coalescent

population genetic model:
Wright-Fisher 30's
\rightarrow sample n individuals from a population of N

The Kingman n-COALESCENT

population genetic model:
Wright-Fisher 30's
\rightarrow sample n individuals from a population of N
\rightarrow trace ancestry backwards in time

The Kingman n-COALESCENT

population genetic model:
Wright-Fisher 30's
\rightarrow sample n individuals from a population of N
\rightarrow trace ancestry backwards in time

The Kingman n-COALESCENT

population genetic model:
Wright-Fisher 30's

\rightarrow sample n individuals from a population of N
\rightarrow trace ancestry backwards in time

The Kingman n-Coalescent

population genetic model:
Wright-Fisher 30's
\rightarrow sample n individuals from a population of N
\rightarrow trace ancestry backwards in time

The Kingman n-COALESCENT

population genetic model:
Wright-Fisher 30's
\rightarrow sample n individuals from a population of N
\rightarrow trace ancestry backwards in time

MRCA (Most Recent Common Ancestor)?

The Kingman n-COALESCENT

MRCA (Most Recent Common Ancestor)?

Consider two lineages:

The Kingman n-COALESCENT

MRCA (Most Recent Common Ancestor)?

Consider two lineages: $P($ c. 1 generation ago $)=\frac{1}{N}$

The Kingman n-COALESCEnt

> MRCA (Most Recent Common Ancestor)?

Consider two lineages:
$P($ c. 1 generation ago $)=\frac{1}{N}$
$P($ c. 2 generations ago $)=\left(1-\frac{1}{N}\right) \frac{1}{N}$

The Kingman n-COALESCENT

> MRCA (Most Recent Common Ancestor)?

Consider two lineages:
$P($ c. 1 generation ago $)=\frac{1}{N}$
$P($ c. 2 generations ago $)=\left(1-\frac{1}{N}\right) \frac{1}{N}$
:
$P(\mathrm{c} . \mathrm{t}$ generations ago $)=$
$\left(1-\frac{1}{N}\right)^{t-1} \frac{1}{N}$

The Kingman n-Coalescent

MRCA (Most Recent Common Ancestor)?

Consider two lineages:
$P($ c. 1 generation ago $)=\frac{1}{N}$
$P($ c. 2 generations ago $)=\left(1-\frac{1}{N}\right) \frac{1}{N}$
:
$P(\mathrm{c} . \mathrm{t}$ generations ago $)=$ $\left(1-\frac{1}{N}\right)^{t-1} \frac{1}{N}$
geometric distribution

The Kingman n-Coalescent

$$
\begin{gathered}
\text { MRCA (Most Recent Common } \\
\text { Ancestor)? }
\end{gathered}
$$

Consider two lineages: $P($ c. 1 generation ago $)=\frac{1}{N}$
$P($ c. 2 generations ago $)=\left(1-\frac{1}{N}\right) \frac{1}{N}$
:
$P(\mathrm{c} . \mathrm{t}$ generations ago $)=$ $\left(1-\frac{1}{N}\right)^{t-1} \frac{1}{N}$
geometric distribution

Theorem Kingman '82

For $N \rightarrow \infty$ this will converge to the Kingman n-coalescent.

The Kingman n-Coalescent

consider their genealogy as a binary rooted equidistant n-tree

The Kingman n-COALESCENT

consider their genealogy as a binary rooted equidistant n-tree

The Kingman n-Coalescent

consider their genealogy as a binary rooted equidistant n-tree

The Kingman n-COALESCENT

\rightarrow consider their genealogy as a binary rooted equidistant n-tree

The Kingman n-COALESCENT

\rightarrow consider their genealogy as a binary rooted equidistant n-tree

Discrete: Choosing pairs to coalesce

The Kingman n-COALESCENT

consider their genealogy as a binary rooted equidistant n-tree

Discrete: Choosing pairs to coalesce

The Kingman n-COALESCENT

\rightarrow consider their genealogy as a binary rooted equidistant n-tree $T_{j}=$ time during which there are exactly j lineages in the sample

Discrete: Choosing pairs to coalesce

The Kingman n-COALESCENT

\rightarrow consider their genealogy as a binary rooted equidistant n-tree $T_{j}=$ time during which there are exactly j lineages in the sample

Discrete: Choosing pairs to coalesce
Continuous: Exponentially distributed waiting times $T_{j} \sim \operatorname{Exp}\binom{j}{2}$

Contents
(2) SpACE OF TrEES

Space of Trees

Coarse combinatorial types of binary rooted equidistant 4-trees

Space of Trees

Coarse combinatorial types of binary rooted equidistant 4-trees

Space of Trees

Fine combinatorial types of binary rooted equidistant 4-trees

Space of Trees

Space of Trees

\rightarrow Parametrization?

