# A lower bound theorem for centrally symmetric simplicial polytopes

Hailun Zheng

University of Michigan

hailunz@umich.edu

Joint work with Steve Klee, Eran Nevo and Isabella Novik

August 2, 2018

Hailun Zheng (UM)

lower bound theorem for cs polytopes

August 2, 2018 1 / 18

## Outline

- Basics on simplicial complexes and known theorems.
- The rigidity theory of frameworks.
- Main theorem.
- Open problems.

Sac

イロト 不得下 イヨト イヨト 二日

## Simplicial complexes and polytopes

#### Definition

A simplicial complex  $\Delta$  on vertex set V is a collection of subsets  $\tau \subseteq V$ , called faces, that is closed under inclusion.

For a simplicial complex  $\Delta$ , define:

- dim  $\tau := |\tau| 1$  for  $\tau \in \Delta$ ,;
- 2 dim  $\Delta := \max\{\dim \tau : \tau \in \Delta\};$
- **③** a *facet*  $\tau$  is a maximal face under inclusion;
- the star of a face  $\tau$  is  $\operatorname{st}_{\Delta} \tau := \{ \sigma \in \Delta : \sigma \cup \tau \in \Delta \};$
- **5** the *link* of a face  $\tau$  is  $lk_{\Delta} \tau := \{ \sigma \tau \in \Delta : \tau \subseteq \sigma \in \Delta \}$ ;

< ロ ト < 同 ト < 三 ト < 三 ト

#### Definition

A (d-1)-dimensional simplicial complex  $\Delta$  is a simplicial (d-1)-sphere if its geometric realization  $||\Delta||$  is homeomorphic to a sphere of dimension d-1.

In particular, the boundary complex of a simplicial d-polytope is a (d-1)-dimensional simplicial sphere.

#### Definition

A simplicial complex  $\Delta$  is centrally symmetric or cs if it is endowed with a free involution  $\alpha : V(\Delta) \rightarrow V(\Delta)$  that induces a free involution on the set of all non-empty faces of  $\Delta$ .

A simplicial *d*-polytope is cs if P = -P.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

## Face-number related invariants

Let  $\Delta$  be a (d-1)-dimensional simplicial complex.

#### Definition

The *f*-number  $f_i = f_i(\Delta)$  denotes the number of *i*-dimensional faces of  $\Delta$ . The vector  $(f_{-1}, f_0, \dots, f_{d-1})$  is called the *f*-vector.

#### Definition

The *h*-vector of  $\Delta$ ,  $(h_0, h_1, \dots, h_d)$ , is defined by the relation  $\sum_{j=0}^{d} f_{j-1}(x-1)^{d-j} = \sum_{i=0}^{d} h_i x^{d-i}$ .

#### Definition

The g-vector of  $\Delta$  is  $(g_0, g_1, \cdots, g_{\lfloor \frac{d}{2} \rfloor})$  whose entries are given by

1 
$$g_0 = 1$$
;  
2  $g_i = h_i - h_{i-1}$  for  $1 \le i \le \lfloor \frac{d}{2} \rfloor$ .  
n particular,  $g_2(\Delta) = f_1(\Delta) - df_0(\Delta) + \binom{d+1}{2}$ 

Hailun Zheng (UM)

A polytope is *stacked* if it can be obtained from the *d*-simplex by repeatedly attaching (shallow) *d*-simplices along facets.

Theorem (Walkup, Barnette, Billera and Lee)

Let  $\Delta$  be a simplicial d-polytope for  $d \ge 3$ . Then  $g_2 \ge 0$ . Furthermore, if  $d \ge 3$ , then equality holds if and only if  $\Delta$  is a stacked polytope.

#### **Remarks:**

- The theorem holds even in the class of normal pseudomanifolds.
- Ø More recent proofs are based on rigidity theory of graphs.
- For simplicial *d*-polytopes,  $g_r \ge 0$  by the *g*-theorem.

イロト イポト イヨト イヨト 二日

## Lower bounds for cs polytopes

#### Theorem (Stanley, 1987)

Let P be a cs simplicial d-polytope, where  $d \ge 3$ . Then  $g_2(P) \ge {d \choose 2} - d$ , and more generally  $g_r(P) \ge {d \choose r} - {d \choose r-1}$  for all  $1 \le r \le d/2$ .

#### **Remarks:**

- The proof requires the Hard Lefschetz properties of polytopes.
- Stanley also proved that  $h_i \ge {d \choose i}$  holds for all cs (d-1)-dimensional Cohen-Macaulay simplicial complexes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Infinitesimal rigidity: definitions

A graph G = (V, E), together with a *d*-embedding  $\mathbf{p} : V(G) \to \mathbb{R}^d$ , is called a *framework* in  $\mathbb{R}^d$ .

#### Definition

An *infinitesimal motion* of  $\mathbb{R}^d$  is a map  $\Psi : \mathbb{R}^d \to \mathbb{R}^d$  such that for any two points  $x, y \in \mathbb{R}^d$ ,  $\frac{d}{dt}\Big|_{t=0} \|(x + t\Psi(x)) - (y + t\Psi(y))\|^2 = 0$ .

