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Simplicial complexes and polytopes

Definition

A simplicial complex ∆ on vertex set V is a collection of subsets τ ⊆ V ,
called faces, that is closed under inclusion.

For a simplicial complex ∆, define:

1 dim τ := |τ | − 1 for τ ∈ ∆,;

2 dim ∆ := max{dim τ : τ ∈ ∆};
3 a facet τ is a maximal face under inclusion;

4 the star of a face τ is st∆ τ := {σ ∈ ∆ : σ ∪ τ ∈ ∆};
5 the link of a face τ is lk∆ τ := {σ − τ ∈ ∆ : τ ⊆ σ ∈ ∆};
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Definition

A (d − 1)-dimensional simplicial complex ∆ is a simplicial (d − 1)-sphere if
its geometric realization ||∆|| is homeomorphic to a sphere of dimension
d − 1.

In particular, the boundary complex of a simplicial d-polytope is a
(d − 1)-dimensional simplicial sphere.

Definition

A simplicial complex ∆ is centrally symmetric or cs if it is endowed with a
free involution α : V (∆)→ V (∆) that induces a free involution on the set
of all non-empty faces of ∆.

A simplicial d-polytope is cs if P = −P.
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Face-number related invariants

Let ∆ be a (d − 1)-dimensional simplicial complex.

Definition

The f -number fi = fi (∆) denotes the number of i-dimensional faces of ∆.
The vector (f−1, f0, · · · , fd−1) is called the f -vector.

Definition

The h-vector of ∆, (h0, h1, · · · , hd), is defined by the relation∑d
j=0 fj−1(x − 1)d−j =

∑d
i=0 hix

d−i .

Definition

The g -vector of ∆ is (g0, g1, · · · , gb d2 c) whose entries are given by

1 g0 = 1;

2 gi = hi − hi−1 for 1 ≤ i ≤
⌊
d
2

⌋
.

In particular, g2(∆) = f1(∆)− df0(∆) +
(d+1

2

)
.
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The Lower Bound Theorem

A polytope is stacked if it can be obtained from the d-simplex by
repeatedly attaching (shallow) d-simplices along facets.

Theorem (Walkup, Barnette, Billera and Lee)

Let ∆ be a simplicial d-polytope for d ≥ 3. Then g2 ≥ 0. Furthermore, if
d ≥ 3, then equality holds if and only if ∆ is a stacked polytope.

Remarks:

1 The theorem holds even in the class of normal pseudomanifolds.

2 More recent proofs are based on rigidity theory of graphs.

3 For simplicial d-polytopes, gr ≥ 0 by the g -theorem.
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Lower bounds for cs polytopes

Theorem (Stanley, 1987)

Let P be a cs simplicial d-polytope, where d ≥ 3. Then g2(P) ≥
(d

2

)
− d,

and more generally gr (P) ≥
(d
r

)
−
( d
r−1

)
for all 1 ≤ r ≤ d/2.

Remarks:

1 The proof requires the Hard Lefschetz properties of polytopes.

2 Stanley also proved that hi ≥
(d
i

)
holds for all cs (d − 1)-dimensional

Cohen-Macaulay simplicial complexes.
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Infinitesimal rigidity: definitions

A graph G = (V ,E ), together with a d-embedding p : V (G )→ Rd , is
called a framework in Rd .

Definition

An infinitesimal motion of Rd is a map Ψ : Rd → Rd such that for any

two points x , y ∈ Rd , d
dt

∣∣∣
t=0

∥∥(x + tΨ(x))− (y + tΨ(y))
∥∥2

= 0.

Definition

A framework (G ,p) is called infinitesimally rigid if every infinitesimal
motion m of (G ,p) is induced by some infinitesimal motion Ψ of Rd .
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not inf. rigid in R2 inf. rigid in R2 inf. rigid in R2

not inf. rigid in R3

inf. rigid in R3
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Definition

The rigidity matrix Rig(G ,p) of a framework (G ,p) is an f1(G )× df0(G )
matrix with rows labeled by edges of G and columns grouped in blocks of
size d , with each block labeled by a vertex of G ; the row corresponding to
{u, v} ∈ E (G ) contains the vector p(u)− p(v) in the block of columns
corresponding to u, the vector p(v)− p(u) in columns corresponding to v ,
and zeros everywhere else.

v1

v3 v4

v2e1

e3

e2 e4

v1 v2 v3 v4


e1 1 0 −1 0
e2 0 1 0 −1
e3 1 0 −1 0
e4 0 1 0 −1
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Definition

A stress on (G ,p) is an assignment of weights ω = (ωe : e ∈ E (G )) to
the edges of G such that for each vertex v ,∑

u : {u,v}∈E(G)

ω{u,v}(p(v)− p(u)) = 0.

We denote the space of all stresses on (G ,p) by S(G ,p).
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Infinitesimal rigidity: theorems

Theorem

Let (G ,p) be a framework in Rd that does not lie in a hyperplane of Rd ,
and let f0(G ) := |V (G )| and f1(G ) := |E (G )|. Then the following
statements are equivalent:

(G ,p) is infinitesimally rigid in Rd ;

rankRig(G ,p) = df0(G )−
(d

2

)
;

dim S(G ,p) = f1(G )− df0(G ) +
(d+1

2

)
.
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Properties of frameworks of polytopes:

Let d ≥ 4 and P be a simplicial d-polytope with its natural embedding p
in Rd .

(Whitley, 1984) G (P) is infinitesimally rigid in Rd .

For every face τ of P with 1 ≤ |V (τ)| ≤ d − 3, the framework
(stP(τ),p) is infinitesimally rigid.

For two vertices u, v ∈ P such that (lkP(u) ∩ lkP(v),p) affinely spans
a subspace of dimension at least d − 1, the framework
(stP(u) ∪ stP(v),p) is infinitesimally rigid.
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Rigidity theory for cs graphs

From the rigidity theory of frameworks, it follows immediately that any
simplicial d-polytope P, g2(P) ≥ 0.
What about cs simplicial d-polytopes?

Observation (Sanyal et al.)

Let d ≥ 3 and let (G ,p) be an infinitesimally rigid cs d-framework that
affinely spans Rd . Then g2(G ) ≥

(d
2

)
− d. Furthermore, if

g2(G ) =
(d

2

)
− d, then every stress on (G ,p) is symmetric.
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Main Theorem

Theorem

Let P be a cs simplicial d-polytope with d ≥ 4. Then g2(P) =
(d

2

)
− d if

and only if P is obtained from C∗d by symmetric stacking.

Remark:

The proof only works for simplicial d-polytopes.

We use different proofs for the cases d = 4 and d > 4.
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Proof ideas:

1 Reduce to the case when ∂P has no missing facets.

2 Check it is true for the case d = 4.

3 Show that for every vertex u, lk(u) ∩ lk(−u) shares 2d − 2 vertices.
Then show that G (st(u) ∪ st(−u)) = G (P).

4 Finish by face enumeration.
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Open Problems

1 Does the characterization of the minimizers continue to hold in the
generality of cs simplicial spheres or even cs normal pseudomanifolds?

2 Let ∆ be a 2-dimensional simplicial sphere and {ui , vi}mi=1 is a
collection of missing edges in ∆.
Does there exists an embedding p of ∆ such that p(ui ) = p(vi ) for
i = 1, . . . ,m and (∆,p) is infinitesimal rigid?

3 A generalized lower bound conjecture for cs simplicial polytopes?
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Thank You!
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