Space of Trees

Parametrization
- global

Space of Trees

\rightarrow Parametrization

- global

Definimion

$$
\operatorname{MUM}_{n}:=\left\{d \in \mathbb{R}_{\geq 0}^{\binom{n}{2}}: \forall i, j, k: \max \left\{d_{i j}, d_{i k}, d_{j k}\right\}\right.
$$ is attained at least twice\}

Metrics that are Ultra Metrics

Space of Trees

Parametrization

- global
- local

Definimion

$$
\operatorname{MUM}_{n}:=\left\{d \in \mathbb{R}_{\geq 0}^{\binom{n}{2}}: \forall i, j, k: \max \left\{d_{i j}, d_{i k}, d_{j k}\right\}\right.
$$ is attained at least twice\}

Metrics that are Ultra Metrics

Space of Trees

Parametrization

- global: coordinates
$d_{a b}, d_{a c}, d_{b c}$

Space of Trees

Parametrization

- global: coordinates $d_{a b}, d_{a c}, d_{b c}$

Space of Trees

Parametrization

- global: coordinates $d_{a b}, d_{a c}, d_{b c}$

Space of Trees

Parametrization

- global: coordinates $d_{a b}, d_{a c}, d_{b c}$ \rightarrow one cone for each combinatorial type

Space of Trees

Parametrization

- global: coordinates $d_{a b}, d_{a c}, d_{b c}$ \rightarrow one cone for each combinatorial type

Space of Trees

Parametrization

- global: coordinates $d_{a b}, d_{a c}, d_{b c}$ \rightarrow one cone for each combinatorial type

Space of Trees

Parametrization

- global: coordinates $d_{a b}, d_{a c}, d_{b c}$ \rightarrow one cone for each combinatorial type

Space of Trees

Parametrization

- global: coordinates $d_{a b}, d_{a c}, d_{b c}$ \rightarrow one cone for each combinatorial type
- local: coordinates T_{2}, T_{3}

Contents

O A Density

A Density

Proposition Hase

The Kingman n-coalescent is given by the continuous density

$$
\rho_{n}\left(T_{2}, \ldots, T_{n}\right)=\prod_{j=2}^{n}\binom{j}{2} \exp \left(-\binom{j}{2} T_{j}\right) .
$$

Contents

O Connection to Tropical Geometry

Connection to Tropical Geometry

Definition

$$
\begin{aligned}
\operatorname{MUM}_{n}:=\{ & \left\{d \in \mathbb{R} \geq 0 \begin{array}{l}
n \\
2
\end{array}\right): \forall i, j, k: \max \left\{d_{i j}, d_{i k}, d_{j k}\right\} \\
& \text { is attained at least twice }\}
\end{aligned}
$$

Vetrics that are Ultrametrics

Connection to Tropical Geometry

$$
\begin{aligned}
\operatorname{DUM}_{n}:= & \left\{d \in \mathbb{R}^{\binom{n}{2}}: \forall i, j, k: \max \left\{d_{i j}, d_{i k}, d_{j k}\right\}\right. \\
& \text { is attained at least twice }\}
\end{aligned}
$$

Dissimilarity maps that are UltraMetrics

Connection to Tropical Geometry

DEFINITION

$$
\begin{aligned}
\operatorname{DUM}_{n}:= & \left\{d \in \mathbb{R}_{\binom{n}{2}}\right): \forall i, j, k: \max \left\{d_{i j}, d_{i k}, d_{j k}\right\} \\
& \text { is attained at least twice }\}
\end{aligned}
$$

Dissimilarity maps that are Ultra Metrics

Definition

A dissimilarity map on $[n]$ is a map $\delta:[n] \times[n] \rightarrow \mathbb{R}$ such that $\delta(i, i)=0$ for all $i \in[n]$, and $\delta(i, j)=\delta(j, i)$ for all $i, j \in[n]$.

Connection to Tropical Geometry

Definition

$$
\begin{aligned}
\operatorname{DUM}_{n}:= & \left\{d \in \mathbb{R}_{\binom{n}{2}}\right): \forall i, j, k: \max \left\{d_{i j}, d_{i k}, d_{j k}\right\} \\
& \text { is attained at least twice }\}
\end{aligned}
$$

Dissimilarity maps that are Ultra Metrics

Definition

A dissimilarity map on $[n]$ is a map $\delta:[n] \times[n] \rightarrow \mathbb{R}$ such that $\delta(i, i)=0$ for all $i \in[n]$, and $\delta(i, j)=\delta(j, i)$ for all $i, j \in[n]$.