#### Definition

A framework  $(G, \mathbf{p})$  is called *infinitesimally rigid* if every infinitesimal motion  $\mathbf{m}$  of  $(G, \mathbf{p})$  is induced by some infinitesimal motion  $\Psi$  of  $\mathbb{R}^d$ .



イロト イボト イヨト イヨト

E

590

#### Definition

The *rigidity matrix*  $\operatorname{Rig}(G, \mathbf{p})$  of a framework  $(G, \mathbf{p})$  is an  $f_1(G) \times df_0(G)$  matrix with rows labeled by edges of G and columns grouped in blocks of size d, with each block labeled by a vertex of G; the row corresponding to  $\{u, v\} \in E(G)$  contains the vector  $\mathbf{p}(u) - \mathbf{p}(v)$  in the block of columns corresponding to u, the vector  $\mathbf{p}(v) - \mathbf{p}(u)$  in columns corresponding to v, and zeros everywhere else.



イロト 不得 トイヨト イヨト

#### Definition

A stress on  $(G, \mathbf{p})$  is an assignment of weights  $\omega = (\omega_e : e \in E(G))$  to the edges of G such that for each vertex v,

$$\sum_{u: \{u,v\}\in E(G)} \omega_{\{u,v\}}(\mathbf{p}(v)-\mathbf{p}(u)) = \mathbf{0}.$$

We denote the space of all stresses on  $(G, \mathbf{p})$  by  $S(G, \mathbf{p})$ .



lower bound theorem for cs polytopes

## Infinitesimal rigidity: theorems

#### Theorem

Let  $(G, \mathbf{p})$  be a framework in  $\mathbb{R}^d$  that does not lie in a hyperplane of  $\mathbb{R}^d$ , and let  $f_0(G) := |V(G)|$  and  $f_1(G) := |E(G)|$ . Then the following statements are equivalent:

•  $(G, \mathbf{p})$  is infinitesimally rigid in  $\mathbb{R}^d$ ;

• 
$$\operatorname{rankRig}(G, \mathbf{p}) = df_0(G) - \binom{d}{2};$$

• dim S(G, **p**) =  $f_1(G) - df_0(G) + \binom{d+1}{2}$ .

イロト イポト イヨト イヨト 二日

#### Properties of frameworks of polytopes:

Let  $d \ge 4$  and P be a simplicial d-polytope with its natural embedding p in  $\mathbb{R}^d$ .

- (Whitley, 1984) G(P) is infinitesimally rigid in  $\mathbb{R}^d$ .
- For every face  $\tau$  of P with  $1 \le |V(\tau)| \le d 3$ , the framework  $(\operatorname{st}_P(\tau), \mathbf{p})$  is infinitesimally rigid.
- For two vertices u, v ∈ P such that (lk<sub>P</sub>(u) ∩ lk<sub>P</sub>(v), p) affinely spans a subspace of dimension at least d − 1, the framework (st<sub>P</sub>(u) ∪ st<sub>P</sub>(v), p) is infinitesimally rigid.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

From the rigidity theory of frameworks, it follows immediately that any simplicial *d*-polytope *P*,  $g_2(P) \ge 0$ . What about cs simplicial *d*-polytopes?

#### Observation (Sanyal et al.)

Let  $d \ge 3$  and let  $(G, \mathbf{p})$  be an infinitesimally rigid cs d-framework that affinely spans  $\mathbb{R}^d$ . Then  $g_2(G) \ge {d \choose 2} - d$ . Furthermore, if  $g_2(G) = {d \choose 2} - d$ , then every stress on  $(G, \mathbf{p})$  is symmetric.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Theorem

Let P be a cs simplicial d-polytope with  $d \ge 4$ . Then  $g_2(P) = \binom{d}{2} - d$  if and only if P is obtained from  $C_d^*$  by symmetric stacking.

#### Remark:

- The proof only works for simplicial *d*-polytopes.
- We use different proofs for the cases d = 4 and d > 4.

イロト イポト イヨト イヨト 二日

#### **Proof ideas:**

- **1** Reduce to the case when  $\partial P$  has no missing facets.
- 2 Check it is true for the case d = 4.
- Show that for every vertex u,  $lk(u) \cap lk(-u)$  shares 2d 2 vertices. Then show that  $G(st(u) \cup st(-u)) = G(P)$ .
- Finish by face enumeration.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## **Open Problems**

- Does the characterization of the minimizers continue to hold in the generality of cs simplicial spheres or even cs normal pseudomanifolds?
- Let Δ be a 2-dimensional simplicial sphere and {u<sub>i</sub>, v<sub>i</sub>}<sup>m</sup><sub>i=1</sub> is a collection of missing edges in Δ.
   Does there exists an embedding p of Δ such that p(u<sub>i</sub>) = p(v<sub>i</sub>) for i = 1,..., m and (Δ, p) is infinitesimal rigid?
- S A generalized lower bound conjecture for cs simplicial polytopes?

イロト (四) (三) (三) (二) (つ)

## Thank You!

Hailun Zheng (UM)

lower bound theorem for cs polytopes

August 2, 2018 18 / 18

990

イロト イロト イヨト イヨト 二日