Theorem [Ardila Klivans '06]

$\operatorname{DUM}_{n} / \mathbb{R} 1=\operatorname{trop}\left(\operatorname{matroid}\left(K_{n}\right)\right)=\mathcal{B}\left(K_{n}\right)$

The Bergman fan of a graphical matroid

complete graph K_{4}

The Bergman fan of a graphical matroid

complete graph K_{4}

$$
E=\{1,2,3,4,5,6\}
$$

The Bergman fan of a graphical matroid

complete graph K_{4}

$E=\{1,2,3,4,5,6\}$

The Bergman fan of a graphical matroid

complete graph K_{4}

$E=\{1,2,3,4,5,6\}$

Bases of the graphical matroid $M\left(K_{4}\right)=(E, B)$

$$
\begin{aligned}
B= & \{\{2,4,5\},\{1,3,6\},\{2,4,6\}, \\
& \{1,3,5\},\{2,3,4\},\{1,2,4\}, \\
& \{1,3,4\},\{1,2,3\},\{3,4,6\}, \\
& \{2,3,5\},\{1,4,5\},\{1,5,6\}, \\
& \{4,5,6\},\{2,5,6\},\{3,5,6\}\}
\end{aligned}
$$

The Bergman fan of a graphical matroid

complete graph $K_{4} \quad \sim \rightarrow$

$E=\{1,2,3,4,5,6\}$

Graphical matroid
$M\left(K_{4}\right)=(E, B)$
$\Sigma И Z N$
ㅋロレ

$B=\{\{2,4,5\},\{1,3,6\},\{2,4,6\},\{1,3,5\},\{2,3,4\}$, $\{1,2,4\},\{1,3,4\},\{1,2,3\},\{3,4,6\},\{2,3,5\},\{1,4,5\}$, $\{1,2,6\},\{1,5,6\},\{4,5,6\},\{2,5,6\},\{3,5,6\}\}$

The Bergman fan of a graphical matroid

complete graph $K_{4} \quad \sim \rightarrow$

$E=\{1,2,3,4,5,6\}$

Graphical matroid $M\left(K_{4}\right)=(E, B)$
$\Sigma И Z N$
ㄱロレ
$\pi \searrow ス K$
$\times X X X$
$B=\{\{2,4,5\},\{1,3,6\},\{2,4,6\},\{1,3,5\},\{2,3,4\}$ ，
$\{1,2,4\},\{1,3,4\},\{1,2,3\},\{3,4,6\},\{2,3,5\},\{1,4,5\}$ ，
$\{1,2,6\},\{1,5,6\},\{4,5,6\},\{2,5,6\},\{3,5,6\}\}$
－assign weights $\omega \in \mathbb{R}^{\binom{n}{2}}$ to the edges

The Bergman fan of a graphical matroid

complete graph $K_{4} \quad \sim \rightarrow$

$E=\{1,2,3,4,5,6\}$

Graphical matroid
$M\left(K_{4}\right)=(E, B)$

$B=\{\{2,4,5\},\{1,3,6\},\{2,4,6\},\{1,3,5\},\{2,3,4\}$,
$\{1,2,4\},\{1,3,4\},\{1,2,3\},\{3,4,6\},\{2,3,5\},\{1,4,5\}$,
$\{1,2,6\},\{1,5,6\},\{4,5,6\},\{2,5,6\},\{3,5,6\}\}$

- assign weights $\omega \in \mathbb{R}^{\binom{n}{2}}$ to the edges
- for a basis $B=\left\{b_{1}, \ldots, b_{r}\right\}$ the weight of the basis is given by $\omega_{B}=\omega_{b_{1}}+\ldots+\omega_{b_{r}}$

The Bergman fan of a graphical matroid

complete graph $K_{4} \quad \sim \rightarrow$

$E=\{1,2,3,4,5,6\}$

Graphical matroid $M\left(K_{4}\right)=(E, B)$

$B=\{\{2,4,5\},\{1,3,6\},\{2,4,6\},\{1,3,5\},\{2,3,4\}$,
$\{1,2,4\},\{1,3,4\},\{1,2,3\},\{3,4,6\},\{2,3,5\},\{1,4,5\}$,
$\{1,2,6\},\{1,5,6\},\{4,5,6\},\{2,5,6\},\{3,5,6\}\}$

- assign weights $\omega \in \mathbb{R}^{\binom{n}{2}}$ to the edges
- for a basis $B=\left\{b_{1}, \ldots, b_{r}\right\}$ the weight of the basis is given by $\omega_{B}=\omega_{b_{1}}+\ldots+\omega_{b_{r}}$
- $\rightarrow M_{\omega}=$ collection of bases of M having minimum ω-weight

The Bergman fan of a graphical matroid

complete graph $K_{4} \quad \sim \rightarrow$

$E=\{1,2,3,4,5,6\}$ $M\left(K_{4}\right)=(E, B)$

Definition

Bergman fan

$$
\mathcal{B}\left(K_{n}\right):=\left\{\left.\omega \in \mathbb{R}^{\binom{n}{2}} \right\rvert\, M_{\omega} \text { has no loops }\right\}
$$

$B=\{\{2,4,5\},\{1,3,6\},\{2,4,6\},\{1,3,5\},\{2,3,4\}$,
$\{1,2,4\},\{1,3,4\},\{1,2,3\},\{3,4,6\},\{2,3,5\},\{1,4,5\}$, $\{1,2,6\},\{1,5,6\},\{4,5,6\},\{2,5,6\},\{3,5,6\}\}$

- assign weights $\omega \in \mathbb{R}^{\binom{n}{2}}$ to the edges
- for a basis $B=\left\{b_{1}, \ldots, b_{r}\right\}$ the weight of the basis is given by $\omega_{B}=\omega_{b_{1}}+\ldots+\omega_{b_{r}}$
- $\rightarrow M_{\omega}=$ collection of bases of M having minimum ω-weight

The Bergman fan of a graphical matroid

complete graph $K_{4} \quad \sim \rightarrow$

$E=\{1,2,3,4,5,6\}$ $M\left(K_{4}\right)=(E, B)$

$\{1,2,4\},\{1,3,4\},\{1,2,3\},\{3,4,6\},\{2,3,5\},\{1,4,5\}$ $\{1,2,6\},\{1,5,6\},\{4,5,6\},\{2,5,6\},\{3,5,6\}\}$

Derinition

Bergman fan

$$
\mathcal{B}\left(K_{n}\right):=\left\{\left.\omega \in \mathbb{R}^{\binom{n}{2}} \right\rvert\, M_{\omega} \text { has no loops }\right\}
$$

- assign weights $\omega \in \mathbb{R}^{\binom{n}{2}}$ to the edges
- for a basis $B=\left\{b_{1}, \ldots, b_{r}\right\}$ the weight of the basis is given by $\omega_{B}=\omega_{b_{1}}+\ldots+\omega_{b_{r}}$
- $\rightarrow M_{\omega}=$ collection of bases of M having minimum ω-weight

Theorem [Ardila Klivans
 06

A dissimilarity map is an ultrametric if and only if the corresponding weight vector on the edges of K_{n} is in the Bergman fan $\mathcal{B}\left(K_{n}\right)$.

The Bergman fan of a graphical matroid

Theorem (Ardila Klivans '06]

A dissimilarity map is an ultrametric if and only if the corresponding weight vector on the edges of K_{n} is in the Bergman fan $\mathcal{B}\left(K_{n}\right)$.

Space of Trees

$$
\begin{aligned}
\operatorname{DTM}_{n}:=\{ & d \in \mathbb{R}^{\binom{n}{2}}: \forall i, j, k, l: \\
& \max \left\{d_{i j}+d_{k l}, d_{i k}+d_{j l}, d_{i l}+d_{j k}\right\} \\
& \text { is attained at least twice }\}
\end{aligned}
$$

Dissimilarity maps that are TreeMetrics

Space of Trees

$$
\begin{aligned}
\text { DTM }_{n}:=\{ & d \in \mathbb{R}^{\binom{n}{2}}: \forall i, j, k, l: \\
& \max \left\{d_{i j}+d_{k l}, d_{i k}+d_{j l}, d_{i l}+d_{j k}\right\} \\
& \text { is attained at least twice }\}
\end{aligned}
$$

Dissimilarity maps that are Tree Metrics

Space of Trees

$$
\begin{aligned}
\operatorname{DTM}_{n}:=\{ & d \in \mathbb{R}^{\binom{n}{2}}: \forall i, j, k, l: \\
& \max \left\{d_{i j}+d_{k l}, d_{i k}+d_{j l}, d_{i l}+d_{j k}\right\} \\
& \text { is attained at least twice }\}
\end{aligned}
$$

Dissimilarity maps that are Tree Metrics

Theorem Speyer Sturmpels '03]
$\operatorname{DTM}_{n} / \mathbb{R} 1=\operatorname{trop}(\operatorname{Gr}(2, n))$

Contents

O Further Directions

Further Directions

- fan with density in $\mathbb{R}\binom{\mathbb{N}}{2}$?
- fan for species trees?
- include mutations?
- consider non-binary trees?

Thank you for your attention!

